JPH0985613A - Ultra-precision polishing tool - Google Patents

Ultra-precision polishing tool

Info

Publication number
JPH0985613A
JPH0985613A JP24974595A JP24974595A JPH0985613A JP H0985613 A JPH0985613 A JP H0985613A JP 24974595 A JP24974595 A JP 24974595A JP 24974595 A JP24974595 A JP 24974595A JP H0985613 A JPH0985613 A JP H0985613A
Authority
JP
Japan
Prior art keywords
tool
polishing member
disc
polishing
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24974595A
Other languages
Japanese (ja)
Inventor
Mitsuoki Hatamoto
本 光 興 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP24974595A priority Critical patent/JPH0985613A/en
Publication of JPH0985613A publication Critical patent/JPH0985613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultra-precision polishing tool capable of easily realizing a rigidity characteristic suitable for super finishing, and improving the accuracy of surface roughness. SOLUTION: This ultra-precision polishing tool is formed out of a polishing member 14 made of ring type elastic material, the first presser disc 17 concentrically mounted on a tool shaft 12 and formed to have a smaller diameter than the polishing member 14, an aligning disc 16 capable of concentrically positioning the polishing member 14 with the first presser disc 17, and the second presser disc 18 concentrically mounted on the tool shaft 12 so as to be capable of clamping and holding the polishing member 14 with the first presser disc 17, and formed to have a smaller diameter than the polishing member 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工作物に原子オー
ダの面粗さの超仕上げ面を得るための超精密磨き工具に
係り、特に、EEM加工用の工具として最適の剛性特性
を得られるようにした超精密磨き工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraprecision polishing tool for obtaining a superfinished surface having a surface roughness of atomic order on a workpiece, and more particularly, to obtain optimum rigidity characteristics as a tool for EEM machining. Related to the ultra-precision polishing tool.

【0002】[0002]

【従来の技術】工作物の超仕上げ加工では、従来、サブ
ミクロンオーダーの精度が得られれば十分であったが、
最近では、数10nm以下、なかには原子オーダーの面
粗さの精度までが要求されるようになっている。原子オ
ーダーの面粗さを可能とするものとしては、EEM加工
(Elastic Emission Machining)法がある。このEE
M加工法は、加速した砥粒懸濁液を工作物と工具との間
に流して、砥粒を工作物の表面に衝突させることによっ
て工作物の表面を超仕上げ加工する方法である。
2. Description of the Related Art Conventionally, it has been sufficient for superfinishing a workpiece to obtain a precision on the order of submicrons.
Recently, accuracy of surface roughness on the order of several tens of nm or less, in particular, atomic order has been required. An EEM processing (Elastic Emission Machining) method is one that enables surface roughness on the atomic order. This EE
The M machining method is a method of superfinishing the surface of a workpiece by causing an accelerated abrasive grain suspension to flow between the workpiece and a tool and causing the abrasive grains to collide with the surface of the workpiece.

【0003】EEM加工法では、その砥粒としては、粒
度が例えば、0.1μm以下の極く微細粒の砥粒を使用
可能な上に、この砥粒自体は液体中に懸濁していること
から、通常の研磨の場合とは異なって砥粒の工作物表面
への衝突もやわらかく、従って、表面性状の欠陥のない
オングストロームオーダの除去が可能な超仕上げ加工法
として注目されている技術である。
In the EEM processing method, as the abrasive grains, it is possible to use extremely fine abrasive grains having a grain size of, for example, 0.1 μm or less, and the abrasive grains themselves are suspended in a liquid. Therefore, unlike the case of normal polishing, the collision of abrasive grains on the surface of the work piece is soft, and therefore, it is a technology that is drawing attention as a superfinishing method that can remove Angstrom order without defects in surface texture. .

【0004】ここで、図11は、EEM加工法におい
て、中実のポリウレタン球を工具1として用いて工作物
5の表面を超仕上げ加工する従来例を示す図で、工具1
と工作物5との間に懸濁液4が流れるときに、工作物5
の表面に衝突する砥粒6の動きを模式的に点線で表わし
ている。
Here, FIG. 11 is a view showing a conventional example of superfinishing the surface of a workpiece 5 using a solid polyurethane ball as the tool 1 in the EEM processing method.
When the suspension 4 flows between the workpiece 5 and the workpiece 5, the workpiece 5
The movement of the abrasive grain 6 that collides with the surface of the is schematically shown by a dotted line.

【0005】この工具1は、図8に示すようなEEM加
工装置で用いられるもので、NC工作機械の主軸頭30
には、十字ばね31を介して研磨ヘッド32が支持さ
れ、この研磨ヘッド32に取り付けた無段変速モータ3
3から回転トルクが工具1に伝達されるようになってい
る。工作物5は、台34に固定されるとともに、この台
34とともに懸濁液が流れる加工容器35に収容されて
NCテーブル36上に取り付けられる。加工容器35で
は、懸濁液は、ダイヤフラムポンプ37によって循環
し、また、恒温装置38によって液温が一定に保たれる
ようになっている。
This tool 1 is used in an EEM processing apparatus as shown in FIG. 8, and has a spindle head 30 of an NC machine tool.
The polishing head 32 is supported on the polishing head 32 via a cross spring 31, and the continuously variable motor 3 attached to the polishing head 32.
Rotational torque is transmitted from 3 to the tool 1. The workpiece 5 is fixed to the table 34, accommodated in the processing container 35 in which the suspension flows along with the table 34, and mounted on the NC table 36. In the processing container 35, the suspension is circulated by a diaphragm pump 37, and a constant temperature device 38 keeps the liquid temperature constant.

【0006】図12は、工具1の中心から工作物の表面
に垂線を下ろした位置を原点Oとしてこの原点Oからの
距離に対する懸濁液の膜厚さの変化を示したグラフであ
って、工具1が一回回転する間に、懸濁液の膜厚はA→
B→C→Dと変化することを示している。
FIG. 12 is a graph showing the change in the thickness of the suspension film with respect to the distance from the origin O, where the origin O is the position where a perpendicular is drawn from the center of the tool 1 to the surface of the workpiece. While the tool 1 rotates once, the film thickness of the suspension is A →
It shows that it changes from B → C → D.

【0007】この図12において、距離を表わす横軸の
マイナス方向は、工具1と工作物5との間にできる間隙
への流体の入口方向側で、プラス方向は、流体の出口方
向に対応している。また、ψは、弾性流体理論を用い数
値解析をした衝突角である(出典 「精密機械」第46
巻第6号 (1980年6月))。
In FIG. 12, the minus direction of the horizontal axis representing the distance is the inlet side of the fluid into the gap formed between the tool 1 and the workpiece 5, and the plus direction is the outlet direction of the fluid. ing. Further, ψ is a collision angle obtained by numerical analysis using the elastic fluid theory (Source: “Precision Machine”, No. 46)
Volume 6 (June 1980)).

【0008】また、A点は、懸濁液の入口側遠点、B点
は工具1の回転とともに懸濁液がつれ回りして工作物5
と工具1との間に入り込む位置に相当する入口側点、C
点は、懸濁液が工作物と工具の間から排出され始める出
口側点、Dは出口側遠点である。この図からはっきりと
わかるように、B点では、懸濁液の膜厚がC点と較べて
小さくなっているのは、図9に示すように、B点とC点
とでは、B点の方が運動エネルギやエネルギ密度が極大
となっているためである。
The point A is a far point on the inlet side of the suspension, and the point B is the suspension 5 which rotates with the rotation of the tool 1 and causes the workpiece 5 to move.
Point on the inlet side corresponding to the position to enter between the tool and the tool 1, C
The point is the exit side point where the suspension begins to be discharged between the workpiece and the tool, and D is the exit side far point. As can be clearly seen from this figure, the film thickness of the suspension at point B is smaller than that at point C as shown in FIG. This is because the kinetic energy and energy density are maximum.

【0009】その原因としては、B点では、工具1の回
転でつれ回りする懸濁液の衝突角が大きく、圧力が極大
となるがそれ以上に工具の変形が少ない。工具の変形が
少い理由としては、 角変化(図10) 工具の剛性 短時間な為粘弾性体の流動抵抗が大きい ことが考えられる。工具の変形については、B点では、
図10に示されるように、一定の回転角速度で回転する
工具1では、B点で半径変化率が最大となるが、同時に
最大となる変形抵抗と遠心力が重なり合い、工具の変形
を抑え、実際の変形量は極小となっている。
The reason is that at point B, the collision angle of the suspension circulated by the rotation of the tool 1 is large and the pressure becomes maximum, but the tool deformation is further less. The reason for the small deformation of the tool is that the flow resistance of the viscoelastic body is large because the angle changes (Fig. 10) and the rigidity of the tool is short. Regarding the deformation of the tool, at point B,
As shown in FIG. 10, in the tool 1 rotating at a constant rotational angular velocity, the radius change rate becomes maximum at the point B, but at the same time, the maximum deformation resistance and the centrifugal force overlap, suppressing the deformation of the tool, and The deformation amount of is extremely small.

【0010】B点を通過した懸濁液4は、その流れ方向
は工作物5の表面と平行になって、工作物5と工具1の
間の微小隙間を流れると、懸濁液4に作用する摩擦抵抗
による流速の遅延が圧力増加を生じさせると共に、流れ
と直角方向にも拡散するので総合ではA点に比べ急激に
圧力は低下する。また、B点からO点の間では、この圧
力が低下する反面、工具1での半径変化量の減少に伴う
変形抵抗変化率の低下とから懸濁液4の膜厚が徐々に厚
くなってくる。やがてO点を越えると、工具1の半径方
向の変化は縮みから伸びに転じる結果、回転の遠心力と
工具1の弾性回復とにより、膜厚の変化は抑制されるも
のの、圧力の面では低下していく。そして、C点を越え
ると、工具1は元の球形に復元してそれ以上の半径変化
が停止するので、懸濁液の膜厚は一挙に増加しながらD
点に至る。
The suspension 4 which has passed the point B has its flow direction parallel to the surface of the workpiece 5 and flows through the minute gap between the workpiece 5 and the tool 1 to act on the suspension 4. The delay of the flow velocity due to the frictional resistance causes an increase in pressure and also diffuses in the direction perpendicular to the flow. In addition, between point B and point O, this pressure decreases, while the deformation resistance change rate decreases as the radius change amount of the tool 1 decreases, and the film thickness of the suspension 4 gradually increases. come. When the temperature exceeds point O, the change in the radial direction of the tool 1 turns from contraction to extension. As a result, the centrifugal force of rotation and elastic recovery of the tool 1 suppress the change in film thickness, but decrease in terms of pressure. I will do it. When the point C is exceeded, the tool 1 is restored to the original spherical shape and further radius change stops, so that the film thickness of the suspension increases all at once.
To the point.

【0011】このような経過を経る懸濁液4の流れで
は、工具1と工作物5との間に形成される懸濁液の膜厚
の変化が仕上げ面の面粗さの精度に大きな影響を与える
ことが知られている。特に、EEM加工における膜厚と
面精度の関係については、膜厚が薄くなる上に、エネル
ギの集中する傾向が強いほど、加工を行なったときの面
粗さの精度の低下がみられるという結果が得られてい
る。
In the flow of the suspension 4 having such a process, the change in the film thickness of the suspension formed between the tool 1 and the workpiece 5 has a great influence on the accuracy of the surface roughness of the finished surface. Is known to give. In particular, regarding the relationship between the film thickness and the surface accuracy in the EEM processing, the result is that the accuracy of the surface roughness at the time of processing decreases as the film thickness becomes thinner and the energy concentration is stronger. Has been obtained.

【0012】[0012]

【発明が解決しようとする課題】工具1のような回転体
の外周部で加工する工具では、図9、図12におけるB
点のように膜厚が極小でエネルギの集中して極大となる
傾向があるのは、工具の直径が小さいもの、あるいは剛
性が大きく変形エネルギの高いものであることが判明し
ている。従って、表面粗さの精度を劣化させる要因とし
て、工具の剛性による変形抵抗の大きさが問題となる。
In the case of a tool such as the tool 1 which is machined on the outer peripheral portion of a rotating body, B in FIGS. 9 and 12 is used.
It has been found that the tendency that the film thickness is extremely small and the energy is concentrated and becomes maximum like the point is that the tool has a small diameter or that the tool has a large rigidity and a high deformation energy. Therefore, the size of the deformation resistance due to the rigidity of the tool becomes a problem as a factor that deteriorates the accuracy of the surface roughness.

【0013】特に、B点でのエネルギ集中については、
工具の剛性が高い程増大する。他方、工具の剛性が足り
ないと、B点でのエネルギ集中は少なくなる反面、液膜
が厚くなりすぎて剪断作用の低下がみられるという問題
が起る。このため、工具の剛性を適切に管理すること
は、加工精度を確保する上で非常に重要となるが、従来
は、工具の剛性は工具の材質によって制約的に決まって
しまい、面粗さの精度が向上するように適切な剛性を実
現するのが非常に困難であった。
Especially regarding the energy concentration at the point B,
The higher the rigidity of the tool, the greater the increase. On the other hand, if the rigidity of the tool is insufficient, the concentration of energy at the point B is reduced, but the liquid film becomes too thick and the shearing action is reduced. For this reason, it is very important to properly manage the rigidity of the tool in order to secure the machining accuracy, but conventionally, the rigidity of the tool is limited by the material of the tool and the surface roughness It has been very difficult to achieve adequate rigidity so that accuracy is improved.

【0014】そこで、本発明の目的は、前記従来技術の
有する問題点を解消し、エネルギ集中の緩和と、工具の
剛性を保ちながら液膜の厚さの増加を抑制できるような
超仕上げ用工具に適した剛性特性を容易に実現し、表面
粗さの精度を高められるようにした超精密磨き工具を提
供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to alleviate the concentration of energy, and to suppress the increase in the thickness of the liquid film while maintaining the rigidity of the tool. It is to provide an ultra-precision polishing tool that easily realizes a rigidity characteristic suitable for the above and can improve the accuracy of the surface roughness.

【0015】また、本発明の他の目的は、EEM加工用
に最適の剛性特性を備える超精密磨き工具を提供するこ
とにある。
Another object of the present invention is to provide an ultra-precision polishing tool having optimum rigidity characteristics for EEM machining.

【0016】[0016]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明による超精密磨き工具は、リング状の弾性
体からなる研磨部材と、工具軸に同心的に取り付けられ
前記研磨部材よりも直径の小さな第1の押え円板と、前
記研磨部材を第1押え円板に対して同心的に位置決め可
能な調心用円板と、前記第1押え円板との間で前記研磨
部材を挟圧保持可能なように工具軸に同心的に取り付け
られ前記研磨部材よりも直径の小さな第2の押え円板と
からなることを特徴とするものである。
In order to achieve the above object, an ultra-precision polishing tool according to the present invention comprises a polishing member made of a ring-shaped elastic body and a polishing member which is concentrically attached to a tool shaft. A first pressing disk having a small diameter, an aligning disk capable of concentrically positioning the polishing member with respect to the first pressing disk, and the polishing member between the first pressing disk. Is concentrically attached to the tool shaft so that it can be clamped and held, and comprises a second pressing disc having a diameter smaller than that of the polishing member.

【0017】この超精密磨き工具では、前記第1押え円
板と調心用円板を密着結合し、前記研磨部材の挟圧巾の
調整を前記調心用円板の厚さ調整により行なうように構
成することにより、工具の剛性特性を変えることができ
る。
In this ultra-precision polishing tool, the first pressing disc and the centering disc are closely joined, and the clamping width of the polishing member is adjusted by adjusting the thickness of the centering disc. With this configuration, the rigidity characteristics of the tool can be changed.

【0018】また、この剛性特性の調整は、前記第1押
え円板と第2押え円板とを周方向に配置され工具軸方向
に螺合する複数のねじによって連結し、このねじにより
第1押え円板と第2押え円板の間隔を調整し前記研磨部
材の挟圧巾の調整を行なうようにしてもよい。
Further, in adjusting the rigidity characteristic, the first pressing disc and the second pressing disc are connected by a plurality of screws arranged in the circumferential direction and screwed in the axial direction of the tool, and the first screw is connected by these screws. It is also possible to adjust the gap between the pressing disk and the second pressing disk to adjust the clamping width of the polishing member.

【0019】本発明の超精密磨き工具では、前記研磨部
材の材質を変えることにより、様々な特性を得ることが
できるが、ゴム、発泡スポンジ、ゲル、不織布等の粘弾
性材料を用いることもでき、また、前記研磨部材の外周
面に当該研磨部材自体の材料よりも剛性の小さな弾性材
料または粘弾性材料からなる薄膜材を被覆するようにし
てさらに最適な剛性特性を得ることができる。
In the ultra-precision polishing tool of the present invention, various characteristics can be obtained by changing the material of the polishing member, but a viscoelastic material such as rubber, foam sponge, gel or nonwoven fabric can also be used. Further, the outer peripheral surface of the polishing member is covered with a thin film material made of an elastic material or a viscoelastic material having a rigidity lower than that of the material of the polishing member itself, so that further optimum rigidity characteristics can be obtained.

【0020】本発明では、研磨部材を第1押え円板と、
第2押え円板との間で挟圧することにより、研磨部材の
外周部を半径方向に押出すことによって、図5に示すよ
うな二重ばねからなる弾性系と等価の弾性系を形成する
ことにより、前記の課題を達成するものである。
In the present invention, the polishing member is the first pressing disk,
Forming an elastic system equivalent to the elastic system composed of double springs as shown in FIG. 5 by pushing the outer peripheral portion of the polishing member in the radial direction by sandwiching it with the second pressing disc. This achieves the above-mentioned object.

【0021】図5において、ばねAは、板10を介して
ばねBの引張力で圧縮されており、両者の力が釣り合っ
た状態にして、ばねBを剛性のないワイヤ11で固定す
る。ばねの軸と平行にx軸をとって、均衡状態にあるば
ねAの自由端の位置をPとする。ここで、ばねAと、ば
ねBのばね定数をそれぞれkA 、kB として、力が加わ
っていない中立位置からの変形量をそれぞれΔlA 、Δ
B とする。
In FIG. 5, the spring A is compressed by the tensile force of the spring B via the plate 10, and the two forces are balanced and the spring B is fixed by the wire 11 having no rigidity. Taking the x-axis parallel to the axis of the spring, let P be the position of the free end of spring A in equilibrium. Here, assuming that the spring constants of the spring A and the spring B are k A and k B , respectively, the deformation amounts from the neutral position where no force is applied are Δl A and Δ, respectively.
l B.

【0022】図6は、ばねAとばねBについて、x軸上
の位置に対する圧縮力および引張力の変化を図示したも
のである。ばねAの圧縮力と、ばねBの引張力の釣合い
点であるP点では、
FIG. 6 illustrates changes in the compressive force and the tensile force with respect to the position on the x-axis for the spring A and the spring B. At point P, which is a balance point between the compression force of spring A and the tensile force of spring B,

【0023】[0023]

【数1】 である。[Equation 1] It is.

【0024】ここで、図5に示すように、板10にx軸
と平行に力Fを加えながら、かつばねAとばねBとの間
の均衡を保ちなから、ばねBの引張力が0となるB0
までばねAを圧縮する。この間の力Fは、ばねAとばね
Bとの差力と等しく、すなわち
As shown in FIG. 5, the tension force of the spring B is 0 because the force F is applied to the plate 10 in parallel with the x-axis and the balance between the spring A and the spring B is not maintained. The spring A is compressed to the point B 0 . The force F during this time is equal to the differential force between the spring A and the spring B, that is,

【0025】[0025]

【数2】 と変化する。板10の位置がB0 点を越えると、それ以
後のばねBの弾性力は0となるので、この弾性系では、
ばねA単体の力に依存することになる。
[Equation 2] And change. When the position of the plate 10 exceeds the point B 0 , the elastic force of the spring B after that becomes 0, so in this elastic system,
It depends on the force of the spring A alone.

【0026】換言すれば、このばねAとばねBとからな
る弾性系を考えてみると、P点からばねの縮み方向に変
位させると、B0 点までは、
In other words, considering the elastic system composed of the spring A and the spring B, when it is displaced from the point P in the direction of contraction of the spring, up to the point B 0 ,

【0027】[0027]

【数3】 の直線で表わされる特性を有し、B0 点を過ぎると、ば
ね定数をkA とする
(Equation 3) Has a characteristic represented by a straight line, and when the point B 0 is passed, the spring constant is set to k A.

【0028】[0028]

【数4】 という直線で表わされる特性に変化する。[Equation 4] Changes to the characteristic represented by the straight line.

【0029】ここで、直線Where the straight line

【0030】[0030]

【数5】 のばね定数をkABとすると、kABは、(Equation 5) When the spring constant is k AB, k AB is

【0031】[0031]

【数6】 であるから、(Equation 6) Because

【0032】[0032]

【数7】 (3)式より、 kA <kAB となり、ばね定数、すなわち剛性を高めることができ
る。
(Equation 7) From the equation (3), k A <k AB , and the spring constant, that is, the rigidity can be increased.

【0033】以上は、ばねBの固定端側を剛性の無いワ
イヤ11によって固定したものと考えた場合であるが、
剛性を有する部材で固定した場合には、ばねBは、引張
力が低下しながらB0 点を越えた時点でばねAと同じく
縮みに転じる。従って、この場合の弾性系のばね定数k
ABは、ばねAのばね定数kA と、ばねBのばね定数kB
の和となり、直線AB C で表わされる特性を示す。
The above is the case where the fixed end side of the spring B is fixed by the wire 11 having no rigidity.
When the spring B is fixed by a member having rigidity, the spring B starts to contract like the spring A when the tensile force decreases and the point exceeds the point B 0 . Therefore, the spring constant k of the elastic system in this case
AB is the spring constant k A of the spring A and the spring constant k B of the spring B
And the characteristic represented by the straight line A B A C is shown.

【0034】また、図7に示すように、粘弾性的な特性
を有するばねをそれぞれ用いて、図5と同じ弾性系を構
成した場合では、釣り合い点P’近傍では、P’A’B
の曲線で表わされるように剛性を小さく抑え、その後、
急激に剛性が増大するような特性を持たせることができ
る。
Further, as shown in FIG. 7, when springs having viscoelastic characteristics are respectively used to form the same elastic system as that shown in FIG. 5, P'A'B near the equilibrium point P '.
Stiffness is kept small as shown by the curve of
It is possible to provide such a characteristic that the rigidity is rapidly increased.

【0035】本発明は、このような弾性系と等価のもの
を研磨部材の外周部に作り出し、研磨部材の材料を変え
たり、あるいは、第1押え円板と第2押え円板による挟
圧巾を調整することによって負荷を変えて、超仕上げ加
工用の工具として最適な剛性特性を付与することを特徴
とする。
According to the present invention, an elastic system equivalent to such an elastic system is created on the outer peripheral portion of the polishing member to change the material of the polishing member, or the clamping width by the first pressing disc and the second pressing disc. It is characterized by changing the load by adjusting to give optimum rigidity characteristics as a tool for superfinishing.

【0036】本発明は、特に、EEM加工用の工具に適
し、工具の表層では剛性を低く保持してエネルギの集中
を緩和できるようにし、その後は高剛性を保持して砥粒
懸濁液の膜厚さの増加を防ぐことができるようなる。
The present invention is particularly suitable for a tool for EEM machining, in which the rigidity of the surface layer of the tool is kept low so that the concentration of energy can be relaxed, and thereafter, the rigidity of the abrasive grain suspension is kept high while maintaining a high rigidity. It becomes possible to prevent an increase in film thickness.

【0037】[0037]

【発明の実施の形態】以下、本発明による超精密磨き工
具の一実施形態について添付の図面を参照して説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an ultra-precision polishing tool according to the present invention will be described below with reference to the accompanying drawings.

【0038】図1において、12は、工具軸であり、こ
の工具軸12を回転軸とするように前述した図8のEE
M加工装置に取り付けられるものである。14は、工具
本体である研磨部材として用いられる弾性体であり、ゴ
ムなどの弾性材料を用いてリング形状に形成され、その
外周面が研磨面となるようになっている。
In FIG. 1, reference numeral 12 denotes a tool shaft, and the EE of FIG. 8 described above so that the tool shaft 12 serves as a rotation shaft.
It is attached to the M processing device. Reference numeral 14 is an elastic body used as a polishing member which is a tool body, and is formed into a ring shape by using an elastic material such as rubber, and its outer peripheral surface serves as a polishing surface.

【0039】研磨部材14は、その中心部に形成されて
いる孔部15に嵌合する調心円板16を用いて、工具軸
12と同心的に位置決めされて取り付けられており、調
心円板16は、工具軸12と同軸的に固定されている第
1の押え円板17と、第2の押え円板18との間で挟ま
れて圧縮される(図1(b))。第1押え円板17と、
第2押え円板18とは、ともに研磨部材14よりも小さ
な直径を有し、従って、研磨部材14の研磨面をなす外
周部は露出できるようになっている。
The polishing member 14 is positioned and attached concentrically with the tool shaft 12 by using an aligning disc 16 fitted in a hole 15 formed in the center of the polishing member 14, and the aligning circle is provided. The plate 16 is compressed by being sandwiched between a first holding disc 17 and a second holding disc 18 which are coaxially fixed to the tool shaft 12 (FIG. 1 (b)). The first presser disk 17;
The second pressing disc 18 and the second pressing disk 18 both have a smaller diameter than the polishing member 14, so that the outer peripheral portion of the polishing member 14 forming the polishing surface can be exposed.

【0040】また、この実施形態では、研磨部材14の
挟圧巾Cを調整するための手段として、調心円板16の
厚みを利用している。従って、研磨部材14の厚さより
も薄い適当な厚さの調心円板16を第1押え円板17に
密着させて取り付け、工具軸12の先端に切ってある雄
ねじにナット19により締付けて、第1押え円板17と
第2押え円板18との間で、研磨部材14を挟圧するこ
とにより、研磨部材14の外周部を半径方向に膨出させ
ることができるようになっている。
Further, in this embodiment, the thickness of the alignment disc 16 is used as a means for adjusting the clamping width C of the polishing member 14. Therefore, an aligning disc 16 having an appropriate thickness smaller than that of the polishing member 14 is attached to the first pressing disc 17 so as to be in close contact therewith, and a male screw cut at the tip of the tool shaft 12 is tightened with a nut 19. By sandwiching the polishing member 14 between the first pressing disk 17 and the second pressing disk 18, the outer peripheral portion of the polishing member 14 can be radially expanded.

【0041】このように研磨部材14を第1押え円板1
7と第2押え円板18との間で挟圧することにより、研
磨部材14の外周部は、図2に示めされるように、半径
方向外方にδだけ押し出され、研磨部材14の外周のエ
ッジ部20の近傍には、点Qを瞬間中心とするモーメン
トMが発生する。押出力と、曲げモーメントMとによ
り、研磨部材14の外周部の表層には、引張応力Fとと
もに、その内部には、圧縮応力が形成されて、研磨部材
14の外周には、図に示すような凸曲面が形成される。
In this way, the polishing member 14 is attached to the first holding disk 1
By sandwiching between 7 and the second pressing disc 18, the outer peripheral portion of the polishing member 14 is pushed outward by δ in the radial direction as shown in FIG. A moment M having the point Q as the instantaneous center is generated in the vicinity of the edge portion 20 of. Due to the pushing force and the bending moment M, a compressive stress is formed inside the surface of the polishing member 14 along with a tensile stress F on the outer surface of the polishing member 14, and as shown in the drawing. A convex curved surface is formed.

【0042】図3に示すように、研磨部材14の外周凸
曲面における引張応力Fは、曲面の中心位置から両側に
接線方向に働き、その合成力FB が縮め力であり、これ
に釣り合っている押出力FA がFB と同じ大きさで向き
の反対の力として存在する。
[0042] As shown in FIG. 3, the tensile stress F in outer convex curved surface of the polishing member 14 acts tangentially on both sides from the central position of the curved surface is the shortened force its resultant force F B, commensurate thereto The pushing force F A present is the same as F B and exists as an opposite force in the direction.

【0043】このように研磨部材14を両側から挟圧す
ることによってできる外周凸曲面では、押出力FA は、
図5におけるばねAによる圧縮力に相当し、縮み力FB
は、ばねBによる圧縮力に相当する。加工時の工具の変
形は、押出力FA と、縮み力FB とが釣り合っている状
態から、工作物に押圧されたときに縮み方向に作用する
B に平行な力によって均衡がくずれて生じる。従っ
て、この時の工具の変形は、図6、図7の弾性系の
In the outer peripheral convex curved surface formed by pinching the polishing member 14 from both sides in this way, the pushing force F A is
Corresponding to the compression force by the spring A in FIG. 5, the contraction force F B
Corresponds to the compressive force of the spring B. The deformation of the tool during machining is unbalanced due to the force parallel to F B acting in the contraction direction when pressed against the workpiece, from the state where the pushing force F A and the contraction force F B are in balance. Occurs. Therefore, the deformation of the tool at this time is due to the elastic system of FIGS.

【0044】直線PAB 、曲線P’A’B の過程と等価
の特性をもつものと考えることができ、前述の(3)式
のように剛性特性に変化を与えることができる。
It can be considered that the characteristic is equivalent to the process of the straight line PA B and the curve P'A ' B , and the rigidity characteristic can be changed as in the above-mentioned equation (3).

【0045】工具の剛性は、研磨部材14に用いる材料
の特性によって決まるだけでなく、図4に示すような挟
圧巾Cをねじ機構を用いて、研磨部材14を挟持する第
1押え円板17、第2押え円板18の間隔を調整するこ
とにより、可変とすることができる。すなわち、この場
合、円周方向に対称的に複数本のボルト21を工具軸1
2と平行に第2押え円板18から螺入し、その先端を調
心円板16に当接させ、このボルト21により円板18
と円板16との間隔を調整することができ、その後、ナ
ット19により円板18を固定する。このように挟圧巾
Cを調整すると、前述したように研磨部材14のエッジ
部20に作用する押出力と曲げモーメントMの大きさが
変ってくるので、間隔を狭めると、剛性を高く、逆に間
隔を広げることで剛性を低くすることができる。
The rigidity of the tool is not only determined by the characteristics of the material used for the polishing member 14, but also the first pressing disk for holding the polishing member 14 with the clamping width C as shown in FIG. 4 by using the screw mechanism. It can be made variable by adjusting the interval between the second presser disc 17 and the second presser disc 18. That is, in this case, the plurality of bolts 21 are symmetrically arranged in the circumferential direction in the tool shaft 1.
2 is screwed in parallel with the second presser disk 18, and the tip end thereof is brought into contact with the centering disk 16, and the disk 21 is attached by the bolt 21.
And the disc 16 can be adjusted in distance, and then the disc 18 is fixed by the nut 19. When the clamping width C is adjusted in this way, the pushing force acting on the edge portion 20 of the polishing member 14 and the magnitude of the bending moment M change as described above. The rigidity can be lowered by widening the interval.

【0046】特に、研磨部材14の材料に粘弾性的な特
性を有するものを弾性材料として選択した場合には、図
7に示したような曲線P’AB ’の特性のように釣り合
い状態からわずかに変形する範囲では剛性は低く、その
後、急激に剛性が高くなるような剛性特性を付与するこ
とも可能である。その剛性特性を有している工具では、
EEM加工における懸濁液の膜厚の変化を示した図12
において、工具の表層では剛性を低く抑えることで、わ
ずかに変形してB点でのエネルギ集中を緩和した後は、
高剛性となって液膜厚さの増加を防止することができ
る。
In particular, when a material having a viscoelastic characteristic is selected as the material of the polishing member 14 as the elastic material, it is possible to change the balance from the balanced state as shown by the characteristic of the curve P'A B 'as shown in FIG. It is also possible to impart rigidity characteristics such that the rigidity is low in a range where it is slightly deformed, and then the rigidity is rapidly increased. With tools that have that stiffness characteristic,
FIG. 12 showing changes in the film thickness of the suspension during EEM processing.
In, in the surface layer of the tool, by suppressing the rigidity low, after slightly deforming and relaxing the energy concentration at the point B,
High rigidity can be prevented and an increase in liquid film thickness can be prevented.

【0047】EEM加工用の工具の場合、研磨部材14
に用いる材料としては、ゴム、軟質プラスチック等の弾
性体のほか、スポンジ、不織布、ゲル等の粘弾性体が好
適である。
In the case of a tool for EEM processing, the polishing member 14
As the material used in the above, in addition to elastic bodies such as rubber and soft plastic, viscoelastic bodies such as sponge, non-woven fabric and gel are preferable.

【0048】なお、研磨部材14の材質を変えるだけで
も、多様な剛性特性を得ることができるほか、研磨部材
14の外周に薄い別材質の弾性体を被覆するというよう
に材質を組み合わせることにより、加工に適合する工具
の剛性特性を期待できる。この被覆材には、研磨部材1
4に較べて剛性の低い材料のものが研磨部材14の剛性
特性を低下させないのでより好ましく、そのようなゴム
等の弾性体や、発泡スポンジ、ゲル等の粘弾性体、ある
いはポリシングクロスを用いることができる。
By changing the material of the polishing member 14, various rigidity characteristics can be obtained, and by combining the materials such as coating the outer periphery of the polishing member 14 with a thin elastic material. The rigidity characteristics of the tool suitable for machining can be expected. This covering material includes the polishing member 1
It is more preferable to use a material having a rigidity lower than that of No. 4 because it does not deteriorate the rigidity characteristics of the polishing member 14, and an elastic body such as rubber, a viscoelastic body such as foam sponge or gel, or a polishing cloth is used. You can

【0049】以上、本発明による超精密磨き工具につい
て、好適な実施形態を挙げて説明したが、本発明は、E
EM加工に限らず、その他の超仕上げ加工にも適用する
ことができることはもちろんである。
The ultra-precision polishing tool according to the present invention has been described above with reference to the preferred embodiments.
Needless to say, it can be applied not only to EM processing but also to other super-finishing processing.

【0050】[0050]

【発明の効果】以上の説明から明らかなように、本発明
によれば、リング状の弾性体からなる研磨部材と、工具
軸に同心的に取り付けられ前記研磨部材よりも直径の小
さな第1の押え円板と、前記研磨部材を第1の押え円板
に対して同心的に位置決め可能な調心用円板と、前記第
1押え円板との間で前記研磨部材を挟圧保持可能なよう
に工具軸に同心的に取り付けられ前記研磨部材よりも直
径の小さな第2の押え円板とから構成しているので、研
磨部材を挟圧することにより、その剛性特性を超仕上げ
工具として適したものにし、一層の面粗さ精度の向上を
達成することができる。
As is apparent from the above description, according to the present invention, a polishing member made of a ring-shaped elastic member and a first polishing member concentrically attached to a tool shaft and having a diameter smaller than that of the polishing member. The polishing member can be clamped and held between a holding disc, an aligning disc that can concentrically position the polishing member with respect to the first holding disc, and the first holding disc. As described above, the second holding disk is concentrically attached to the tool shaft and has a diameter smaller than that of the polishing member. Therefore, by clamping the polishing member, its rigidity characteristic is suitable as a superfinishing tool. In addition, it is possible to further improve the surface roughness accuracy.

【0051】しかも、研磨部材の材料を変えたり、ある
いは、第1押え円板と第2押え円板による挟圧巾を調整
することによって負荷を変えて、超仕上げ加工用の工具
として最適な剛性特性を付与でき、特に、従来困難であ
ったEEM用の最適工具を得ることができる。
Moreover, the load is changed by changing the material of the polishing member or by adjusting the clamping width by the first pressing disc and the second pressing disc to obtain the optimum rigidity as a tool for superfinishing. It is possible to impart characteristics, and in particular, it is possible to obtain an optimum tool for EEM which has been difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超精密磨き工具の一実施形態を示
す構成説明図。
FIG. 1 is a structural explanatory view showing an embodiment of an ultra-precision polishing tool according to the present invention.

【図2】超精密磨き工具の研磨部材が挟圧された状態に
おける力の発生状況を示す説明図。
FIG. 2 is an explanatory diagram showing a force generation state in a state where a polishing member of an ultra-precision polishing tool is pinched.

【図3】超精密磨き工具の研磨部材の外周部での力の均
衡状態を示す説明図。
FIG. 3 is an explanatory view showing a balanced state of forces on the outer peripheral portion of the polishing member of the ultra-precision polishing tool.

【図4】超精密磨き工具の研磨部材の挟圧巾を調整する
ねじ機構を示す構成説明図。
FIG. 4 is a structural explanatory view showing a screw mechanism for adjusting the clamping width of the polishing member of the ultra-precision polishing tool.

【図5】本発明の超精密磨き部材の研磨部材外周に形成
される弾性系と等価の二重ばねの説明図。
FIG. 5 is an explanatory view of a double spring equivalent to an elastic system formed around the polishing member of the ultra-precision polishing member of the present invention.

【図6】図5の弾性系の特性説明図。6 is a characteristic explanatory view of the elastic system of FIG.

【図7】粘弾性のばねによる弾性系の特性説明図。FIG. 7 is a characteristic explanatory view of an elastic system using a viscoelastic spring.

【図8】EEM加工装置の概略構成説明図。FIG. 8 is a schematic configuration explanatory view of an EEM processing apparatus.

【図9】EEM加工法における工具中心からの位置とエ
ネルギの変化を示す図。
FIG. 9 is a diagram showing changes in position and energy from the tool center in the EEM processing method.

【図10】工具が回転したときの半径方向の変化率を示
した模式図。
FIG. 10 is a schematic diagram showing the rate of change in the radial direction when the tool rotates.

【図11】EEM加工法において球状の工具と工作物の
間の砥粒懸濁液の流れを示す模式図。
FIG. 11 is a schematic diagram showing a flow of an abrasive grain suspension between a spherical tool and a workpiece in the EEM processing method.

【図12】EEM加工法における工具中心からの位置と
懸濁液の膜厚との関係を示す図。
FIG. 12 is a diagram showing the relationship between the position from the center of the tool and the film thickness of the suspension in the EEM processing method.

【符号の説明】[Explanation of symbols]

1 工具 4 懸濁液 5 工作物 12 工具軸 14 研磨部材 16 調心円板 17 第1押え円板 18 第2押え円板 20 エッジ部 1 Tool 4 Suspension 5 Workpiece 12 Tool Axis 14 Polishing Member 16 Alignment Disc 17 First Presser Disc 18 Second Presser Disc 20 Edge Part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リング状の弾性体からなる研磨部材と、 工具軸に同心的に取り付けられ前記研磨部材よりも直径
の小さな第1の押え円板と、 前記研磨部材を第1の押え円板に対して同心的に位置決
め可能な調心用円板と、 前記第1押え円板との間で前記研磨部材を挟圧保持可能
なように工具軸に同心的に取り付けられ前記研磨部材よ
りも直径の小さな第2の押え円板とからなることを特徴
とする超精密磨き工具。
1. A polishing member made of a ring-shaped elastic body, a first pressing disk concentrically attached to a tool shaft and having a smaller diameter than the polishing member, and the polishing member being a first pressing disk. To the tool shaft so that the polishing member can be clamped and held between the aligning disc that can be positioned concentrically with respect to the polishing plate, and the first pressing disc. An ultra-precision polishing tool characterized by comprising a second pressing disc with a small diameter.
【請求項2】前記第1押え円板と調心用円板を密着結合
し、前記研磨部材の挟圧巾の調整を前記調心用円板の厚
さ調整により行なうようにしたことを特徴とする請求項
1に記載の超精密磨き工具。
2. The first presser disc and the centering disc are closely connected, and the clamping width of the polishing member is adjusted by adjusting the thickness of the centering disc. The ultra-precision polishing tool according to claim 1.
【請求項3】前記第1押え円板と第2押え円板とを周方
向に配置され工具軸方向に螺合する複数のねじによって
連結し、これらのねじにより第1押え円板と第2押え円
板の間隔を調整し前記研磨部材の挟圧巾の調整を行なう
ようにしたことを特徴とする請求項1に記載の超精密磨
き工具。
3. The first presser disc and the second presser disc are connected by a plurality of screws arranged in the circumferential direction and screwed in the axial direction of the tool, and the first presser disc and the second presser disc are connected by these screws. 2. The ultra-precision polishing tool according to claim 1, wherein the interval between the pressing disks is adjusted to adjust the clamping width of the polishing member.
【請求項4】前記研磨部材は、ゴム、発泡スポンジ、ゲ
ル、不織布等の粘弾性材料からなることを特徴とする請
求項1乃至3のいずれか1項に記載の超精密磨き工具。
4. The ultra-precision polishing tool according to claim 1, wherein the polishing member is made of a viscoelastic material such as rubber, foam sponge, gel, and non-woven fabric.
【請求項5】前記研磨部材の外周面に当該研磨部材自体
の材料よりも剛性の小さな弾性材料または粘弾性材料か
らなる薄膜材を被覆してなることを特徴とする請求項4
に記載の超精密磨き工具。
5. The outer peripheral surface of the polishing member is coated with a thin film material made of an elastic material or a viscoelastic material having rigidity lower than that of the material of the polishing member itself.
Ultra precision polishing tool described in.
JP24974595A 1995-09-27 1995-09-27 Ultra-precision polishing tool Pending JPH0985613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24974595A JPH0985613A (en) 1995-09-27 1995-09-27 Ultra-precision polishing tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24974595A JPH0985613A (en) 1995-09-27 1995-09-27 Ultra-precision polishing tool

Publications (1)

Publication Number Publication Date
JPH0985613A true JPH0985613A (en) 1997-03-31

Family

ID=17197592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24974595A Pending JPH0985613A (en) 1995-09-27 1995-09-27 Ultra-precision polishing tool

Country Status (1)

Country Link
JP (1) JPH0985613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733369B1 (en) 2002-09-30 2004-05-11 Carl Zeiss Semiconductor Manufacturing Technologies, Ag Method and apparatus for polishing or lapping an aspherical surface of a work piece
JP2009107061A (en) * 2007-10-30 2009-05-21 Yuichiro Niizaki Brushing device and method of manufacturing brushing device
WO2024131857A1 (en) * 2022-12-22 2024-06-27 桂林创源金刚石有限公司 Polishing wheel and base body connected device and technological method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733369B1 (en) 2002-09-30 2004-05-11 Carl Zeiss Semiconductor Manufacturing Technologies, Ag Method and apparatus for polishing or lapping an aspherical surface of a work piece
JP2009107061A (en) * 2007-10-30 2009-05-21 Yuichiro Niizaki Brushing device and method of manufacturing brushing device
WO2024131857A1 (en) * 2022-12-22 2024-06-27 桂林创源金刚石有限公司 Polishing wheel and base body connected device and technological method thereof

Similar Documents

Publication Publication Date Title
US20070234564A1 (en) Method and apparatus for producing blades
KR20000068030A (en) Ophthalmic lens generating apparatus having vibration dampening structure
JPH11507598A (en) Method and apparatus for optical polishing
JPH0493169A (en) Polishing spindle
JPH0343146A (en) Non-contact processing method for spherical surface
JPH0985613A (en) Ultra-precision polishing tool
US5235959A (en) Arrangement and method for regenerating rotating precision grinding tools
JPH06155259A (en) Method of producing board having main flat surface and two parallel main surfaces and device suited for said methods
CN106232295A (en) The lens centering method of centre of sphere formula processing machine and lens processing method and centre of sphere formula processing machine
US4361987A (en) Apparatus for high tolerance polishing of a work-piece surface
Bifano et al. Fixed-abrasive grinding of brittle hard-disk substrates
JP5852596B2 (en) Grinding apparatus and grinding method
JP3288092B2 (en) Magnetic head polishing apparatus and polishing method
JP2001150309A (en) Grinding method and grinding device
JPH0985614A (en) Ultra-precision polishing tool
JP2004098267A (en) Polishing tool, polishing device, and polishing precess
JPH11221759A (en) Polishing device for stainless steel pipe
JPH08216017A (en) Holding device of material to be ground in grinding machine
JP2001001243A (en) Method and device for chamfering outer circumferential portion of thin disklike work
JPH07246559A (en) Machining device
JP2002025951A (en) Double-sided machining apparatus and truing method of grinding means
CN208304635U (en) A kind of tubing burr polishing device
JPH01274960A (en) Lens processing method
JPH10249725A (en) Polishing tool for stainless steel pipe
JPH06254762A (en) Recessed spherical surface lapping device