JPH0986378A - Turning behavior control device of vehicle - Google Patents

Turning behavior control device of vehicle

Info

Publication number
JPH0986378A
JPH0986378A JP7251433A JP25143395A JPH0986378A JP H0986378 A JPH0986378 A JP H0986378A JP 7251433 A JP7251433 A JP 7251433A JP 25143395 A JP25143395 A JP 25143395A JP H0986378 A JPH0986378 A JP H0986378A
Authority
JP
Japan
Prior art keywords
yaw rate
vehicle
control
right wheel
braking force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7251433A
Other languages
Japanese (ja)
Other versions
JP3183124B2 (en
Inventor
Yasuo Motoyama
廉夫 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP25143395A priority Critical patent/JP3183124B2/en
Publication of JPH0986378A publication Critical patent/JPH0986378A/en
Application granted granted Critical
Publication of JP3183124B2 publication Critical patent/JP3183124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the behavior of a vehicle in a turning condition by carrying out the left and the right wheel driving force control and the left and the right wheel braking force control of a vehicle efficiently. SOLUTION: A left and right wheel driving force regulating mechanism to give the difference between the left wheel and the right wheel driving forces, and a braking force regulating mechanism to give the braking force differences between the wheels, of a vehicle are provided, the difference between an object yaw rate calculated depending on the car speed and the steering amount, and the actual yaw rate, is calculated as a yaw rate deflection by a yaw rate deflection calculating means, and the left and right wheel driving force regulating mechanism, and the braking force regulating mechanism are controlled integrally depending on the yaw rate deflection, in a control means. That is, by controlling the left and right wheel driving force regulating mechanism, and the braking force regulating mechanism integrally depending on the common control rule subject to the yaw rate deflection, the vehicle behavior in the turning condition is stabilized, as well as the control efficiency is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は旋回性能の向上と、
旋回限界領域での車両挙動の安定化を図り得る車両の旋
回挙動制御装置に関する。
TECHNICAL FIELD The present invention relates to improvement of turning performance,
The present invention relates to a vehicle turning behavior control device capable of stabilizing vehicle behavior in a turning limit region.

【0002】[0002]

【関連する背景技術】車両の旋回時における挙動を制御
してその安定化を図る技術として、例えば特開平4-1855
62号公報に開示されるように、車両の旋回状態に応じて
車輪間の制動力に差を付ける制動力制御や、特開平5-13
1855号公報に開示されるように、車両の挙動に応じて左
右輪間の駆動力に差を付ける左右輪駆動力制御がある。
2. Related Background Art As a technique for controlling the behavior of a vehicle while turning to stabilize it, for example, Japanese Patent Laid-Open No. 4-1855
As disclosed in Japanese Patent Laid-Open No. 62-62, a braking force control that makes a difference in braking force between wheels according to a turning state of a vehicle, and JP-A-5-13
As disclosed in Japanese Patent No. 1855, there is left / right wheel driving force control that makes a difference in driving force between the left and right wheels according to the behavior of the vehicle.

【0003】上記制動力制御は、応答性が高く、また大
掛かりな付加物なしに大きなヨーモーメントを得ること
ができる、更には接地荷重の大きい旋回外輪に制動力を
付加することでスピン回避制御時の効果が大きい、また
その制御によって自動的に減速度が得られるので、オー
バースピードでコーナーに進入したときの安全性向上を
図り得る等の優れた効果を有する。これに対して左右輪
駆動力制御は、その制御時に減速度が殆ど発生しないの
で車両操舵上の違和感が小さく、通常走行時でも制御可
能である、また旋回中における左右輪接地荷重に応じた
駆動力配分ができるので駆動効率を高め得る、更には旋
回限界付近でのアンダーステアを抑制して旋回限界を向
上できる等の優れた特徴を有する。
The above braking force control has high responsiveness, and a large yaw moment can be obtained without a large additional object. Further, by applying a braking force to the turning outer wheel having a large ground load, spin avoidance control is performed. Has a great effect, and since the deceleration is automatically obtained by the control, there is an excellent effect such that safety can be improved when entering a corner at an overspeed. On the other hand, in the left and right wheel drive force control, deceleration hardly occurs during the control, so that a feeling of discomfort in vehicle steering is small, control is possible even during normal traveling, and drive according to the left and right wheel ground load during turning. Since the force can be distributed, the driving efficiency can be improved, and further, the understeer near the turning limit can be suppressed to improve the turning limit.

【0004】[0004]

【発明が解決しようとする課題】ところがその反面、制
動力制御にあっては、その制御時に減速度が生じるので
違和感が大きく、また旋回中における左右輪接地荷重に
応じた駆動力配分が可能ではあるが駆動効率の面での損
失が大きい、更には旋回限界付近でのアンダーステアを
抑制できるがロスが大きい等の不具合がある。また左右
輪駆動力制御にあっては、その機構の大きさが重量およ
び寸法面の点で大きく制限されるので、大きなヨーモー
メントを発生させることが困難であり、また一般に湿式
多板クラッチを用いて左右輪への駆動力配分制御を行う
ので応答性に劣り、更には上述したようにヨーモーメン
トの大きさと応答性に制約があるので、スピン回避制御
時に十分な効果を発揮できない等の不具合がある。
On the other hand, in braking force control, on the other hand, deceleration occurs during the control, which causes a large discomfort, and it is not possible to distribute the driving force according to the left and right wheel ground loads during turning. However, there are drawbacks such as a large loss in terms of driving efficiency, and further suppression of understeer near the turning limit, but a large loss. Also, in the left and right wheel drive force control, the size of the mechanism is greatly limited in terms of weight and dimensions, so it is difficult to generate a large yaw moment, and in general, a wet multi-plate clutch is used. Since the control of the driving force distribution to the left and right wheels is inferior, the response is inferior.Furthermore, because the yaw moment magnitude and response are limited as described above, there are problems such as not being able to exert a sufficient effect during spin avoidance control. is there.

【0005】本発明はこのような事情を考慮してなされ
たもので、その目的は、違和感のない操縦性の確保と旋
回性能の向上を図ると共に、ヨーレイト偏差の大きい旋
回限界領域での車両挙動の安定化と安全性の向上を図る
ことの可能な車両の旋回挙動制御装置を提供することに
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to ensure maneuverability without discomfort, improve turning performance, and vehicle behavior in a turning limit region where the yaw rate deviation is large. It is an object of the present invention to provide a vehicle turning behavior control device capable of stabilizing the vehicle and improving safety.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る車両の旋回挙動制御装置は、車両の左
右輪駆動力に差を付ける左右輪駆動力調整機構と、該車
両の各輪間に制動力差を付ける制動力調整機構とを備え
てなり、車速検出手段により検出される該車両の車速と
操舵量検出手段により検出される該車両の操舵量とに基
づいて目標ヨーレイトを算出し、この目標ヨーレイトと
ヨーレイト検出手段にて検出される車両のヨーレイトと
の差をヨーレイト偏差としてヨーレイト偏差算出手段に
て算出し、制御手段ではこのヨーレイト偏差に基づいて
前記左右輪駆動力調整機構および制動力調整機構を統合
的に制御するようにしたことを特徴とするものである。
In order to achieve the above object, a vehicle turning behavior control device according to the present invention includes a left and right wheel driving force adjusting mechanism for making a difference between left and right wheel driving forces of a vehicle, and each of the vehicles. A braking force adjusting mechanism for applying a braking force difference between the wheels is provided, and a target yaw rate is set based on the vehicle speed of the vehicle detected by the vehicle speed detecting means and the steering amount of the vehicle detected by the steering amount detecting means. The difference between the target yaw rate and the yaw rate of the vehicle detected by the yaw rate detecting means is calculated by the yaw rate deviation calculating means as a yaw rate deviation, and the control means calculates the left and right wheel drive force adjusting mechanism based on the yaw rate deviation. And the braking force adjusting mechanism is controlled in an integrated manner.

【0007】つまり左右輪駆動力調整機構および制動力
調整機構に対して共通の制御則に基づいてヨーレイトを
フィードバックすることでこれらを統合的に制御し、以
て両調整機構を制御干渉を招来することなしに役割分担
させて、それぞれの利点を発揮させるようにしたもので
ある。また請求項2に記載の発明は、前記制御手段にお
いてヨーレイト偏差が所定の閾値を越えないとき、前記
左右輪駆動力調整機構による左右輪駆動力制御および前
記制動力調整機構による制動力制御を行わないように、
不感帯領域を設けたことを特徴としている。つまり制御
手段においては上述した不感帯領域を持つことにより、
ヨーレイト偏差が殆どない場合における不本意な制御を
不要として、その制御効率の向上を図ったことを特徴と
している。
That is, the yaw rate is fed back based on a common control law for the left and right wheel drive force adjusting mechanism and the braking force adjusting mechanism, and these are integratedly controlled, thereby causing control interference between the both adjusting mechanisms. It is a matter of dividing roles and letting each of them exert their advantages. According to a second aspect of the present invention, when the yaw rate deviation does not exceed a predetermined threshold value in the control means, the left and right wheel drive force control by the left and right wheel drive force adjustment mechanism and the braking force control by the braking force adjustment mechanism are performed. Not to
The feature is that a dead zone region is provided. In other words, by having the above-mentioned dead zone in the control means,
It is characterized in that the control efficiency is improved by eliminating the needless control when there is almost no yaw rate deviation.

【0008】更に請求項3に記載の発明では、ヨーレイ
ト偏差が第1の閾値以上で、且つ第2の閾値未満のと
き、制御手段においては前記左右輪駆動力調整機構によ
る左右輪駆動力制御だけを行うことを特徴とするもので
ある。つまりヨーレイト偏差が小さい領域では左右輪駆
動力制御だけを行い、制動力制御を行わないことで駆動
効率面のロスを伴うことなく旋回性能を高めたことを特
徴としている。
Further, in the invention according to claim 3, when the yaw rate deviation is greater than or equal to the first threshold value and less than the second threshold value, the control means only controls the left and right wheel driving force by the left and right wheel driving force adjusting mechanism. It is characterized by performing. That is, in the region where the yaw rate deviation is small, only the left and right wheel driving force control is performed, and the braking force control is not performed, so that the turning performance is improved without a loss in driving efficiency.

【0009】また請求項4に記載の発明では、ヨーレイ
ト偏差が第1および第2の閾値以上のとき、制御手段に
おいては左右輪駆動力調整機構による左右輪駆動力制御
および制動力調整機構による制動力制御を同時に行うこ
とを特徴としている。つまりヨーレイト偏差が大きい領
域では左右輪駆動力制御と制動力制御とを同時に行うこ
とで旋回限界時における車両の挙動制御性を高め、減速
度効果と相俟って安全性を向上させることを特徴として
いる。
According to the invention described in claim 4, when the yaw rate deviation is equal to or more than the first and second threshold values, the control means controls the left and right wheel driving force by the left and right wheel driving force adjusting mechanism and the braking force adjusting mechanism. The feature is that power control is performed simultaneously. In other words, in a region where the yaw rate deviation is large, the left and right wheel driving force control and the braking force control are performed simultaneously to improve the vehicle behavior controllability at the turning limit, and to improve safety in combination with the deceleration effect. I am trying.

【0010】そして請求項5に記載の発明は、特に請求
項4に記載の発明における制御手段として、ヨーレイト
偏差が第2の閾値を越えて大きくなるに従って前記左右
輪駆動力調整機構による左右輪駆動力制御の寄与率を低
減させることを特徴としている。つまりヨーレイト偏差
が大きくなり、旋回限界に近づくに従って専ら制動力制
御の効果が顕著に現れるので、左右輪駆動力制御を徐々
に抑えることで全体的な制御効率を高めるようにしたこ
とを特徴としている。
According to a fifth aspect of the present invention, particularly, as the control means in the fourth aspect of the invention, the left and right wheel drive by the left and right wheel drive force adjusting mechanism as the yaw rate deviation increases beyond the second threshold value. It is characterized by reducing the contribution rate of force control. In other words, the yaw rate deviation becomes large, and the effect of the braking force control becomes prominent exclusively as the turning limit is approached. Therefore, the overall control efficiency is improved by gradually suppressing the left and right wheel driving force control. .

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施例に係る車両の旋回挙動制御装置についてその実施
の形態を説明する。図1は実施例装置が組み込まれる車
両のシステム構成図で、1は車両本体、2(2FL,2F
R,2RL,2RR)は前後左右の車輪を表している。また
3(3FL,3FR,3RL,3RR)は各車輪2にそれぞれ設
けられたブレーキ機構を示しており、これらの各ブレー
キ機構3はブレーキ圧制御機構4の下でそれぞれ個別に
作動制御されて各車輪2に対して制動を加えるものとな
っている。尚、ブレーキ圧制御機構4はブレーキペダル
5の踏力に応じたブレーキ力(制動力)を各ブレーキ機
構3に与えると共に、ブレーキ圧駆動回路6からの指示
に基づいて後述するように各ブレーキ機構3に与えるブ
レーキ力に差を持たせる役割を担っている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a vehicle turning behavior control device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram of a vehicle in which the embodiment apparatus is incorporated, in which 1 is a vehicle body and 2 (2FL, 2F).
R, 2RL, 2RR) represent front, rear, left and right wheels. Reference numerals 3 (3FL, 3FR, 3RL, 3RR) denote brake mechanisms provided on the respective wheels 2, and the respective brake mechanisms 3 are individually operated and controlled under the brake pressure control mechanism 4 so that each of them is controlled. Braking is applied to the wheels 2. The brake pressure control mechanism 4 applies a braking force (braking force) corresponding to the pedaling force of the brake pedal 5 to each brake mechanism 3, and based on an instruction from the brake pressure drive circuit 6, each brake mechanism 3 will be described later. It plays a role in making a difference in the braking force applied to the vehicle.

【0012】一方、この例では後側の車輪2RL,2RRに
対して、駆動力伝達機構7を介して駆動力が伝達される
ようになっている。この駆動力伝達機構7は、左側車輪
2RLと右側車輪2RRとの差動を許容し、且つこれらに伝
達する駆動力を所要の比率で配分可能な、所謂左右輪駆
動力移動デフと称されるものである。このような駆動力
伝達機構(左右輪駆動力移動デフ)は、例えば特開平5-
131855号公報に詳述されるように入力軸と左右の各車輪
2RL,2RRとの間にそれぞれ変速機構と多板クラッチ機
構とを介装して構成される。しかして駆動力伝達機構7
における左右の各車輪2RL,2RRへの駆動力の配分は、
後述する制御の下で駆動力移動駆動回路8により制御さ
れる。
On the other hand, in this example, the driving force is transmitted to the rear wheels 2RL and 2RR via the driving force transmission mechanism 7. The driving force transmission mechanism 7 is a so-called left / right wheel driving force moving differential that allows a differential between the left wheel 2RL and the right wheel 2RR and distributes the driving force transmitted to them at a required ratio. It is a thing. Such a driving force transmission mechanism (left and right wheel driving force moving differential) is disclosed in, for example, Japanese Patent Laid-Open No.
As described in detail in Japanese Unexamined Patent Publication No. 131855, a transmission mechanism and a multi-disc clutch mechanism are provided between the input shaft and the left and right wheels 2RL and 2RR, respectively. Then, the driving force transmission mechanism 7
The distribution of the driving force to the left and right wheels 2RL and 2RR in
It is controlled by the driving force movement drive circuit 8 under the control described later.

【0013】CPU(中央演算処理装置)9は、車速検
出手段により検出される車速(車輪速)、操舵量検出手
段により検出される車両の操舵量(ハンドル角)、およ
びヨーレイト検出手段により検出される当該車両に生じ
たヨーレイトの情報に基づいて後述するように前記ブレ
ーキ圧駆動回路6および駆動力移動駆動回路8を統合的
に制御する制御手段として機能する。
The CPU (Central Processing Unit) 9 is detected by the vehicle speed (wheel speed) detected by the vehicle speed detecting means, the vehicle steering amount (steering wheel angle) detected by the steering amount detecting means, and the yaw rate detecting means. Based on the information on the yaw rate that has occurred in the vehicle, the brake pressure drive circuit 6 and the drive force movement drive circuit 8 function as control means as described later.

【0014】即ち、CPU9は、機能的には図2に示す
ように車速とハンドル角とに基づいて旋回時における目
標ヨーレイトを算出する目標ヨーレイトの計算手段9
a、この目標ヨーレイトと車両本体1に実際に生じてい
るヨーレイト(実ヨーレイト)との差をヨーレイト偏差
Δψとして算出するヨーレイト偏差算出手段9b、そし
てこのヨーレイト偏差Δψに従って前記車輪2RL,2RR
との間に与えるべく駆動力の配分差(移動トルクΔT)
を求める移動トルク計算手段9c、および前記ヨーレイ
ト偏差Δψに従って前記各ブレーキ機構3にそれぞれ付
与する制動力を求める制動力計算手段9dを備えて構成
される。特に移動トルク計算手段9cは、ヨーレイト偏
差Δψが予め設定された第1の閾値Thaを越えたと
き、そのヨーレイト偏差Δψに応じた移動トルクΔTを
求めるようになっており、また制動力計算手段9dは、
ヨーレイト偏差Δψが予め設定された第2の閾値Thb
(>Tha)を越えたとき、そのヨーレイト偏差Δψに
応じた制動力の情報BL,BRを求めるものとなってい
る。
That is, the CPU 9 functionally calculates the target yaw rate during turning based on the vehicle speed and the steering wheel angle as shown in FIG.
a, a yaw rate deviation calculating means 9b for calculating a difference between the target yaw rate and a yaw rate (actual yaw rate) actually occurring in the vehicle body 1 as a yaw rate deviation Δφ, and the wheels 2RL, 2RR according to the yaw rate deviation Δφ.
Difference in driving force distribution (moving torque ΔT)
And a braking force calculation means 9d for obtaining a braking force applied to each of the brake mechanisms 3 in accordance with the yaw rate deviation Δφ. In particular, when the yaw rate deviation Δψ exceeds the preset first threshold value Tha, the moving torque calculating means 9c obtains the moving torque ΔT according to the yaw rate deviation Δψ, and the braking force calculating means 9d. Is
The second threshold Thb for which the yaw rate deviation Δφ is set in advance.
When (> Tha) is exceeded, the braking force information BL, BR corresponding to the yaw rate deviation Δφ is obtained.

【0015】具体的には、CPU9は図3に示す手順に
従って処理手続きを進め、ヨーレイト偏差Δψに応じた
移動トルクΔTと制動力情報BL,BRをそれぞれ求め、
これを出力する。この処理手続きについて説明すると、
CPU9は所定の周期毎にハンドル角θ,車速V,実ヨ
ーレイトψを入力し(ステップS1)、これらの入力情
報に従って目標ヨーレイトψ*を計算する(ステップS
2)。この目標ヨーレイトψ*は、例えば[ハンドル角
/ステアリングギヤ比]として前輪舵角δfが与えら
れ、後輪舵角がδr,ホイールベース長がL,スタビリ
ティファクタがAとしてそれぞれ与えられるとき、 ψ* = V(δf−δr)/L(1+AV2) として計算される。
Specifically, the CPU 9 advances the processing procedure according to the procedure shown in FIG. 3 to obtain the moving torque ΔT and the braking force information BL and BR corresponding to the yaw rate deviation Δψ, respectively.
Output this. Explaining this processing procedure,
The CPU 9 inputs the steering wheel angle θ, the vehicle speed V, and the actual yaw rate ψ every predetermined period (step S1), and calculates the target yaw rate ψ * according to these input information (step S).
2). This target yaw rate ψ * is given, for example, when the front wheel steering angle δf is given as [steering wheel angle / steering gear ratio], the rear wheel steering angle δr, the wheel base length is L, and the stability factor is A. Calculated as * = V (δf−δr) / L (1 + AV 2 ).

【0016】目標ヨーレイトψ*が算出されると、次に
ヨーレイト偏差Δψを Δψ = ψ* − ψ として計算した後(ステップS3)、その大きさを判定
する(ステップS4,S5)。この判定はヨーレイト偏
差Δψが第1の閾値Thaより大きいか否か、更に第1
の閾値Thaより大きい場合には第2の閾値Thb未満で
あるか否かを判定することにより行われる。そしてヨー
レイト偏差Δψの大きさに応じて |Δψ| < Tha Tha ≦ |Δψ| < Thb Thb ≦ |Δψ| の3つの場合に分ける。
When the target yaw rate ψ * is calculated, the yaw rate deviation Δψ is calculated as Δψ = ψ * −ψ (step S3), and the magnitude thereof is determined (steps S4 and S5). This determination is based on whether or not the yaw rate deviation Δψ is larger than the first threshold Tha, and
If it is larger than the threshold Tha of the above, it is performed by determining whether it is smaller than the second threshold Thb. Then, according to the magnitude of the yaw rate deviation Δφ, it is divided into three cases of | Δφ | <Tha Tha ≤ | Δφ | <Thb Thb ≤ | Δφ |.

【0017】この判定処理によってヨーレイト偏差Δψ
が第1の閾値Thaに満たないとして上記の条件に該
当する判定された場合には、そのヨーレイト偏差Δψが
実質的に殆ど無視できる程度に小さいことから、前述し
た左右輪駆動力制御および制動力制御を不必要に作動さ
せないように、移動トルクΔTを[0],左右輪に対す
る制動力情報BL,BRをそれぞれ[0]として定める
(ステップS6)。
By this determination processing, the yaw rate deviation Δψ
If the above condition is determined as being less than the first threshold Tha, the yaw rate deviation Δψ is substantially small enough to be neglected. In order not to operate the control unnecessarily, the moving torque ΔT is set to [0], and the braking force information BL and BR for the left and right wheels are set to [0] (step S6).

【0018】これに対してヨーレイト偏差Δψが或る程
度の大きさを持ち、上記の条件に該当すると判定され
た場合には、ヨーレイト偏差Δψが小さいことから左右
輪駆動力制御だけを作動させるべく、そのときのヨーレ
イト偏差Δψに応じた移動トルクΔTを計算し,また左
右輪に対する制動力情報BL,BRをそれぞれ[0]とし
て定める(ステップS7)。
On the other hand, when the yaw rate deviation Δψ has a certain magnitude and it is determined that the above conditions are satisfied, the yaw rate deviation Δψ is small, so that only the left and right wheel drive force control should be activated. , The moving torque ΔT corresponding to the yaw rate deviation Δψ at that time is calculated, and the braking force information BL and BR for the left and right wheels are set as [0] (step S7).

【0019】そしてヨーレイト偏差Δψが大きく上記
の条件に該当すると判定された場合には、左右輪駆動力
制御と共に制動力制御をも作動させるべく、そのときの
ヨーレイト偏差Δψに応じた移動トルクΔTを計算し,
同時に左右輪に対する制動力情報BL,BRを上記ヨーレ
イト偏差Δψに応じて計算する(ステップS8)。この
ようしてヨーレイト偏差Δψの大きさに応じて計算した
移動トルクΔT,および左右輪に対する制動力情報B
L,BRを出力することで前記駆動力移動駆動回路8およ
びブレーキ圧駆動回路6がそれぞれ動作する(ステップ
S9)。
If it is determined that the yaw rate deviation Δψ is large and the above condition is satisfied, the movement torque ΔT corresponding to the yaw rate deviation Δψ at that time is set so that the braking force control is operated together with the left and right wheel drive force control. Calculate,
At the same time, braking force information BL, BR for the left and right wheels is calculated according to the yaw rate deviation Δφ (step S8). Thus, the moving torque ΔT calculated according to the magnitude of the yaw rate deviation Δψ and the braking force information B for the left and right wheels
By outputting L and BR, the driving force movement drive circuit 8 and the brake pressure drive circuit 6 respectively operate (step S9).

【0020】即ち、前記駆動力移動駆動回路8は上述し
た如くCPU9にて求められた移動トルクΔTの情報に
従って駆動力伝達機構7の作動を制御し、前記左側車輪
2RLと右側車輪2RRとにそれぞれ与える駆動力を当該車
輪2RL,2RR間でΔTだけ移動する。この車輪2RL,2
RR間でのトルクΔTの移動により、つまり駆動力を左右
輪間で配分することで車両本体1にヨーモーメントが与
えられる。
That is, the drive force movement drive circuit 8 controls the operation of the drive force transmission mechanism 7 according to the information of the movement torque ΔT obtained by the CPU 9 as described above, and the left wheel 2RL and the right wheel 2RR are respectively controlled. The given driving force is moved by ΔT between the wheels 2RL and 2RR. This wheel 2RL, 2
A yaw moment is applied to the vehicle body 1 by moving the torque ΔT between RRs, that is, by distributing the driving force between the left and right wheels.

【0021】ちなみに図4の(a)に示すように、後側
の車輪2RL,2RR間でその駆動力をΔTだけ移動する
と、車両本体1に対して矢印で示す如きヨーモーメント
が与えられる。このようなヨーモーメントは、前輪側に
おいて駆動力を移動する場合にも同様に生じ、また前後
輪においてそれぞれて駆動力を移動する場合にも同様に
生じる。従って移動トルクの制御対象は後輪側に限られ
るものではない。更には駆動トルクの移動量は、ヨーレ
イト偏差Δψに応じて決定されるので、加減速の状況に
依らず一定の制御則として適用可能である。
By the way, as shown in FIG. 4A, when the driving force is moved by ΔT between the rear wheels 2RL and 2RR, a yaw moment as indicated by an arrow is given to the vehicle body 1. Such a yaw moment is similarly generated when the driving force is moved on the front wheel side, and is similarly generated when the driving force is moved on each of the front and rear wheels. Therefore, the control target of the moving torque is not limited to the rear wheel side. Furthermore, since the amount of movement of the drive torque is determined according to the yaw rate deviation Δφ, it can be applied as a constant control law regardless of the acceleration / deceleration situation.

【0022】またブレーキ圧駆動回路6は上述した如く
CPU9にて求められた制動力の情報BL,BRに従って
ブレーキ圧制御機構4を制御し、前記各ブレーキ機構3
に個別に制動力を付与して車両本体1にヨーモーメント
を与える。例えば左右輪に対する制動力情報BL,BRに
従って図4の(b)に示すように右側前輪2FRに対して
のみ制動力BRを与えると、車両本体1に対して矢印で
示す如きヨーモーメントが与えられる。ちなみにブレー
キペダル5の踏力に応じて前後左右の各車輪2にそれぞ
れ制動力を与えている場合には、図4の(c)に示すよ
うにフットブレーキによる制動力に更に上記制動力BR
が加わるだけなので、同様に矢印で示す如きヨーモーメ
ントが与えられることになる。このようなヨーモーメン
トは、前輪側での制動力制御のみならず、後輪側での制
動力制御、ひいては前後輪の全てに対する制動力制御に
おいても同様に生じるので、これらに対して同様の制御
則を適用可能である。更には加減速の状況に拘わりな
く、一定の制御則として適用可能である。
Further, the brake pressure drive circuit 6 controls the brake pressure control mechanism 4 in accordance with the braking force information BL, BR obtained by the CPU 9 as described above, and each of the brake mechanisms 3 is controlled.
The braking force is individually applied to the vehicle body 1 to give a yaw moment to the vehicle body 1. For example, when the braking force BR is applied only to the right front wheel 2FR as shown in FIG. 4B according to the braking force information BL and BR for the left and right wheels, a yaw moment as indicated by an arrow is applied to the vehicle body 1. . Incidentally, when the braking force is applied to each of the front, rear, left and right wheels 2 according to the pedaling force of the brake pedal 5, as shown in FIG. 4 (c), the braking force BR is further added to the braking force by the foot brake.
Therefore, the yaw moment as indicated by the arrow is similarly given. Such a yaw moment occurs not only in the braking force control on the front wheels side, but also in the braking force control on the rear wheels side, and by extension, on the braking force control for all the front and rear wheels. The rules are applicable. Further, it can be applied as a constant control law regardless of the acceleration / deceleration situation.

【0023】かくして上述したようにヨーレイト偏差Δ
ψに応じて駆動力移動制御および制動力制御を統合的に
行う実施例装置の制御体系は、概念的には図5に示すよ
うに表現される。即ち、ヨーレイト偏差Δψが第1の閾
値Thaに満たない領域は制御に対する不感帯として設
定され、この不感帯領域ではて駆動力移動制御および制
動力制御を行わない。またヨーレイト偏差Δψが第1の
閾値Thaを越える領域は駆動力移動制御を行う制御域
として定められ、更にヨーレイト偏差Δψが第2の閾値
Thbを越える領域は、上記駆動力移動制御に加えて制
動力制御も行う制御域として定められている。そしてヨ
ーレイト偏差Δψに応じて上記各制御域に応じた制御を
施して、車両本体1にヨーレイトを与えるものとなって
いる。
Thus, as described above, the yaw rate deviation Δ
The control system of the embodiment apparatus that integrally performs the driving force movement control and the braking force control according to ψ is conceptually expressed as shown in FIG. That is, an area in which the yaw rate deviation Δφ is less than the first threshold value Tha is set as a dead zone for control, and the driving force movement control and the braking force control are not performed in this dead zone area. Further, a region where the yaw rate deviation Δψ exceeds the first threshold Tha is defined as a control region for performing the driving force movement control, and a region where the yaw rate deviation Δψ exceeds the second threshold Thb is controlled in addition to the driving force movement control. It is defined as a control range for power control. Then, the yaw rate is given to the vehicle body 1 by performing control according to each of the above control areas according to the yaw rate deviation Δφ.

【0024】具体的には図5に前輪側にて左右輪への制
動力付加制御を行い、後輪側にて左右輪駆動力移動を行
う場合の、駆動力の移動と制動力の付加の概念を模式的
に示すように、ヨーレイト偏差Δψが[A,B,C,
D]である場合、図示するように駆動力の移動と制動力
の付加がそれぞれ行われる。そして左旋回状態か右旋回
状態かに応じて、またそのときのヨーレイト偏差Δψが
プラスかマイナスかに応じてオーバーステア(OS)ま
たはアンダーステア(US)となるヨーモーメントが車
両本体1に対して与えられることになる。
Specifically, in FIG. 5, when the braking force addition control is performed on the left and right wheels on the front wheel side and the left and right wheels driving force is moved on the rear wheel side, the movement of the driving force and the addition of the braking force are performed. As the concept is schematically shown, the yaw rate deviation Δψ is [A, B, C,
D], the driving force is moved and the braking force is added as shown in the figure. Then, depending on whether the vehicle is turning to the left or to the right, and depending on whether the yaw rate deviation Δψ at that time is positive or negative, an oversteer (OS) or an understeer (US) yaw moment is applied to the vehicle body 1. Will be given.

【0025】かくして上述した制御によれば、ヨーレイ
ト偏差Δψが第1の閾値Thaに満たない[0]に近い
状態では、これを通常の走行状態であると看做して駆動
力移動制御および制動力制御を行わないので、その制御
負担がない。換言すればヨーレイト偏差が殆どない場合
における不本意な制御を不要として、その制御効率の向
上を図り得る。
Thus, according to the above-described control, when the yaw rate deviation Δφ is close to [0], which is less than the first threshold value Tha, this is regarded as a normal traveling state, and the driving force movement control and control are performed. Power control is not performed, so there is no control burden. In other words, it is possible to improve the control efficiency by eliminating the needless control when there is almost no yaw rate deviation.

【0026】またヨーレイト偏差Δψが第1の閾値Th
aを越える程度の小さい領域では左右輪に対する駆動力
移動制御だけを行うので、滑らかで減速感のない走行を
実現できる。しかも旋回時における左右輪接地荷重に応
じた駆動力配分が可能なので、駆動効率を高めてその旋
回性能を効果的に向上させ得る。更にヨーレイト偏差Δ
ψが第2の閾値Thbを越える大きな領域、例えば緊急
回避時等の旋回限界に近い領域では、上述した左右輪間
の駆動力移動制御に加えて各車輪3に対する制動力の付
加制御を行うので、車両本体1に対して簡易にして効率
的に大きなヨーモーメントを与えることができ、車両挙
動の安定化を効果的に図り得る。しかも各車輪3に加え
られる制動力によって減速効果も得られるので、例えば
オーバースピードでコーナーに進入したときの安全性の
向上にも大きく寄与する。
Further, the yaw rate deviation Δψ is the first threshold Th.
In a small area that exceeds a, only the driving force movement control for the left and right wheels is performed, so smooth and decelerating travel can be realized. Moreover, since the driving force can be distributed according to the left and right wheel ground loads during turning, the driving efficiency can be increased and the turning performance can be effectively improved. Further yaw rate deviation Δ
In a large region where ψ exceeds the second threshold Thb, for example, in a region close to the turning limit in the case of emergency avoidance, in addition to the driving force movement control between the left and right wheels described above, additional control of the braking force to each wheel 3 is performed. Therefore, a large yaw moment can be applied to the vehicle body 1 simply and efficiently, and the vehicle behavior can be effectively stabilized. Moreover, the braking force applied to each wheel 3 can also provide a deceleration effect, which greatly contributes to the improvement of safety when the vehicle enters a corner at an excessive speed, for example.

【0027】しかも上述したようにヨーレイトをフィー
ドバックすることで目標ヨーレイトとの偏差を小さくす
ると言う共通の制御則に従って車両本体1に与えるヨー
レイトを制御するものでありながら、そのヨーレイト偏
差Δψの大きさに応じて制御の形態を変えるので、左右
輪に対する駆動力移動制御と各車輪に対する制動力制御
とを効果的に役割分担させ、その利点を相互に引き出す
ことができる。更には両制御系間での制御干渉を招くこ
とがないので、駆動力移動制御と制動力制御の利点を互
いに生かした効率的な車両の旋回制御を可能とする等の
効果が奏せられる。
Moreover, as described above, the yaw rate given to the vehicle body 1 is controlled according to a common control rule that the deviation from the target yaw rate is reduced by feeding back the yaw rate, but the yaw rate deviation Δψ is controlled to the magnitude. Since the control mode is changed accordingly, the driving force movement control for the left and right wheels and the braking force control for each wheel can be effectively divided and the advantages thereof can be mutually derived. Further, since no control interference is caused between the two control systems, it is possible to achieve the effect of enabling efficient vehicle turning control by making the most of the advantages of the driving force movement control and the braking force control.

【0028】尚、本発明は上述した実施例に限定される
ものではない。例えばヨーレイト偏差Δψが大きく、こ
れに伴って制動力制御が行われる状況では専ら制動力制
御によるヨーモーメントの付与効果の方が大きいので、
図6に示すように駆動力移動制御の寄与率を徐々に低減
してその制御負担を軽くするようにしてもよい。このよ
うにすれば、例えばフットブレーキによる制動力が加わ
ってABS(アンチスキッド・ブレーキング・システ
ム)の作動領域に入るような場合、駆動力移動制御とA
BS制御とが不本意に共振する可能性を未然に防ぐこと
ができる等の効果が奏せられる。その他、その要旨を逸
脱しない範囲で種々変形して実施することができる。
The present invention is not limited to the above embodiment. For example, in a situation where the yaw rate deviation Δψ is large and the braking force control is performed accordingly, the effect of applying the yaw moment by the braking force control is greater, so
As shown in FIG. 6, the contribution rate of the driving force movement control may be gradually reduced to reduce the control load. By doing so, for example, when the braking force by the foot brake is applied to enter the operating range of the ABS (anti-skid braking system), the driving force movement control and the A
It is possible to prevent the possibility that the BS control resonates unintentionally. In addition, various modifications can be made without departing from the scope of the invention.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、左
右輪間の駆動力移動制御と各車輪に対する制動力の付加
制御とを、ヨーレイト偏差に基づく共通の制御則に従っ
て統合的に制御するので、駆動力移動制御と制動力付加
制御とを効果的に役割分担させて旋回時における車両の
挙動を効果的に制御することができる。しかもヨーレイ
ト偏差が小さい場合には違和感のない制御によって旋回
性能を向上させ、ヨーレイト偏差が大きい場合には大き
なヨーモーメントを発生させて車両挙動の安定化を図
り、減速効果と相俟ってその安全性を高め得る等の多大
なる効果が奏せられる。
As described above, according to the present invention, the driving force movement control between the left and right wheels and the braking force addition control for each wheel are integrally controlled according to a common control rule based on the yaw rate deviation. Therefore, the driving force movement control and the braking force addition control can be effectively divided into roles, and the behavior of the vehicle at the time of turning can be effectively controlled. Moreover, when the yaw rate deviation is small, the turning performance is improved by control that does not cause discomfort, and when the yaw rate deviation is large, a large yaw moment is generated to stabilize the vehicle behavior and, in combination with the deceleration effect, the safety is improved. A great effect such as improving the property can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態である旋回挙動制御装置を
組み込んだ車両のシステム構成図。
FIG. 1 is a system configuration diagram of a vehicle incorporating a turning behavior control device according to an embodiment of the present invention.

【図2】実施例装置におけるCPUの役割を模式的に示
す機能構成図。
FIG. 2 is a functional configuration diagram schematically showing the role of a CPU in the apparatus of the embodiment.

【図3】実施例装置における処理手続きの流れを示す
図。
FIG. 3 is a diagram showing a flow of processing procedures in the apparatus of the embodiment.

【図4】駆動力移動制御によるトルクの移動と制動力制
御による制動力の付加により生じるヨーモーメントの概
念を模式的に示す図。
FIG. 4 is a diagram schematically showing the concept of a yaw moment generated by the movement of the torque by the driving force movement control and the addition of the braking force by the braking force control.

【図5】本発明に係る駆動力移動制御および制動力制御
の統合的な制御体系を概念的に示す図。
FIG. 5 is a diagram conceptually showing an integrated control system of driving force movement control and braking force control according to the present invention.

【図6】駆動力移動制御および制動力制御の統合的な制
御体系の変形例を示す図。
FIG. 6 is a diagram showing a modified example of an integrated control system for driving force movement control and braking force control.

【符号の説明】[Explanation of symbols]

1 車両本体 2(2FL,2FR,2RL,2RR) 車輪 3(3FL,3FR,3RL,3RR) ブレーキ機構 4 ブレーキ圧制御機構 5 ブレーキペダル 6 ブレーキ圧駆動回路 7 駆動力伝達機構(左右輪駆動力移動デフ) 8 駆動力移動駆動回路 9 CPU 9a 目標ヨーレイトの計算手段 9b ヨーレイト偏差算出手段 9c 移動トルク計算手段 9d 制動力計算手段 1 Vehicle body 2 (2FL, 2FR, 2RL, 2RR) Wheels 3 (3FL, 3FR, 3RL, 3RR) Brake mechanism 4 Brake pressure control mechanism 5 Brake pedal 6 Brake pressure drive circuit 7 Driving force transmission mechanism (left and right wheel driving force movement) 8) Driving force movement drive circuit 9 CPU 9a Target yaw rate calculation means 9b Yaw rate deviation calculation means 9c Moving torque calculation means 9d Braking force calculation means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 車両の左右輪駆動力に差を付ける左右輪
駆動力調整機構と、該車両の各輪間に制動力差を付ける
制動力調整機構と、該車両の車速を検出する車速検出手
段と、該車両の操舵量を検出する操舵量検出手段と、該
車両に生じるヨーレイトを検出するヨーレイト検出手段
と、前記操舵量および車速に基づいて目標ヨーレイトを
算出し、この目標ヨーレイトと前記ヨーレイト検出手段
にて検出されたヨーレイトとの差をヨーレイト偏差とし
て求めるヨーレイト偏差算出手段と、算出されたヨーレ
イト偏差に基づいて前記左右輪駆動力調整機構および制
動力調整機構を統合的に制御する制御手段とを具備した
ことを特徴とする車両の旋回挙動制御装置。
1. A left / right wheel driving force adjusting mechanism for making a difference between left and right wheel driving forces of a vehicle, a braking force adjusting mechanism for making a braking force difference between respective wheels of the vehicle, and a vehicle speed detection for detecting a vehicle speed of the vehicle. Means, a steering amount detecting means for detecting a steering amount of the vehicle, a yaw rate detecting means for detecting a yaw rate generated in the vehicle, a target yaw rate based on the steering amount and a vehicle speed, and the target yaw rate and the yaw rate. A yaw rate deviation calculating means for obtaining a difference from the yaw rate detected by the detecting means as a yaw rate deviation, and a control means for integrally controlling the left and right wheel drive force adjusting mechanism and the braking force adjusting mechanism based on the calculated yaw rate deviation. A turning behavior control device for a vehicle, comprising:
【請求項2】 前記制御手段は、ヨーレイト偏差が所定
の閾値を越えるまで、前記左右輪駆動力調整機構による
左右輪駆動力制御および前記制動力調整機構による制動
力制御を行わない不感帯領域を有することを特徴とする
請求項1に記載の車両の旋回挙動制御装置。
2. The dead zone region in which the control means does not perform left / right wheel drive force control by the left / right wheel drive force adjustment mechanism and braking force control by the braking force adjustment mechanism until the yaw rate deviation exceeds a predetermined threshold value. The turning behavior control device for a vehicle according to claim 1, wherein:
【請求項3】 前記制御手段は、ヨーレイト偏差が第1
の閾値以上で、且つ第2の閾値未満のとき、前記左右輪
駆動力調整機構による左右輪駆動力制御だけを行うこと
を特徴とする請求項1に記載の車両の旋回挙動制御装
置。
3. The yaw rate deviation is first
2. The turning behavior control device for a vehicle according to claim 1, wherein only the left and right wheel drive force control by the left and right wheel drive force adjustment mechanism is performed when the threshold value is equal to or more than the threshold value and is less than the second threshold value.
【請求項4】 前記制御手段は、ヨーレイト偏差が第1
および第2の閾値以上のとき、前記左右輪駆動力調整機
構による左右輪駆動力制御および前記制動力調整機構に
よる制動力制御を同時に行うことを特徴とする請求項1
または請求項3に記載の車両の旋回挙動制御装置。
4. The yaw rate deviation is the first
And when the second threshold value is exceeded, the left and right wheel drive force control by the left and right wheel drive force adjustment mechanism and the braking force control by the braking force adjustment mechanism are simultaneously performed.
Alternatively, the vehicle turning behavior control device according to claim 3.
【請求項5】 前記制御手段は、ヨーレイト偏差が第2
の閾値を越えて大きくなるに従って前記左右輪駆動力調
整機構による左右輪駆動力制御の寄与率を低減させるこ
とを特徴とする請求項4に記載の車両の旋回挙動制御装
置。
5. The yaw rate deviation is second
5. The turning behavior control device for a vehicle according to claim 4, wherein the contribution ratio of the left and right wheel driving force control by the left and right wheel driving force adjusting mechanism is reduced as the value exceeds the threshold value.
JP25143395A 1995-09-28 1995-09-28 Vehicle turning behavior control device Expired - Lifetime JP3183124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25143395A JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25143395A JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Publications (2)

Publication Number Publication Date
JPH0986378A true JPH0986378A (en) 1997-03-31
JP3183124B2 JP3183124B2 (en) 2001-07-03

Family

ID=17222773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25143395A Expired - Lifetime JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Country Status (1)

Country Link
JP (1) JP3183124B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657138A1 (en) * 2004-10-25 2006-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning behavior control device for vehicle
WO2006083008A1 (en) * 2005-02-02 2006-08-10 Toyota Jidosha Kabushiki Kaisha Braking/driving force controller of vehicle
JP2007131229A (en) * 2005-11-11 2007-05-31 Mitsubishi Motors Corp Turning behavior controller for vehicle
JP2008044555A (en) * 2006-08-18 2008-02-28 Honda Motor Co Ltd Yaw moment controller for vehicle
JP2008222139A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Yaw moment controller for vehicle
EP2008900A1 (en) 2007-06-28 2008-12-31 Honda Motor Co., Ltd. Drive control apparatus for vehicle
CN100453373C (en) * 2004-10-25 2009-01-21 三菱自动车工业株式会社 Turning behavior control device for vehicle
JP2009056919A (en) * 2007-08-31 2009-03-19 Mitsubishi Motors Corp Driving force controller for vehicle
JP2009061855A (en) * 2007-09-05 2009-03-26 Toyota Motor Corp Braking/driving force control device for vehicle
JP2009090842A (en) * 2007-10-10 2009-04-30 Jtekt Corp Control device for vehicle
WO2009057701A1 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
KR100905189B1 (en) * 2007-07-09 2009-06-29 미쯔비시 지도샤 고교 가부시끼가이샤 Control device of vehicle rotation movement
KR100905190B1 (en) * 2007-07-09 2009-06-29 미쯔비시 지도샤 고교 가부시끼가이샤 Turning movement control device of a vehicle
JP2009241719A (en) * 2008-03-31 2009-10-22 Advics Co Ltd Steering control device for vehicle
US7797094B2 (en) 2006-05-12 2010-09-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning control apparatus for vehicle
JP2010281361A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Differential gear with differential limiting mechanism
US7949456B2 (en) 2006-03-24 2011-05-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning control apparatus for vehicle
JP2013539572A (en) * 2010-07-29 2013-10-24 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Method for managing driver interface tasks and vehicle
JP2013223285A (en) * 2012-04-13 2013-10-28 Ntn Corp Electric vehicle
US8972106B2 (en) 2010-07-29 2015-03-03 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US9213522B2 (en) 2010-07-29 2015-12-15 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
WO2016121546A1 (en) * 2015-01-28 2016-08-04 Ntn株式会社 Vehicle orientation control device
JP2018043720A (en) * 2016-09-16 2018-03-22 Ntn株式会社 Slide suppression control device
US10093308B2 (en) 2014-09-01 2018-10-09 Ntn Corporation Electronic stability control system for vehicle
US10737688B2 (en) 2017-11-17 2020-08-11 Toyota Jidosha Kabushiki Kaisha Behavior control apparatus for vehicle
US10974706B2 (en) 2015-04-14 2021-04-13 Ntn Corporation Vehicle orientation control device
US11279333B2 (en) 2017-03-03 2022-03-22 Ntn Corporation Vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585444B2 (en) 2015-09-25 2019-10-02 Ntn株式会社 Vehicle attitude control device

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657138A1 (en) * 2004-10-25 2006-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning behavior control device for vehicle
CN100453373C (en) * 2004-10-25 2009-01-21 三菱自动车工业株式会社 Turning behavior control device for vehicle
WO2006083008A1 (en) * 2005-02-02 2006-08-10 Toyota Jidosha Kabushiki Kaisha Braking/driving force controller of vehicle
US8655563B2 (en) 2005-02-02 2014-02-18 Toyota Jidosha Kabushiki Kaisha Braking/driving force controller of vehicle
JP2007131229A (en) * 2005-11-11 2007-05-31 Mitsubishi Motors Corp Turning behavior controller for vehicle
US7920952B2 (en) 2005-11-11 2011-04-05 Mitsubishi Jidosha Kabushiki Kaisha Turning control apparatus for vehicle
JP4618105B2 (en) * 2005-11-11 2011-01-26 三菱自動車工業株式会社 Vehicle turning behavior control device
US7949456B2 (en) 2006-03-24 2011-05-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning control apparatus for vehicle
US7797094B2 (en) 2006-05-12 2010-09-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning control apparatus for vehicle
JP2008044555A (en) * 2006-08-18 2008-02-28 Honda Motor Co Ltd Yaw moment controller for vehicle
JP2008222139A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Yaw moment controller for vehicle
EP2008900A1 (en) 2007-06-28 2008-12-31 Honda Motor Co., Ltd. Drive control apparatus for vehicle
US8209099B2 (en) 2007-06-28 2012-06-26 Honda Motor Co., Ltd. Drive control apparatus for vehicle
KR100905189B1 (en) * 2007-07-09 2009-06-29 미쯔비시 지도샤 고교 가부시끼가이샤 Control device of vehicle rotation movement
KR100905190B1 (en) * 2007-07-09 2009-06-29 미쯔비시 지도샤 고교 가부시끼가이샤 Turning movement control device of a vehicle
JP2009056919A (en) * 2007-08-31 2009-03-19 Mitsubishi Motors Corp Driving force controller for vehicle
US9789875B2 (en) 2007-09-05 2017-10-17 Toyota Jidosha Kabushiki Kaisha Brake/drive force controlling apparatus for vehicle
JP2009061855A (en) * 2007-09-05 2009-03-26 Toyota Motor Corp Braking/driving force control device for vehicle
JP2009090842A (en) * 2007-10-10 2009-04-30 Jtekt Corp Control device for vehicle
JP4737179B2 (en) * 2007-11-02 2011-07-27 トヨタ自動車株式会社 Vehicle control apparatus and vehicle control method
WO2009057701A1 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
JP2009113558A (en) * 2007-11-02 2009-05-28 Toyota Motor Corp Vehicle control device and vehicle control method
US8401732B2 (en) 2007-11-02 2013-03-19 Toyota Jidosha Kabushiki Kaisha Vehicle control device and vehicle control method
JP2009241719A (en) * 2008-03-31 2009-10-22 Advics Co Ltd Steering control device for vehicle
JP2010281361A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Differential gear with differential limiting mechanism
US8886397B2 (en) 2010-07-29 2014-11-11 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US9213522B2 (en) 2010-07-29 2015-12-15 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
JP2013539572A (en) * 2010-07-29 2013-10-24 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Method for managing driver interface tasks and vehicle
US8914192B2 (en) 2010-07-29 2014-12-16 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US8924079B2 (en) 2010-07-29 2014-12-30 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US8972106B2 (en) 2010-07-29 2015-03-03 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US9141584B2 (en) 2010-07-29 2015-09-22 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US8849512B2 (en) 2010-07-29 2014-09-30 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
JP2013223285A (en) * 2012-04-13 2013-10-28 Ntn Corp Electric vehicle
US10093308B2 (en) 2014-09-01 2018-10-09 Ntn Corporation Electronic stability control system for vehicle
WO2016121546A1 (en) * 2015-01-28 2016-08-04 Ntn株式会社 Vehicle orientation control device
JP2016137820A (en) * 2015-01-28 2016-08-04 Ntn株式会社 Vehicle posture control unit
US10974706B2 (en) 2015-04-14 2021-04-13 Ntn Corporation Vehicle orientation control device
JP2018043720A (en) * 2016-09-16 2018-03-22 Ntn株式会社 Slide suppression control device
US11279333B2 (en) 2017-03-03 2022-03-22 Ntn Corporation Vehicle control device
US10737688B2 (en) 2017-11-17 2020-08-11 Toyota Jidosha Kabushiki Kaisha Behavior control apparatus for vehicle

Also Published As

Publication number Publication date
JP3183124B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP3183124B2 (en) Vehicle turning behavior control device
JP3423125B2 (en) Vehicle turning behavior control device
US10093308B2 (en) Electronic stability control system for vehicle
US7643922B2 (en) Turning behavior control device for vehicle
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
US7125086B2 (en) Vehicle dynamics control system
JP2623905B2 (en) Drive system clutch control device for vehicles
JP6844500B2 (en) Vehicle behavior control device
US10773706B2 (en) Apparatus for controlling four-wheel drive vehicle
JPH10273031A (en) Attitude control device for vehicle
JP4886655B2 (en) Vehicle behavior control device
US20040064239A1 (en) Power distribution control apparatus for four wheel drive vehicle
JP2010047047A (en) Device for controlling forward and backward power of vehicle
JP2004209998A (en) Integrated control device of vehicle
JP2863294B2 (en) Anti-skid brake system for vehicles
JP3562501B2 (en) Vehicle motion control device
JP3000663B2 (en) Braking force control device
JPH1086622A (en) Vehicle stability controlling device
JP2007176314A (en) Turning action control system, automobile, and turning action control method
JP2863293B2 (en) Anti-skid brake system for vehicles
JP3451695B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JPH0585386A (en) Four wheel steering device of vehicle
JP3472988B2 (en) Vehicle differential limiter
JPH0680035A (en) Driving force allocating integrated control device for front and rear wheel and left and right wheel
JPH0419229A (en) Driving force distribution switching type four-wheel drive automobile

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

EXPY Cancellation because of completion of term