JPH0988820A - Variable displacement swash plate type compressor - Google Patents

Variable displacement swash plate type compressor

Info

Publication number
JPH0988820A
JPH0988820A JP7238728A JP23872895A JPH0988820A JP H0988820 A JPH0988820 A JP H0988820A JP 7238728 A JP7238728 A JP 7238728A JP 23872895 A JP23872895 A JP 23872895A JP H0988820 A JPH0988820 A JP H0988820A
Authority
JP
Japan
Prior art keywords
swash plate
sleeve
hole
drive shaft
hinge mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7238728A
Other languages
Japanese (ja)
Inventor
Masaki Ota
太田  雅樹
Shigeyuki Hidaka
茂之 日高
Hisakazu Kobayashi
久和 小林
Yoichi Okatome
洋一 岡留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7238728A priority Critical patent/JPH0988820A/en
Publication of JPH0988820A publication Critical patent/JPH0988820A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of the minimum tilting angle of a swash plate and to ensure smooth displacement. SOLUTION: A sleeve 18 which is moved in an axial direction on a driving shaft 6 in response to changes of the tilt angle of a swash plate 11 is disposed between a through hole 20 of the swash plate 11 and a driving shaft 6 and the through hole 20 is formed to allow the swash plate 11 to change the tilt angle over the full range of control via a supporting part 20a locally abutting on the sleeve 18 opposite to a hinge mechanism across an axial center. Since a bent elongated hole composing the through hole 20 is set such that one inner surface thereof controls the minimum tilt angle of the swash plate 11 via contact with the sleeve 18 and the expanded play for the driving shaft 6 which is produced by extracting the sleeve 18 allows the reverse tilting of the swash plate 11 which is required for the fitting connection of the hinge mechanism, the accuracy of the minimum tilt angle of the swash plate 11 is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、車両空調装置等に
用いられる容量可変型斜板式圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable capacity swash plate compressor used in a vehicle air conditioner or the like.

【従来の技術】従来、斜板(揺動板との結合構造を含
む)の傾角変位を介してピストンストロークを変化さ
せ、これによって吐出容量を可変制御するように構成し
た圧縮機は数多く提案されている。例えば、特開昭62
−87678号公報に開示の圧縮機は、斜板支持構造の
簡素化を目的としたものであって、その特徴とするとこ
ろは、斜板のボス部に駆動軸を貫挿させ、同ボス部には
駆動軸と部分的に接触して径方向位置を規制するととも
に、斜板の傾斜角度の変化を許容する貫通孔を形成した
構成である。つまり斜板を支持し、かつ斜板に一定の変
位軌道を与えるために、従来から使用されてきたスライ
ダや枢支ピンが省去され、上記斜板5は貫通孔55内の
下方側曲面55bが駆動軸3との局部的な当接を介して
ガイドされることにより、一定の変位軌道が保持される
ようになされている。また、斜板の最小傾角を規制する
一方式として、例えば特開平1−26737号公報に開
示の圧縮機のように、駆動軸6上にストッパ(止め輪)
27を装着し、斜板14を軸支したスリーブ13が該ス
トッパ27と当接することにより、その後退限界位置つ
まり斜板14の最小傾角を規制するといった技術手段も
知られている。
2. Description of the Related Art Heretofore, many compressors have been proposed in which a piston stroke is changed by tilting displacement of a swash plate (including a structure for connecting with a swaying plate) to variably control a discharge capacity. ing. For example, Japanese Patent Laid-Open No. Sho 62
The compressor disclosed in Japanese Laid-Open Patent Publication No. 87678 is intended to simplify the swash plate support structure, and is characterized in that the drive shaft is inserted through the boss portion of the swash plate, Has a structure in which a through hole is formed which partially contacts the drive shaft to regulate the radial position and allows the inclination angle of the swash plate to change. That is, the slider and the pivot pin that have been conventionally used are omitted in order to support the swash plate and give a constant displacement trajectory to the swash plate, and the swash plate 5 has the lower curved surface 55b in the through hole 55. Is guided through local contact with the drive shaft 3 so that a constant displacement trajectory is maintained. Further, as one method for controlling the minimum inclination angle of the swash plate, a stopper (retaining ring) is provided on the drive shaft 6 as in the compressor disclosed in Japanese Patent Laid-Open No. 1-267737.
There is also known a technical means in which the sleeve 13 which mounts the swash plate 14 and which axially supports the swash plate 14 comes into contact with the stopper 27 so as to regulate the backward limit position thereof, that is, the minimum inclination angle of the swash plate 14.

【発明が解決しようとする課題】しかしながら、上述し
た止め輪との当接による斜板の最小傾角(最小容量姿
勢)の規制では、以下に掲記する幾つかの因子が傾角精
度に少なからぬ影響を与えることになる。すなわち、駆
動軸上のドライブプレート固着位置の許容差、ドライブ
プレートのカム溝位置の許容差、カム溝とカムピンの係
合公差、カムピンの配設位置の許容差、駆動軸上の止め
輪の装着位置の許容差、止め輪の厚さ公差、等々がそれ
である。このように数多くの因子の累積結果が影響する
だけに、斜板の最小傾角を高精度に保持することはこと
のほか難しく、このため該最小傾角が小に過ぎると、冷
凍回路から圧縮機へのオイル戻り不良がシステムとして
の信頼性を低下させる一方、これが大に過ぎると、最小
容量の増大が冷えすぎや蒸発器のフロストなど別の不具
合を誘起する。また、上述した前者の圧縮機では、圧縮
反力に基づいて斜板の傾斜方向に作用するモ−メント
が、長孔とピンを含んで構成される支持機構と、駆動軸
と接触する上記下方側曲面とによって受承されるが、斜
板の傾角変位に際しては、かかる負荷のもとに同曲面が
駆動軸の所定範囲を線当りで摺動することになる。ま
た、斜板の構造上、上記傾斜方向とは直交する向きにも
圧縮反力に基づくモ−メントが作用して、これは貫通孔
を形成する長孔の短径部分で支承されるが、対角線位置
に存在する前後の短径部端縁が、やはり斜板の傾角変位
に際して駆動軸との間に同様な線当りの摺動を生じる。
したがって、比較的長い摺動距離で駆動軸と貫通孔との
線当り摺動が繰返されると双方に局部的な摩耗が進行
し、これが斜板の正確、かつ円滑な傾角変位を損うとい
った問題がある。本発明は、組付性を損なうことなく斜
板の最小傾角精度を向上させ、同時に斜板の円滑な変位
動作を確保することを、解決すべき技術課題とするもの
である。
However, in the regulation of the minimum inclination angle (minimum capacity posture) of the swash plate due to the contact with the retaining ring described above, several factors described below have a considerable influence on the inclination angle accuracy. Will be given. That is, the tolerance of the drive plate fixing position on the drive shaft, the tolerance of the drive plate cam groove position, the tolerance of the engagement between the cam groove and the cam pin, the tolerance of the position of the cam pin, and the mounting of the retaining ring on the drive shaft. It is the position tolerance, snap ring thickness tolerance, and so on. Thus, it is extremely difficult to maintain the minimum tilt angle of the swash plate with high accuracy because the cumulative result of many factors affects it. Therefore, if the minimum tilt angle is too small, the refrigeration circuit moves to the compressor. While poor oil return reduces system reliability, when it is too large, the increase in minimum capacity causes other problems such as overcooling and evaporator frost. Further, in the former compressor described above, the moment that acts in the tilt direction of the swash plate based on the compression reaction force is the support mechanism that includes the elongated hole and the pin, and the lower portion that contacts the drive shaft. Although it is received by the side curved surface, when the swash plate is displaced in the tilt angle, the curved surface slides in a predetermined range of the drive shaft in line contact under the load. Further, due to the structure of the swash plate, a moment based on the compression reaction acts also in the direction orthogonal to the above-mentioned inclination direction, and this is supported by the short diameter portion of the long hole forming the through hole. The front and rear edges of the short-diameter portion existing at the diagonal position also cause similar sliding along the line with the drive shaft when the swash plate is tilted.
Therefore, if the line contact sliding between the drive shaft and the through hole is repeated with a relatively long sliding distance, local wear progresses on both sides, which impairs accurate and smooth tilt displacement of the swash plate. There is. An object of the present invention is to improve the minimum inclination angle accuracy of the swash plate without impairing the assembling property, and at the same time to ensure a smooth displacement operation of the swash plate.

【課題を解決するための手段】上記課題を解決する請求
項1記載の圧縮機は、複数のボアを並設して圧縮機の外
郭を構成するシリンダブロックと、内部にクランク室を
形成してシリンダブロックの前端を閉塞するフロントハ
ウジングと、該シリンダブロックとフロントハウジング
とに回転自在に支承された駆動軸と、吸入室及び吐出室
を有してシリンダブロックの後端を閉塞するリヤハウジ
ングと、上記クランク室内の駆動軸に固着されたロータ
と、貫通孔によって該駆動軸に装嵌され、かつヒンジ機
構を介して該ロータに嵌合連結された斜板と、傾角変位
可能に制御される該斜板と連係して上記ボア内を直動す
るピストンとを備えた容量可変型斜板式圧縮機におい
て、上記斜板の貫通孔と駆動軸との間には、該斜板の傾
角変位に追随して駆動軸上を軸心方向に従動するスリ−
ブが介装され、上記貫通孔は軸心を挟んで上記ヒンジ機
構と対向する側の該スリ−ブと局部的に衝接する支持部
を介して、全制御範囲にわたり該斜板の傾角変位を許容
すべく形成されるとともに、該貫通孔を構成する屈曲長
孔は、一方の内径面がスリ−ブとの衝合を介して斜板の
最小傾角を規制し、かつ該スリ−ブの抜出によって駆動
軸との間に生じる拡大遊隙が上記ヒンジ機構の嵌合連結
に必要な斜板の逆傾動を許容すべく設定されていること
を特徴としている。請求項2記載の圧縮機は、上記スリ
ーブが上記ロータとの間に介装されたばねの付勢力によ
って上記斜板と衝合せしめられていることを特徴として
いる。
According to a first aspect of the present invention, there is provided a compressor in which a plurality of bores are arranged in parallel to form a compressor outer shell and a crank chamber is formed therein. A front housing that closes the front end of the cylinder block; a drive shaft that is rotatably supported by the cylinder block and the front housing; a rear housing that has a suction chamber and a discharge chamber and closes the rear end of the cylinder block; A rotor fixed to the drive shaft in the crank chamber; a swash plate fitted to the drive shaft by a through hole and fitted and connected to the rotor via a hinge mechanism; In a variable displacement swash plate compressor including a swash plate and a piston that directly moves in the bore, a tilt displacement of the swash plate is tracked between a through hole of the swash plate and a drive shaft. Then drive Sri which is driven a-axis in the axial direction -
A through-hole is provided, and the through-hole allows the tilt angle of the swash plate to be displaced over the entire control range through a support portion that locally abuts the sleeve on the side facing the hinge mechanism with the axis interposed therebetween. The bent elongated hole that is formed to allow the through hole has one inner diameter surface that regulates the minimum inclination angle of the swash plate through the abutment with the sleeve, and the removal of the sleeve. It is characterized in that an enlarged play between the drive shaft and the drive shaft is set so as to allow reverse tilting of the swash plate necessary for fitting and connection of the hinge mechanism. A compressor according to a second aspect is characterized in that the sleeve is abutted against the swash plate by the biasing force of a spring interposed between the sleeve and the rotor.

【作用】請求項1記載の圧縮機では、ロータとヒンジ機
構を介して連結された斜板が貫通孔により駆動軸に装嵌
され、該貫通孔と駆動軸との間には、斜板の傾角変位に
追随して、駆動軸上を軸心方向に従動するスリ−ブが介
装されている。そして該貫通孔は軸心を挟んでヒンジ機
構と対向する側のスリ−ブを越えて設定された枢軸を中
心として、全制御範囲にわたり斜板の傾角変位を許容す
べく構成されており、スリ−ブとの局部的な衝接によっ
て斜板の径方向位置、詳しくは駆動軸心と斜板の上死点
位置とを含む平面内における径方向位置を規制する支持
部が該枢軸中心に弧状に形成されている。したがって、
ヒンジ機構と協働する斜板の傾角変位に際しては、貫通
孔内の上記支持部がスリ−ブとの接触を保ちながら軸心
方向へ移動することになるが、ばねの付勢力などを介し
て斜板と衝合されているスリ−ブは、斜板に追随する形
で同様に駆動軸上を軸心方向に従動する。その結果、支
持部の実質的な摺動距離は、スリ−ブに対する斜板の衝
合部と該支持部との間に生じるきわめて僅かな相対変位
に縮減される。また、上記貫通孔を構成する屈曲長孔
は、一方の内径面がスリ−ブとの衝合を介して斜板の最
小傾角を高精度に規制し、しかもスリ−ブの抜出によっ
て該内径面と駆動軸との間に生じる拡大遊隙が、ヒンジ
機構の嵌合連結に必要な斜板の逆傾動を許容してスムー
ズな組立に寄与する。とくに、請求項2記載の圧縮機の
ように、ロータとスリ−ブとの間にばねを配した構成で
は、斜板から一旦脱出させたスリ−ブを適宜保持し、上
記ヒンジ機構の嵌合連結をまってこれを斜板の貫通孔に
臨ませれば、ばねの付勢力を利用した一層円滑なスリ−
ブの収嵌が期待できる。
In the compressor according to the first aspect, the swash plate connected to the rotor through the hinge mechanism is fitted into the drive shaft through the through hole, and the swash plate is provided between the through hole and the drive shaft. A sleeve, which follows the tilt displacement, is driven along the axial direction of the drive shaft. The through hole is configured to allow the tilt angle displacement of the swash plate over the entire control range around a pivot set over the sleeve on the side facing the hinge mechanism with the axis centered therebetween. A supporting portion that restricts a radial position of the swash plate by a local contact with the bulge, more specifically, a radial position in a plane including the drive shaft center and the top dead center position of the swash plate is arc-shaped about the pivot axis. Is formed in. Therefore,
At the time of tilt displacement of the swash plate that cooperates with the hinge mechanism, the support portion in the through hole moves in the axial direction while maintaining contact with the sleeve, but through the biasing force of the spring or the like. The sleeve, which is in abutment with the swash plate, also follows the swash plate and is likewise driven on the drive shaft in the axial direction. As a result, the substantial sliding distance of the support is reduced to the very slight relative displacement that occurs between the abutment of the swash plate against the sleeve and the support. Further, in the bent long hole which constitutes the through hole, one inner diameter surface highly regulates the minimum inclination angle of the swash plate through the abutment with the sleeve, and moreover, the inner diameter surface is extracted by removing the sleeve. The expanded play that occurs between the surface and the drive shaft allows the reverse tilting of the swash plate necessary for the fitting connection of the hinge mechanism and contributes to smooth assembly. Particularly, in the compressor according to the second aspect, in which the spring is arranged between the rotor and the sleeve, the sleeve once released from the swash plate is appropriately held, and the hinge mechanism is fitted. If the connection is set and this is exposed to the through hole of the swash plate, a smoother sleeve using the biasing force of the spring
It can be expected that the bu will fit.

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。この圧縮機では、図1に示すよう
に、シリンダブロック1の前端側にフロントハウジング
2が接合され、後端側にリアハウジング3が弁板4を介
して接合されている。シリンダブロック1とフロントハ
ウジング2とによって形成されるクランク室5内には軸
心方向に延在する駆動軸6が収容され、駆動軸6は軸受
7a、7bによって回転可能に支持されている。そし
て、シリンダブロック1には駆動軸6の周囲に複数個の
シリンダボア8が穿設されており、各シリンダボア8に
はピストン9がそれぞれ装嵌されている。クランク室5
内において、駆動軸6にはロータ10が固着されて、フ
ロントハウジング2との間に軸受19を介して支承さ
れ、ロータ10の後方には貫通孔20によって斜板11
が装嵌されるとともに、該貫通孔20と駆動軸6との間
にはスリ−ブ18が介装されている。貫通孔20は、駆
動軸心を挟んで後述するヒンジ機構Kと対向する側の該
スリ−ブ18を越えて設定された枢軸Yを中心に、全制
御範囲にわたって斜板11の傾角変位を許容するよう屈
曲長孔状に形成されており、図4に示すように、スリ−
ブ18と局部的に衝接して斜板11の径方向位置、詳し
くは駆動軸心と斜板11の上死点位置とを含む平面内に
おける径方向位置を規制する支持部20aが該枢軸Y中
心に弧状に形成されている。そして屈曲長孔の一方の内
径面20bはスリ−ブ18との衝合を介して斜板11の
最小傾角を規制する規制面として形成され、他方の内径
面20cには、斜板11の前端下部に設けられた係合面
11cがロータ10の後端面10aと当接してその最大
傾角が規制された際、スリ−ブ18との干渉を避回する
逃げ角θが付与されている。なお、該貫通孔20の両側
方には屈曲長孔の形成に付随して平坦な規制面20dが
創成されている。スリ−ブ18は前端部にフランジ18
aを備えており、該フランジ18aが斜板11の前面に
形成された屈折状の衝合部11aと常に衝合することに
より、スリ−ブ18が斜板11の傾角変位に追随して駆
動軸6上を従動するよう、上記ロータ10とスリ−ブ1
8との間にはコイルばね12が介装されている。そし
て、図1に示すように、斜板11の外周部には、連結機
構としての半球部を有するシュー14、14が当接さ
れ、これらシュー14、14の半球部はピストン9の球
状支承面と係合されており、こうして、斜板11に係留
される複数のピストン9は各シリンダボア8内を往復動
可能に収納されている。斜板11の前面側には、ヒンジ
機構Kの一方を構成するブラケット15が突設されてお
り、該ブラケット15にはガイドピン16の基端が固着
され、同先端には球部16aが形成されている。また、
ロータ10の上部後面側には、ヒンジ機構Kの他方を構
成する支持アーム17がガイドピン16と対向するよう
軸心方向に沿って突出されている。該支持アーム17の
先端部には、軸心に近づくほど後方に向け傾斜したガイ
ド孔17aが貫設されており、このように傾斜したガイ
ド孔17aの中心線は、該ガイド孔17aに嵌入した球
部16aによって拘束される斜板11の傾角変位中、ピ
ストン9の上死点位置がほとんど変位しないように設定
されている。リアハウジング3内は、吸入室30及び吐
出室31に区画され、弁板4にはシリンダボア8に対応
して吸入ポート32及び吐出ポート33が開口形成され
ており、弁板4とピストン9との間に形成される圧縮室
が吸入ポート32及び吐出ポート33を介して吸入室3
0及び吐出室31に連通されている。各吸入ポート32
にはピストン9の往復動に応じて吸入ポート32を開閉
する吸入弁が、また、吐出ポート33にはピストン9の
往復動に応じて吐出ポート33をリテーナ34に規制さ
れつつ開閉する吐出弁(いずれも図示せず)が設けられ
ている。また、リアハウジング3には、クランク室5の
圧力を調整する図示しない制御弁が装備されている。以
上のように構成された圧縮機の起動に伴って、駆動軸6
と共動する斜板11が回転されると、シュー14、14
を介して各ピストン9がシリンダボア8内で往復動し、
これにより吸入室30から圧縮室内に冷媒ガスが吸入さ
れ、冷媒ガスは圧縮された後、吐出室31へと吐出され
る。このとき、吐出室31へ吐出される冷媒ガスの吐出
容量は、制御弁によるクランク室5内の圧力調整により
制御される。すなわち、図2の状態において、制御弁の
圧力調整でクランク室5の圧力が上昇すれば、ピストン
9に作用する背圧が上がることにより、斜板11の傾角
が小さくなる。つまり、ヒンジ機構Kを構成するガイド
ピン16の球部16aは、ガイド孔17a内を反時計方
向に回転するとともに、ガイド孔17aに沿って外方か
ら軸心側に近づく方向に摺動し、同時に斜板11は枢軸
Yを中心とする支持部20aがスリ−ブ18との衝接を
保ちながら回動し、かつ退動する。これにより、斜板1
1の傾角が縮小されて図3の状態に変化し、ピストン9
のストロークに応じて吐出容量は小さくなる。逆に、図
3の状態において、制御弁の圧力調整でクランク室5の
圧力が低下すれば、ピストン9に作用する背圧が下がる
ことにより、斜板11の傾角が大きくなる。つまり、ガ
イドピン16の球部16aは、ガイド孔17a内を時計
方向に回動するとともに、ガイド孔17aに沿って内方
から軸心に対し離れる方向に摺動し、同時に斜板11は
支持部20aがスリ−ブ18との衝接を保ちながら回動
し、かつ進動する。これにより、斜板11の傾角が拡大
されて図2の状態に変化し、ピストン9のストロークに
応じて吐出容量は大きくなる。このように斜板11の傾
角は、熱負荷を検出した制御弁の作動に基づいて制御さ
れ、該斜板11の傾角変位に際しては、上述のごとく貫
通孔20内の支持部20aがスリ−ブ18との衝接を保
ちながら軸心方向に移動することになるが、コイルばね
12の付勢力により常に、斜板11と衝合されているス
リ−ブ18は、斜板11に追随する形で同様に駆動軸6
上を軸心方向に従動する。その結果、支持部20aの実
質的な摺動距離は、衝合部11aによって衝合するスリ
−ブ18と支持部20aとの間に生じるきわめて僅かな
相対変位、つまり図2、図3に示す最大及び最小傾角時
における衝合部11aと支持部20aとの軸方向距離の
差異(D−d)に縮減される。そして、図3に示す最小
傾角時における衝合部11aと支持部20aとの軸方向
距離Dを、図2に示す最大傾角時における同距離dとほ
ぼ等しくなるよう衝合部11aの形状に設計的配慮を加
えるか、又は図6に示す枢軸Y中心の弧の長さrθを、
上記摺動距離(D−d)と同等となるよう選択すれば、
支持部20aとスリ−ブ18との摺動を実質的に無視し
うる程度に消去することができる。さて、上述したよう
に、圧縮機の最小容量を特定する斜板11の最小傾角
が、屈曲長孔の内径面20bとスリ−ブ18との衝合に
よって定まることは、最小傾角を高精度に保つ意味から
きわめて重要であって、これは該最小傾角の精度に関与
する因子が、斜板11の有効平面に対する上記内径面2
0bの傾き角と、駆動軸6に対するスリ−ブ18の嵌合
遊隙のみに限られて、従来のようなロータ10とヒンジ
機構K、さらには、駆動軸6上の止め輪にまで及ぶ幾多
の加工、組付公差が、最小傾角精度に全く影響しなくな
るからである。そしていま一つは、斜板11の貫通孔2
0と駆動軸6との間に介在して相互の摩耗防止に機能す
るスリ−ブ18が、ヒンジ機構Kの嵌合連結に重要な役
割を果していることである。すなわち、ヒンジ機構Kの
嵌合部であるガイド孔17aにガイドピン16の球部1
6aを嵌入させる際には、斜板11を零度を越えた逆向
きに傾動させてガイドピン16をさらに俯傾させる必要
がある。図5はガイドピン16の嵌入直前の状態を示す
もので、このときスリ−ブ18は貫通孔20から抜出さ
れて適宜保持されており、抜出後の貫通孔20と駆動軸
6との間にはスリ−ブ18の容積に匹敵する拡大遊隙が
形成されて、この拡大遊隙(とくに内径面20b部分)
はガイドピン16の嵌入に必要な斜板11の逆傾動を許
容すべく設定されている。斜板11の傾角変位に追随さ
せるスリ−ブ付勢用のコイルばね12は、スリ−ブ18
の前後いずれの側に配置しても実施可能であるが、図示
のようにコイルばね12をロータ10との間に介装した
形態では、ガイドピン16の嵌入によるヒンジ機構Kの
連結後、それまで保持されていたスリ−ブ18を斜板1
1の貫通孔20に臨ませることにより、コイルばね12
の付勢力が作用してスリ−ブ18は至極円滑に収嵌され
る。なお、上述の実施形態では、ヒンジ機構Kの嵌合部
が、ガイド孔17aとガイドピン16の球部16aとの
直接嵌合からなる構成について説明したが、例えば両者
間にブッシュやシュー等を介在させた連結構成も採用で
き、要は斜板11の傾角変位に基づいたガイドピンの運
動を的確に案内しうる構成であれば差支えない。また、
斜板11の係合面11Cがロータ10の後端面10aと
当接することによって定まる最大傾角規制手段も、必ず
しもこれに限るものでなく、上記屈曲長孔の内径面20
cに付与される逃げ角θを廃して、これを積極的にスリ
ーブ18と衝合させるようにし、上記内径面20bと同
形態の最大傾角規制面として機能させることもできる。
Embodiments of the present invention will be described below with reference to the drawings. In this compressor, as shown in FIG. 1, a front housing 2 is joined to a front end side of a cylinder block 1 and a rear housing 3 is joined to a rear end side thereof via a valve plate 4. A drive shaft 6 extending in the axial direction is accommodated in a crank chamber 5 formed by the cylinder block 1 and the front housing 2, and the drive shaft 6 is rotatably supported by bearings 7a and 7b. A plurality of cylinder bores 8 are formed around the drive shaft 6 in the cylinder block 1, and pistons 9 are fitted in the respective cylinder bores 8. Crank chamber 5
Inside, a rotor 10 is fixedly attached to the drive shaft 6 and supported by a bearing 19 between the rotor 10 and the front housing 2, and a swash plate 11 is provided behind the rotor 10 by a through hole 20.
And a sleeve 18 is interposed between the through hole 20 and the drive shaft 6. The through hole 20 allows tilt displacement of the swash plate 11 over the entire control range around a pivot Y set across the sleeve 18 on the side facing the hinge mechanism K described later with the drive shaft interposed therebetween. As shown in FIG. 4, the sleeve is formed into a bent long hole.
The support portion 20a that locally abuts on the shaft 18 and restricts the radial position of the swash plate 11, more specifically, the radial position in the plane including the drive shaft center and the top dead center position of the swash plate 11, is the pivot Y. It is formed in an arc shape at the center. Then, one inner diameter surface 20b of the bent elongated hole is formed as a restriction surface for restricting the minimum inclination angle of the swash plate 11 through an abutment with the sleeve 18, and the other inner diameter surface 20c has a front end of the swash plate 11. When the engagement surface 11c provided at the lower portion abuts the rear end surface 10a of the rotor 10 and its maximum inclination angle is regulated, a clearance angle θ is provided to avoid interference with the sleeve 18. A flat regulation surface 20d is formed on both sides of the through hole 20 in association with the formation of the bent elongated hole. The sleeve 18 has a flange 18 at the front end.
Since the flange 18a constantly abuts the refracting abutment portion 11a formed on the front surface of the swash plate 11, the sleeve 18 is driven following the inclination displacement of the swash plate 11. The rotor 10 and the sleeve 1 are driven so as to follow the shaft 6.
A coil spring 12 is interposed between the coil spring 12 and the coil 8. As shown in FIG. 1, shoes 14, 14 having hemispherical portions as a connecting mechanism are brought into contact with the outer peripheral portion of the swash plate 11, and the hemispherical portions of these shoes 14, 14 are spherical bearing surfaces of the piston 9. The plurality of pistons 9 moored to the swash plate 11 are housed in the respective cylinder bores 8 so as to be capable of reciprocating. On the front surface side of the swash plate 11, a bracket 15 that constitutes one of the hinge mechanisms K is provided in a protruding manner. The base end of a guide pin 16 is fixed to the bracket 15, and a spherical portion 16a is formed at the tip thereof. Has been done. Also,
On the rear side of the upper portion of the rotor 10, a support arm 17 constituting the other side of the hinge mechanism K is projected along the axial direction so as to face the guide pin 16. A guide hole 17a which is inclined rearward is provided at the tip of the support arm 17 as it approaches the axis, and the center line of the guide hole 17a thus inclined is fitted into the guide hole 17a. It is set so that the top dead center position of the piston 9 is hardly displaced during the inclination displacement of the swash plate 11 constrained by the spherical portion 16a. The inside of the rear housing 3 is divided into a suction chamber 30 and a discharge chamber 31, and a suction port 32 and a discharge port 33 are formed in the valve plate 4 so as to correspond to the cylinder bore 8. The valve plate 4 and the piston 9 are connected to each other. The compression chamber formed between the suction chamber 3 and the suction port 32 and the discharge port 33.
0 and the discharge chamber 31. Each suction port 32
Is a suction valve that opens and closes the suction port 32 according to the reciprocating movement of the piston 9, and a discharge valve that opens and closes the discharge port 33 according to the reciprocating movement of the piston 9 while being regulated by the retainer 34 ( (Not shown). Further, the rear housing 3 is equipped with a control valve (not shown) for adjusting the pressure of the crank chamber 5. When the compressor configured as described above is started, the drive shaft 6
When the swash plate 11 coacting with is rotated, the shoes 14, 14
Each piston 9 reciprocates in the cylinder bore 8 via
As a result, the refrigerant gas is sucked into the compression chamber from the suction chamber 30, and the refrigerant gas is compressed and then discharged into the discharge chamber 31. At this time, the discharge capacity of the refrigerant gas discharged to the discharge chamber 31 is controlled by adjusting the pressure in the crank chamber 5 by the control valve. That is, in the state of FIG. 2, if the pressure in the crank chamber 5 rises due to the pressure adjustment of the control valve, the back pressure acting on the piston 9 rises, and the tilt angle of the swash plate 11 decreases. That is, the spherical portion 16a of the guide pin 16 that constitutes the hinge mechanism K rotates in the guide hole 17a in the counterclockwise direction and slides along the guide hole 17a from the outside toward the axial center side. At the same time, the swash plate 11 rotates and retreats while the supporting portion 20a centering on the pivot Y maintains the abutting contact with the sleeve 18. As a result, the swash plate 1
The tilt angle of No. 1 is reduced to the state of FIG.
The discharge capacity becomes smaller according to the stroke. On the contrary, in the state of FIG. 3, if the pressure in the crank chamber 5 is lowered by adjusting the pressure of the control valve, the back pressure acting on the piston 9 is lowered, and the inclination angle of the swash plate 11 is increased. That is, the spherical portion 16a of the guide pin 16 rotates in the guide hole 17a in the clockwise direction and slides along the guide hole 17a in a direction away from the axial center from the inside, and at the same time, the swash plate 11 is supported. The portion 20a rotates and advances while maintaining the contact with the sleeve 18. As a result, the angle of inclination of the swash plate 11 is enlarged to change to the state of FIG. 2, and the discharge capacity increases in accordance with the stroke of the piston 9. In this way, the tilt angle of the swash plate 11 is controlled based on the operation of the control valve that detects the heat load, and when the tilt angle of the swash plate 11 is displaced, the support portion 20a in the through hole 20 is slid as described above. The sleeve 18 is moved in the axial direction while maintaining contact with the swash plate 18, but the sleeve 18 which is always in abutment with the swash plate 11 by the biasing force of the coil spring 12 follows the swash plate 11. Drive shaft 6
Follow the axial direction. As a result, the substantial sliding distance of the support portion 20a is shown in FIGS. 2 and 3, which is a very small relative displacement between the support portion 20a and the sleeve 18 that abuts against the abutment portion 11a. It is reduced to the difference (D-d) in the axial distance between the abutting portion 11a and the supporting portion 20a at the maximum and minimum tilt angles. Then, the shape of the abutment portion 11a is designed so that the axial distance D between the abutment portion 11a and the support portion 20a at the minimum inclination angle shown in FIG. 3 is substantially equal to the same distance d at the maximum inclination angle shown in FIG. Or the arc length rθ around the pivot Y shown in FIG.
If it is selected to be equivalent to the above sliding distance (D-d),
Sliding between the support portion 20a and the sleeve 18 can be erased to a substantially negligible extent. Now, as described above, the minimum inclination angle of the swash plate 11 that specifies the minimum capacity of the compressor is determined by the abutment between the inner diameter surface 20b of the bent elongated hole and the sleeve 18, so that the minimum inclination angle is highly accurate. It is extremely important from the standpoint of keeping, and this is because the factor relating to the accuracy of the minimum tilt angle is the inner diameter surface 2 with respect to the effective plane of the swash plate 11.
It is limited only to the inclination angle of 0b and the clearance for fitting the sleeve 18 to the drive shaft 6, and to the rotor 10 and the hinge mechanism K as in the conventional case, and further to the retaining ring on the drive shaft 6. This is because the machining and assembly tolerances of No influence on the minimum inclination angle accuracy. And another one is through hole 2 of swash plate 11.
The sleeve 18 that is interposed between the drive shaft 6 and the drive shaft 6 to prevent mutual wear plays an important role in the fitting and connection of the hinge mechanism K. That is, the spherical portion 1 of the guide pin 16 is inserted into the guide hole 17a which is the fitting portion of the hinge mechanism K.
When the 6a is fitted, it is necessary to tilt the swash plate 11 in the opposite direction beyond zero degrees to further tilt the guide pin 16. FIG. 5 shows a state immediately before the guide pin 16 is fitted. At this time, the sleeve 18 is pulled out from the through hole 20 and is appropriately held, and the through hole 20 and the drive shaft 6 after being pulled out are separated from each other. An expanded play is formed between them, which is equivalent to the volume of the sleeve 18, and this expanded play (particularly the inner diameter surface 20b portion) is formed.
Is set to allow reverse tilting of the swash plate 11 necessary for fitting the guide pin 16. The coil spring 12 for urging the sleeve to follow the inclination displacement of the swash plate 11 has a sleeve 18
Although it can be implemented on any of the front and rear sides, the coil spring 12 is interposed between the rotor 10 and the rotor 10 as shown in FIG. The sleeve 18 held up to the swash plate 1
By facing the through hole 20 of No. 1, the coil spring 12
The sleeve 18 is fitted into the sleeve 18 extremely smoothly by the urging force of. In the above-described embodiment, the fitting portion of the hinge mechanism K has been described as having a configuration in which the guide hole 17a and the spherical portion 16a of the guide pin 16 are directly fitted. An intervening connection structure can also be adopted, and the point is that the structure can properly guide the movement of the guide pin based on the inclination displacement of the swash plate 11. Also,
The maximum tilt angle regulating means determined by the engagement surface 11C of the swash plate 11 contacting the rear end surface 10a of the rotor 10 is not limited to this, and the inner diameter surface 20 of the bent elongated hole is not limited to this.
It is also possible to eliminate the clearance angle θ given to c and positively abut it with the sleeve 18 so as to function as a maximum tilt angle restricting surface of the same form as the inner diameter surface 20b.

【発明の効果】以上詳述したように本発明の圧縮機は、
特許請求の範囲に記載の構成を有するものであるから、
以下に掲記する優れた効果を奏する。 (1)圧縮反力等に基づいて斜板を傾斜させようとする
モ−メントの一部は、斜板の支持部と衝接するスリ−ブ
で受承されるが、斜板の傾角変位に伴った支持部の移動
に追随して、スリ−ブも駆動軸上を同一方向に従動し、
支持部の実質的な摺動距離はスリーブとの間に生じるき
わめて僅かな相対変位に縮減されるので、衝接する両者
の摺動摩耗は勿論、スリーブとの面接触摺動への変換に
より駆動軸の摩耗も有効に防止されて、斜板の円滑な傾
角変位動作が確実に保証される。 (2)しかも単独のヒンジ機構を採用した圧縮機では、
斜板の傾斜方向と直交する向きに作用するモ−メントも
かなり大きくなるが、斜板とスリ−ブとの相対変位自体
が小さいため、貫通孔の側縁とスリ−ブとの間に生じや
すい摩耗も同様に防止される。 (3)斜板の最小傾角が貫通孔を構成する屈曲長孔の内
径面とスリ−ブとの衝合によって規制されるので、最小
傾角の精度に関与する因子が極端に少なく、設定された
最小傾角(容量)を高い精度で確保することができる。 (4)斜板の最小傾角側への変位が貫通孔とスリ−ブと
の干渉により制限されるものの、スリ−ブの抜出によっ
て駆動軸との間に生じる拡大遊隙が、ヒンジ機構の嵌合
連結に必要な斜板の逆傾動を許容するので、貫通孔によ
る斜板の最小傾角の規制と、組立時に求められる斜板の
逆傾動とをたくみに両立させることができる。
As described in detail above, the compressor of the present invention is
Since it has the configuration described in the claims,
It has the following excellent effects. (1) A part of the moment to incline the swash plate based on the compression reaction force or the like is received by the sleeve that abuts the supporting portion of the swash plate. Following the movement of the supporting part, the sleeve also follows the drive shaft in the same direction,
Since the substantial sliding distance of the supporting portion is reduced to an extremely slight relative displacement generated between the supporting portion and the sleeve, not only the sliding wear of the abutting members but also the surface contact sliding with the sleeve is converted into the driving shaft. The wear of the swash plate is effectively prevented, and the smooth tilting displacement operation of the swash plate is surely guaranteed. (2) Moreover, in the compressor adopting the independent hinge mechanism,
Although the moment acting in the direction orthogonal to the inclination direction of the swash plate is considerably large, the relative displacement itself between the swash plate and the sleeve is small, so that it occurs between the side edge of the through hole and the sleeve. Easy wear is likewise prevented. (3) Since the minimum tilt angle of the swash plate is regulated by the abutment of the sleeve with the inner diameter surface of the bent elongated hole forming the through hole, the factor relating to the accuracy of the minimum tilt angle is extremely small and set. The minimum tilt angle (capacity) can be secured with high accuracy. (4) Although the displacement of the swash plate toward the minimum tilt side is limited by the interference between the through hole and the sleeve, the expansion clearance generated between the drive shaft and the sleeve due to the removal of the sleeve causes the expansion of the hinge mechanism. Since the reverse tilting of the swash plate necessary for the fitting and connection is allowed, the regulation of the minimum tilt angle of the swash plate by the through hole and the reverse tilting of the swash plate required at the time of assembly can both be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る圧縮機の全容を示す断面
図。
FIG. 1 is a cross-sectional view showing the entire structure of a compressor according to an embodiment of the present invention.

【図2】同圧縮機における斜板の最大傾角状態を示す要
部断面図。
FIG. 2 is a sectional view of an essential part showing a maximum inclination state of a swash plate in the compressor.

【図3】同圧縮機における斜板の最小傾角状態を示す要
部断面図。
FIG. 3 is a cross-sectional view of essential parts showing a minimum inclination state of a swash plate in the compressor.

【図4】同圧縮機における斜板の要部を示す拡大断面
図。
FIG. 4 is an enlarged sectional view showing a main part of a swash plate in the compressor.

【図5】同圧縮機におけるヒンジ機構の嵌合組立状態を
示す断面図。
FIG. 5 is a sectional view showing a fitted and assembled state of a hinge mechanism in the compressor.

【図6】斜板に形成された支持部とスリーブとの相対変
位を示す説明図。
FIG. 6 is an explanatory diagram showing relative displacement between a support portion formed on a swash plate and a sleeve.

【符号の説明】[Explanation of symbols]

1…シリンダブロック 2…フロントハウジング 3
…リアハウジング 5…クランク室 6…駆動軸 8
…シリンダボア 9…ピストン 10…ロータ 11
…斜板 11a…衝合部 12…コイルばね
14…シュー 18…スリ−ブ 18a…フランジ 2
0…貫通孔 20a…支持部 20b…内径面
30…吸入室 31…吐出室 K…ヒンジ機構
Y…枢軸
1 ... Cylinder block 2 ... Front housing 3
… Rear housing 5… Crank chamber 6… Drive shaft 8
… Cylinder bore 9… Piston 10… Rotor 11
… Swash plate 11a… Abutting part 12… Coil spring
14 ... shoe 18 ... sleeve 18a ... flange 2
0 ... through hole 20a ... support portion 20b ... inner diameter surface
30 ... Suction chamber 31 ... Discharge chamber K ... Hinge mechanism
Y ... Axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡留 洋一 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Okadome, 2-chome, Toyota-cho, Kariya City, Aichi Stock Company Toyota Industries Corp.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数のボアを並設して圧縮機の外郭を構成
するシリンダブロックと、内部にクランク室を形成して
シリンダブロックの前端を閉塞するフロントハウジング
と、該シリンダブロックとフロントハウジングとに回転
自在に支承された駆動軸と、吸入室及び吐出室を有して
シリンダブロックの後端を閉塞するリヤハウジングと、
上記クランク室内の駆動軸に固着されたロータと、貫通
孔によって該駆動軸に装嵌され、かつヒンジ機構を介し
て該ロータに嵌合連結された斜板と、傾角変位可能に制
御される該斜板と連係して上記ボア内を直動するピスト
ンとを備えた容量可変型斜板式圧縮機において、上記斜
板の貫通孔と駆動軸との間には、該斜板の傾角変位に追
随して駆動軸上を軸心方向に従動するスリ−ブが介装さ
れ、上記貫通孔は軸心を挟んで上記ヒンジ機構と対向す
る側の該スリ−ブと局部的に衝接する支持部を介して、
全制御範囲にわたり該斜板の傾角変位を許容すべく形成
されるとともに、該貫通孔を構成する屈曲長孔は、一方
の内径面がスリ−ブとの衝合を介して斜板の最小傾角を
規制し、かつ該スリ−ブの抜出によって駆動軸との間に
生じる拡大遊隙が上記ヒンジ機構の嵌合連結に必要な斜
板の逆傾動を許容すべく設定されていることを特徴とす
る容量可変型斜板式圧縮機。
1. A cylinder block having a plurality of bores arranged side by side to form an outer shell of a compressor, a front housing for closing a front end of the cylinder block by forming a crank chamber therein, and the cylinder block and the front housing. A drive shaft rotatably supported by the rear housing, a rear housing having a suction chamber and a discharge chamber for closing the rear end of the cylinder block,
A rotor fixed to the drive shaft in the crank chamber; a swash plate fitted to the drive shaft by a through hole and fitted and connected to the rotor via a hinge mechanism; In a variable displacement swash plate compressor including a swash plate and a piston that directly moves in the bore, a tilt displacement of the swash plate is tracked between a through hole of the swash plate and a drive shaft. Then, a sleeve that follows the drive shaft in the axial direction is interposed, and the through hole has a support portion that locally abuts the sleeve on the side facing the hinge mechanism with the shaft center interposed therebetween. Through,
The bending oblong hole is formed to allow the tilt displacement of the swash plate over the entire control range, and the bending long hole that constitutes the through hole has the one inner diameter surface that has the minimum tilt angle of the swash plate through the abutment with the sleeve. And an enlarged play between the drive shaft and the drive shaft due to the removal of the sleeve is set to allow the reverse tilting of the swash plate necessary for the fitting and connection of the hinge mechanism. Variable capacity swash plate compressor.
【請求項2】上記スリーブは上記ロータとの間に介装さ
れたばねの付勢力によって上記斜板と衝合せしめられて
いることを特徴とする請求項1記載の圧縮機。
2. The compressor according to claim 1, wherein the sleeve is abutted against the swash plate by an urging force of a spring interposed between the sleeve and the rotor.
JP7238728A 1995-09-18 1995-09-18 Variable displacement swash plate type compressor Pending JPH0988820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7238728A JPH0988820A (en) 1995-09-18 1995-09-18 Variable displacement swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7238728A JPH0988820A (en) 1995-09-18 1995-09-18 Variable displacement swash plate type compressor

Publications (1)

Publication Number Publication Date
JPH0988820A true JPH0988820A (en) 1997-03-31

Family

ID=17034382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7238728A Pending JPH0988820A (en) 1995-09-18 1995-09-18 Variable displacement swash plate type compressor

Country Status (1)

Country Link
JP (1) JPH0988820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907020A1 (en) * 1997-01-24 1999-04-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement swash plate compressor having an improved swash plate supporting means
WO2001014743A1 (en) * 1999-08-20 2001-03-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement swash plate type compressor
WO2005035982A1 (en) * 2003-10-14 2005-04-21 Valeo Thermal Systems Japan Corporation Swash plate-type compressor
KR100714088B1 (en) * 2001-02-16 2007-05-02 한라공조주식회사 work method of swash plate variable capacity compressor utilizing the same
KR101159862B1 (en) * 2006-07-12 2012-06-25 한라공조주식회사 Compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907020A1 (en) * 1997-01-24 1999-04-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement swash plate compressor having an improved swash plate supporting means
EP0907020A4 (en) * 1997-01-24 2001-03-28 Kk Variable displacement swash plate compressor having an improved swash plate supporting means
WO2001014743A1 (en) * 1999-08-20 2001-03-01 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement swash plate type compressor
KR100714088B1 (en) * 2001-02-16 2007-05-02 한라공조주식회사 work method of swash plate variable capacity compressor utilizing the same
WO2005035982A1 (en) * 2003-10-14 2005-04-21 Valeo Thermal Systems Japan Corporation Swash plate-type compressor
JPWO2005035982A1 (en) * 2003-10-14 2007-11-22 株式会社ヴァレオサーマルシステムズ Swash plate compressor
JP4692886B2 (en) * 2003-10-14 2011-06-01 株式会社ヴァレオサーマルシステムズ Swash plate compressor
KR101159862B1 (en) * 2006-07-12 2012-06-25 한라공조주식회사 Compressor

Similar Documents

Publication Publication Date Title
JP3422186B2 (en) Variable capacity compressor
JPH10318418A (en) Solenoid control valve
KR100660666B1 (en) Variable volume type compressor
JP3114398B2 (en) Oscillating swash plate type variable displacement compressor
US6077047A (en) Variable displacement compressor
US6116145A (en) Variable displacement compressor
KR100201934B1 (en) Variable capacity compressor
US6146107A (en) Variable displacement compressor
JPH10266952A (en) Variable displacement type swash plate compressor
JPH10131850A (en) Compressor
US6524079B1 (en) Alignment means for the swash plate of a variable-capacity swash-plate type compressor
KR100193911B1 (en) Swash plate compressor
JPH0988820A (en) Variable displacement swash plate type compressor
JP2917767B2 (en) Variable capacity swash plate compressor
US5988040A (en) Variable displacement swash plate compressor with improved swash plate support means
US6474955B1 (en) Hinge mechanism for variable displacement compressors
JP2004068757A (en) Variable displacement compressor
JP2001263241A (en) Swash plate type compressor and piston therefor
KR100206615B1 (en) Slant plate compressor with a variable displacement mechanism
JP2755193B2 (en) Piston in compressor
JPH09144652A (en) Variable capacity compressor
JPH0942149A (en) Variable displacement type swash plate compressor
JPH10196526A (en) Variable capacity swash plate compressor
JP2000120533A (en) Variable displacement type swash plate compressor
US20060222513A1 (en) Swash plate type variable displacement compressor