JPH0985028A - Filter for treating carbon particle in exhaust gas and carbon particle device using the filter - Google Patents

Filter for treating carbon particle in exhaust gas and carbon particle device using the filter

Info

Publication number
JPH0985028A
JPH0985028A JP7270483A JP27048395A JPH0985028A JP H0985028 A JPH0985028 A JP H0985028A JP 7270483 A JP7270483 A JP 7270483A JP 27048395 A JP27048395 A JP 27048395A JP H0985028 A JPH0985028 A JP H0985028A
Authority
JP
Japan
Prior art keywords
carbon
stainless steel
temperature heat
resistant stainless
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7270483A
Other languages
Japanese (ja)
Other versions
JP3677329B2 (en
Inventor
Masato Imamura
正人 今村
Kiichi Nakajima
紀一 中島
Katsumi Shindou
克美 神道
Toshio Asami
登志雄 浅見
Tatsuhiko Kato
龍彦 加藤
Koichi Goi
光一 後夷
Yukio Aizawa
幸雄 相澤
Masao Sekido
容夫 関戸
Akira Goto
後藤  晃
Tomonari Komiyama
知成 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Eneos Corp
Original Assignee
Sintokogio Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Nippon Oil Corp filed Critical Sintokogio Ltd
Priority to JP27048395A priority Critical patent/JP3677329B2/en
Priority to DE69624890T priority patent/DE69624890T2/en
Priority to EP96115170A priority patent/EP0764455B1/en
Priority to US08/718,997 priority patent/US5800790A/en
Publication of JPH0985028A publication Critical patent/JPH0985028A/en
Application granted granted Critical
Publication of JP3677329B2 publication Critical patent/JP3677329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide high ability for treating carbon particles in exhaust gas and improved durability by a method wherein fibers of high temperature heat resistant stainless steel are formed into a web and an alumina film is formed thereon to form a high temperature heat resistant stainless steel fiber sintered material, which material carries catalysts. SOLUTION: A high temperature heat resistant stainless steel fiber sintered material 2 has a porous structure, wherein high temperature heat resistant stainless steel fibers 20 are oriented randomly and intersections between the fibers are welded to one another as shown in Fig. (a), and each fiber 20 has a nearly square cross section perpendicular to axial direction as shown in Fig. (b) and a thin alumina film 21 with uniform thickness is deposited on the surfaces of the fibers. The film 21 is formed so as to surround a cross contact part 200 of the fibers 20, 20 as shown in Fig. (c), whereby a metallic touch is produced in the part 200. Thus, in the material 2, a resistance heating circuit state, which is uniform as a whole, is constituted. Further, a catalyst layer 4 is provided on the surface of the film 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はディーゼル内燃機関
や加熱炉、ボイラなどの燃焼装置から排出される排気ガ
ス中の炭素系微粒子を処理するためのフィルタ及びこれ
を用いた少なくとも1つ以上の炭素系微粒子処理ユニッ
トからなる排ガス中の炭素系微粒子処理装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for treating carbon fine particles in exhaust gas discharged from a combustion device such as a diesel internal combustion engine, a heating furnace, a boiler, etc., and at least one or more carbons using the filter. The present invention relates to an apparatus for treating carbon-based particulates in exhaust gas, which comprises a particulate-based treatment unit.

【0002】[0002]

【従来の技術】ディーゼル内燃機関は、エネルギー効率
が高く、また耐久性が優れているため、自動車などの輸
送機用、一般動力用、発電用などに汎用されているが、
排ガス中に主としてスート,カーボンミスト等からなる
炭素系微粒子が含まれているため、環境上大きな問題と
なっている。この対策として、自動車などの輸送機では
エンジンの改良、燃料噴射系の改良などが行われ、これ
によりディーゼル内燃機関より排出される炭素系微粒子
をある程度低減することができている。しかしながら、
これらの方法による炭素系微粒子の低減ではまだ十分で
はないため、さらに炭素系微粒子を低減する方法とし
て、酸化(燃焼)触媒を利用したり、セラミック製フィル
タで炭素系微粒子を捕集した後、炭素系微粒子を電気ヒ
ータ,バーナなどで着火させ、炭素系微粒子自体の燃焼
熱で伝播燃焼させて除去する方法などが検討されてい
る。一方、定置式や産業用のディーゼルエンジン、加熱
炉、コージェネレーションシステム,ヒートポンプ、ボ
イラ等の燃焼装置では、排ガス対策としてサイクロン,
バグフィルタなどの集塵装置を用いる方法がとられてい
る。
2. Description of the Related Art Since a diesel internal combustion engine is high in energy efficiency and excellent in durability, it is widely used for transportation machines such as automobiles, general power, and power generation.
Since the exhaust gas contains carbon-based fine particles mainly composed of soot and carbon mist, it is a serious environmental problem. As measures against this, improvements have been made to engines and fuel injection systems in transportation machines such as automobiles, which have made it possible to reduce carbon-based fine particles emitted from diesel internal combustion engines to some extent. However,
Since reduction of carbon-based fine particles by these methods is not yet sufficient, as a method for further reducing carbon-based fine particles, an oxidation (combustion) catalyst is used, or carbon-based fine particles are collected by a ceramic filter, and then carbon A method of igniting fine particles with an electric heater, a burner, etc., and propagating and burning with the combustion heat of the fine carbon particles themselves has been studied. On the other hand, in stationary and industrial diesel engines, heating furnaces, cogeneration systems, heat pumps, combustion equipment such as boilers, cyclone,
A method of using a dust collector such as a bag filter is adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸化
(燃焼)触媒を用いる方法やセラミック製フィルタで炭素
微粒子を捕集し燃焼除去する方法では性能、耐久性およ
び経済性に問題がある。特に、セラミック製フィルタを
用いる方法は、炭素系微粒子の捕集率は高いものの、再
生の際に炭素系微粒子の燃焼に伴う発熱がフィルタ内で
一様でなく高低の差があることや炭素系微粒子の燃焼温
度が高いことにより、フィルタが破損したり溶解する問
題や、排ガス中の灰分がフィルタ内に堆積し長時間使用
できない問題などがある。また、定置式や産業用のディ
ーゼルエンジンや加熱炉やボイラ等の燃焼装置で用いら
れているサイクロン,バグフィルタなどの集塵装置は、
処理能力が低かったり装置が高価であったり、捕集した
炭素系微粒子を廃棄処理しなければならなかったりする
などの問題がある。
[Problems to be Solved by the Invention] However, oxidation
A method using a (combustion) catalyst or a method of collecting and burning off carbon fine particles with a ceramic filter has problems in performance, durability and economy. In particular, the method using a ceramic filter has a high collection rate of carbon-based fine particles, but the heat generated by the combustion of the carbon-based fine particles during regeneration is not uniform in the filter and there is a difference in height. Due to the high combustion temperature of the fine particles, there are problems that the filter is broken or melted, and that ash in exhaust gas accumulates in the filter and cannot be used for a long time. In addition, dust collectors such as cyclones and bag filters used in stationary and industrial diesel engines, combustion furnaces, boilers, and other combustion devices,
There are problems such as low processing capacity, expensive equipment, and the need to dispose of the collected carbon-based fine particles.

【0004】本発明は上記問題点を解消するために研究
して創案されたもので、その第1の目的は、ディーゼル
内燃機関や燃焼装置から排出される排ガス中の炭素系微
粒子の処理能力が高いとともにすぐれた耐久性を備え、
また経済性やメンテナンス性も良好な排ガス中の炭素系
微粒子処理用フィルタを提供することにある。また、本
発明の他の目的は、上記目的に加え、再生操作が容易で
かつ炭素系微粒子処理能力が高い排ガス中の炭素系微粒
子処理装置を提供することにある。
The present invention was made by research to solve the above problems, and a first object of the present invention is to improve the treatment capacity of carbon-based fine particles in exhaust gas discharged from a diesel internal combustion engine or a combustion device. With high and excellent durability,
Another object of the present invention is to provide a filter for treating carbon-based fine particles in exhaust gas, which has good economical efficiency and maintainability. Another object of the present invention is to provide, in addition to the above objects, a carbon-based fine particle treatment apparatus for exhaust gas which is easy to regenerate and has a high carbon-based fine particle treatment capability.

【0005】[0005]

【課題を解決する手段】上記第1の目的を達成するため
本発明は、抵抗発熱性を有する高温耐熱性ステンレス鋼
の薄板を巻回したコイル材を端面切削して製造した繊維
を集積してウエブにし、それを焼結および熱処理して焼
結繊維表面にアルミナ皮膜を形成した高温耐熱性ステン
レス鋼繊維焼結体からなり、しかも該高温耐熱性ステン
レス鋼繊維焼結体が触媒を担持している構成としたもの
である。また第2の目的を達成するため本発明は、排ガ
スの導入部と排出部を有する器体と、抵抗発熱性を有す
る高温耐熱性ステンレス鋼の薄板を巻回したコイル材を
端面切削して製造した繊維を集積してウエブにしそれを
焼結および熱処理して焼結繊維表面にアルミナ皮膜を形
成ししかもその上に触媒を担持し、かつ自由端に電極を
取り付けた高温耐熱性ステンレス鋼繊維焼結体からなる
炭素系微粒子処理用フィルタと、要時に前記電極に通電
して炭素系微粒子処理用フィルタを自己発熱させるため
の通電装置を備えた構成としたものである。本発明の炭
素系微粒子処理装置は、前記第2発明の構成を備えたも
のを1つの処理ユニットとしこれを複数配した形態を含
む。
In order to achieve the above first object, the present invention integrates fibers produced by cutting the end face of a coil material wound with a thin plate of high temperature heat resistant stainless steel having resistance heating property. It is made of a high-temperature heat-resistant stainless steel fiber sintered body having a web, which is sintered and heat-treated to form an alumina film on the surface of the sintered fiber, and the high-temperature heat-resistant stainless steel fiber sintered body carries a catalyst. It is configured to be. In order to achieve the second object, the present invention is manufactured by cutting an end face of a coil member having an exhaust gas introducing portion and an exhaust portion and a thin plate of high temperature heat resistant stainless steel having resistance heating property. High temperature heat resistant stainless steel fiber calcination with accumulated fibers formed into web and sintering and heat treatment to form alumina coating on the surface of the sintered fiber, and also to carry catalyst on it and attach electrode to free end. The structure is provided with a carbon-based fine particle processing filter formed of a bound body and an energization device for energizing the electrode to heat the carbon-based fine particle processing filter by itself when necessary. The carbon-based fine particle processing apparatus of the present invention includes a mode in which a unit having the configuration of the second aspect of the invention is used as one processing unit and a plurality of the units are arranged.

【0006】[0006]

【発明の実施の形態】以下本発明を添付図面に基いて説
明する。図1ないし図3は本発明による炭素系微粒子処
理用フィルタの実施例を示している。1は炭素系微粒子
処理用フィルタであり、高温耐熱性ステンレス鋼繊維焼
結体2と、これの自由端部に溶接などにより固着された
電極3とを備えている。前記高温耐熱性ステンレス鋼繊
維焼結体2は、図1(a)では帯板状をなしこれを所要の
間隔ごとに波状に屈曲した形状となっている。(b)では
周方向の一部が分離された円筒状をなしており、(c)で
は周方向の一部が分離した断面星形類似の筒状をなして
いる。もとよりこれら形状に限定されるものではなく、
平板状、閉鎖断面の筒状、カップ状、皿状など任意であ
る。電極3は自由端全体に設けられるかあるいは図1
(b)(c)のように自由端部に沿って固着される帯状部30
を有している。なお、目詰りの再生法として通電方式に
よらない場合には電極3は設けられなくてもよい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the accompanying drawings. 1 to 3 show an embodiment of a filter for treating carbon-based fine particles according to the present invention. Reference numeral 1 denotes a carbon-based fine particle treatment filter, which includes a high temperature heat resistant stainless steel fiber sintered body 2 and an electrode 3 fixed to a free end of the sintered body 2 by welding or the like. The high temperature heat resistant stainless steel fiber sintered body 2 is in the form of a strip plate in FIG. 1 (a) and is bent in a wave shape at required intervals. In (b), it has a cylindrical shape with a part separated in the circumferential direction, and in (c), it has a cylindrical shape with a star-shaped cross-section with a part separated in the circumferential direction. Of course, it is not limited to these shapes,
It may be a flat plate, a cylinder having a closed cross section, a cup, a plate, or the like. The electrode 3 may be provided over the entire free end or as shown in FIG.
(b) As shown in (c), the belt-like portion 30 fixed along the free end
have. Note that the electrode 3 may not be provided if the clogging regeneration method does not depend on the energization method.

【0007】前記高温耐熱性ステンレス鋼繊維焼結体2
は、通電により抵抗発熱する材質のもの、たとえばFe-C
r-Al-REM系のステンレス鋼を用いることが望ましい。具
体的には、重量比でCr:17〜21%、Al:2.5〜6.0%、RE
MとしてはLa,Y,Ceの一種または2種以上が用いられ、添
加量は0.02〜0.25%である。CrとAlが下限未満では後述
する耐熱のためのアルミナ皮膜厚さが不十分なものとな
り、上限を超える含有量では結晶構造が不安定になる。
また、REMはアルミナ皮膜の安定性に寄与し、これが下
限を下回る添加量では前記機能を発揮できず、上限を超
える添加量は経済性を損なうため不適当である。なお、
他の組成として、C:0.008%以下、Si:1.0%以下、Mn:1.0%
以下を含有していてもよい。
The high temperature heat resistant stainless steel fiber sintered body 2
Is a material that generates resistance heat when energized, such as Fe-C
It is desirable to use r-Al-REM stainless steel. Specifically, by weight ratio, Cr: 17-21%, Al: 2.5-6.0%, RE
As M, one or more of La, Y and Ce are used, and the addition amount is 0.02 to 0.25%. If Cr and Al are less than the lower limits, the alumina coating thickness for heat resistance, which will be described later, becomes insufficient, and if the contents exceed the upper limits, the crystal structure becomes unstable.
Further, REM contributes to the stability of the alumina coating, and if the amount added is less than the lower limit, the above-mentioned function cannot be exhibited, and the amount added more than the upper limit impairs economic efficiency, and is therefore unsuitable. In addition,
As other composition, C: 0.008% or less, Si: 1.0% or less, Mn: 1.0%
It may contain:

【0008】前記高温耐熱性ステンレス鋼繊維焼結体2
は、図2(a)のように高温耐熱性ステンレス鋼繊維2
0をランダムに配向して接触部を融着した多孔構造から
なり、焼結されている各高温耐熱性ステンレス鋼繊維2
0は、図2(b)のように軸方向と直角の断面が略四角
形状をなし、表面には均一な厚さの薄いアルミナ皮膜2
1が析出されている。このアルミナ皮膜21は図2
(c)のように高温耐熱性ステンレス鋼繊維20,20
の交差接触部分200ではこれを囲むように形成され、
交差接触部分200はメタルタッチとなっている。この
ように交差接触部分がメタルタッチであることにより高
温耐熱性ステンレス鋼繊維焼結体2は全体として均一な
抵抗発熱回路状態が構成されている。
The high temperature heat resistant stainless steel fiber sintered body 2
Is a high temperature heat resistant stainless steel fiber 2 as shown in FIG.
Each high-temperature heat-resistant stainless steel fiber 2 having a porous structure in which 0s are randomly oriented and the contact portions are fused and sintered.
As shown in FIG. 2 (b), 0 has a substantially quadrangular cross section perpendicular to the axial direction, and has a thin alumina film 2 of uniform thickness on the surface.
1 is deposited. This alumina film 21 is shown in FIG.
High temperature heat resistant stainless steel fibers 20, 20 as in (c)
It is formed so as to surround the intersection contact portion 200 of
The cross contact portion 200 has a metal touch. As described above, since the cross-contact portions are metal touch, the high temperature heat resistant stainless steel fiber sintered body 2 has a uniform resistance heating circuit state as a whole.

【0009】さらに、前記アルミナ皮膜21の表面には
触媒層4が設けられている。この触媒層4は触媒担体と
活性金属からなる。触媒担体としては、アルミナ,シリ
カ・アルミナ,ジルコニア・アルミナ,チタニア,モル
デナイト,ZSM-5などのゼオライト類から選ばれる少な
くとも1種が用いられる。その触媒担体の粒径としては
0.5μmから20μmが好ましく、1μmから10μmがさら
に好ましい。この理由は、触媒担体の粒径が0.5μm未
満では触媒担体の製造が困難となり、20μmを超える粒
径では高温耐熱性ステンレス鋼繊維焼結体2の細かい通
気孔22を閉塞する問題や触媒が剥離する問題が生じる
からである。担体に担持する活性金属としては、周期律
表第1族金属、2族金属、3b族金属、4b族金属、5
b族金属、6b族金属、7b族金属および8族金属から
選ばれる少なくとも1種が好ましく用いられる。第1族
金属としてLi、Na、K、Rb、Cs、Cu、2族金
属としてはMg、Ca、Ba、Zn、3b族金属として
はLa、Ce、4b族金属としてはZr、5b族金属と
してはV、6b族金属としてはMo、7b族金属として
はMn、8族金属としてはFe、Co、Ni、Pd、P
tが好ましい。活性金属の高温耐熱性ステンレス鋼繊維
焼結体への担持量は、高温耐熱性ステンレス鋼繊維焼結
体1g当たり0.1〜15mgが好ましく、1〜10mgがさら
には好ましい。この理由は、15mg超であると高温耐熱
性ステンレス鋼繊維焼結体の細径孔を閉塞させてしまう
からである。
Further, a catalyst layer 4 is provided on the surface of the alumina coating 21. The catalyst layer 4 is composed of a catalyst carrier and an active metal. As the catalyst carrier, at least one selected from zeolites such as alumina, silica / alumina, zirconia / alumina, titania, mordenite, and ZSM-5 is used. The particle size of the catalyst carrier is
The thickness is preferably 0.5 μm to 20 μm, more preferably 1 μm to 10 μm. The reason for this is that if the particle size of the catalyst carrier is less than 0.5 μm, it becomes difficult to manufacture the catalyst carrier, and if the particle size exceeds 20 μm, problems such as clogging of the fine ventilation holes 22 of the high temperature heat-resistant stainless steel fiber sintered body 2 and catalyst may occur. This is because the problem of peeling occurs. Examples of the active metal supported on the carrier include Group 1 metal, Group 2 metal, Group 3b metal, Group 4b metal, and Group 5 metal of the periodic table.
At least one selected from the group b metals, the group 6b metals, the group 7b metals and the group 8 metals is preferably used. Li, Na, K, Rb, Cs, Cu as a group 1 metal, Mg, Ca, Ba, Zn as a group 2 metal, La as a group 3b metal, Zr, 5b group metal as a group 4b metal Is V, Mo as a 6b group metal, Mn as a 7b group metal, Fe, Co, Ni, Pd, P as a 8 group metal.
t is preferred. The amount of the active metal loaded on the high temperature heat resistant stainless steel fiber sintered body is preferably 0.1 to 15 mg, and more preferably 1 to 10 mg per 1 g of the high temperature heat resistant stainless steel fiber sintered body. The reason for this is that if it exceeds 15 mg, the small diameter holes of the high temperature heat resistant stainless steel fiber sintered body will be blocked.

【0010】各高温耐熱性ステンレス鋼繊維20は、長
さが10〜300mm、軸方向と直角の断面の1辺の長さ(幅
tまたは厚さw)が5〜200μm、より好適には10〜100
μmが好ましい。長さが10mm未満では繊維同士の絡み合
いが少なくなり、300mmを超える長さでは不均一にかた
まってしまい均一な通気孔を形成しにくくなる。また、
断面の1辺が5μm未満では、炭素系微粒子中や排ガス
中の灰分が堆積して通気孔22の目詰まりを起こしやす
く、また機械的強度や耐熱性が低くなる不都合がある。
しかし、200μmを超える太さとした場合には、排ガス
中の炭素系微粒子がほどんど通過してしまい、フィルタ
としての基本機能が発揮されなくなるため不可である。
高温耐熱性ステンレス鋼繊維焼結体2は、上記高温耐熱
性ステンレス鋼繊維20を目付け重量で300〜5000g/m2
有している。これは、目付重量が300g/m2以下であると
気孔率が高すぎ、排ガス中の炭素系微粒子をほとんど処
理できずに通過させてしまい、5000g/m2以上にした場合
には、排ガス中の炭素系微粒子の処理能力はそれ以上変
化せず、かえって高温耐熱性ステンレス鋼繊維20を大
量に使用するので経済性が悪くなるからである。
Each high temperature heat resistant stainless steel fiber 20 has a length of 10 to 300 mm, and a length (width t or thickness w) of one side of a cross section perpendicular to the axial direction is 5 to 200 μm, and more preferably 10 ~ 100
μm is preferred. When the length is less than 10 mm, the entanglement of fibers is reduced, and when the length is more than 300 mm, the fibers are unevenly aggregated and it becomes difficult to form a uniform vent hole. Also,
If one side of the cross section is less than 5 μm, the ash content in the carbon-based fine particles or the exhaust gas is likely to be deposited and the ventilation holes 22 are easily clogged, and the mechanical strength and heat resistance are reduced.
However, when the thickness exceeds 200 μm, the carbon-based fine particles in the exhaust gas almost pass through and the basic function as a filter cannot be exhibited, which is not possible.
The high temperature heat resistant stainless steel fiber sintered body 2 has a weight per unit weight of the above high temperature heat resistant stainless steel fibers 300 to 5000 g / m 2
Have This is because if the basis weight is 300 g / m 2 or less, the porosity is too high, and the carbon-based fine particles in the exhaust gas can be hardly treated, and if it is 5000 g / m 2 or more, the This is because the treatment capacity of the carbon-based fine particles does not change any more, and since the high temperature heat resistant stainless steel fiber 20 is used in a large amount, the economical efficiency is deteriorated.

【0011】前記諸元の高温耐熱性ステンレス鋼繊維2
0は、原料としての高温耐熱性ステンレス鋼がフェライ
ト系であるため常温加工性が悪く、したがって、引抜き
法による細線化が困難であるため、従来では実際上存在
しなかった。また、溶融紡糸法でも高温耐熱性ステンレ
ス鋼の繊維化が困難であり、ワイヤー切削法では繊維形
状が特定できなく、歩止まりも悪い問題があり、びびり
振動切削法も短繊維しか製造できない問題がある。そこ
で本発明はこれを解消すべく、コイル材切削法にて高温
耐熱性ステンレス鋼繊維20を得るのである。すなわ
ち、図3のように、板厚がたとえば5〜150μmの高
温耐熱性ステンレス鋼の薄板(箔)11を旋削主軸12
にタイトにコイル状に巻回し、このコイル材11の端面
110を旋削主軸12と平行な送りを与えた工具13に
より所定の切り込みで切削することにより製造するので
ある。これにより三次元的に適度にカールした高温耐熱
性ステンレス長繊維束20”が工具すくい面に沿って後
方に流出し、とぎれなく連続的に創成される。そして前
記繊維束を幅方向に展張し、10mm〜300mmの長さに切断
することで高温耐熱性ステンレス鋼繊維20’とされ
る。図4(a)(b)は上記方法で得られた1本の高温耐熱性
ステンレス鋼繊維20’を示しており、断面は四角形状
をなし、一辺201はしわ状の粗面となっている。上記
コイル材端面切削法によれば、高温耐熱性ステンレス鋼
繊維20’は、一辺(繊維幅W)が板厚に一致し、一辺
(繊維厚さt)が工具送り量sによって決定される。し
たがって、高温耐熱性ステンレス鋼薄板11の厚さと切
込み(工具送り量)を調整することで様々な寸法の繊維
を製造することができる。上記繊維製造条件としては、
工具すくい角:15〜45°とし、切削速度:30〜95m/min、
送り量s:5〜40μm/minなどから採用すればよい。
High temperature heat resistant stainless steel fiber 2 having the above specifications
In the case of No. 0, the high temperature heat resistant stainless steel as a raw material is ferritic and thus the room temperature workability is poor. Therefore, since it is difficult to thin the wire by the drawing method, it has not practically existed in the past. Further, even in the melt spinning method, it is difficult to fiberize the high temperature heat resistant stainless steel, the fiber shape cannot be specified by the wire cutting method, the yield is bad, and the chatter vibration cutting method has a problem that only short fibers can be produced. is there. Therefore, in order to solve this, the present invention obtains the high temperature heat resistant stainless steel fiber 20 by the coil material cutting method. That is, as shown in FIG. 3, a thin plate (foil) 11 of high temperature heat-resistant stainless steel having a plate thickness of 5 to 150 μm, for example, is used as a turning spindle 12
It is manufactured by tightly winding it into a coil and cutting the end surface 110 of the coil material 11 with a predetermined cut by a tool 13 which is fed in parallel with the turning spindle 12. As a result, the three-dimensionally appropriately curled high temperature heat resistant stainless steel long fiber bundle 20 ″ flows backward along the tool rake face and is continuously created without interruption. Then, the fiber bundle is stretched in the width direction. , A high temperature heat resistant stainless steel fiber 20 'is obtained by cutting it into a length of 10 mm to 300 mm.Figs. 4 (a) and 4 (b) show one high temperature heat resistant stainless steel fiber 20' obtained by the above method. The cross-section has a quadrangular shape, and one side 201 is a wrinkled rough surface.According to the above-mentioned coil material end face cutting method, the high temperature heat resistant stainless steel fiber 20 'has one side (fiber width W ) Corresponds to the plate thickness, and one side (fiber thickness t) is determined by the tool feed amount s. Therefore, various values can be obtained by adjusting the thickness and the cut (tool feed amount) of the high temperature heat resistant stainless steel thin plate 11. Fibers of any size can be produced. As a condition,
Tool rake angle: 15 to 45 °, cutting speed: 30 to 95 m / min,
The feed rate s: 5 to 40 μm / min may be adopted.

【0012】本発明による高温耐熱性ステンレス鋼繊維
焼結体2は、前記高温耐熱性ステンレス鋼繊維20を原
料として、一般的に、ウエブ化-焼結-成形-熱処理-触媒
担持の工程で製造される。すなわち、まず、前記高温耐
熱性ステンレス鋼繊維20’を目付け重量300g/m2〜500
0g/m2に集積し、所望形状たとえば板状のウェブに成形
する。次に、前記ウェブを真空または非酸化性雰囲気中
で800〜1250℃の範囲で10分〜10時間加熱して焼結
する。この焼結時に荷重をかけることも好適である。こ
うして得られた焼結体から必要寸法のフィルタを切り出
す。フィルタ形状が図1のようなものである場合には、
この時点で曲げ加工などを施す。しかし、場合によって
は、ウェブ成形時に図1に例示するようなフィルタ形状
にしてもよい。その後、空気などの酸化性雰囲気中にて
600〜1100℃で1〜20時間の条件で熱処理する。この
熱処理は焼結体の抵抗発熱性を利用して通電加熱によっ
て行うこともできる。この熱処理により図2(b)(c)に示
すようなアルミナ被膜21が焼結繊維表面に析出され
る。熱処理温度が600℃以下ではアルミナ被膜21が十
分に析出せず、1100℃を超える高温では異常酸化により
アルミナが剥離、飛散してしまう問題がある。上記温度
範囲では、700℃以下では2(Fe,Cr,Al)+4.5O2→Fe2O3
+Cr2O3+Al2O3の反応により、また、700℃以上では、
Fe2O3+2Al→Al2O3+2Feの反応により各々耐久性被膜が生
成される。しかも、組成としてREMが添加されているた
め、高温でのアルミナ皮膜の安定性が向上させられ、し
たがって、900℃以下の使用温度で良好な機械的特性
を示す。そして、この熱処理の後、高温耐熱性ステンレ
ス鋼繊維焼結体2に触媒を担持させる。触媒の担持方法
としては、通常の方法が用いられるが、たとえば活性金
属を触媒担体に含浸させて調製したスラリーをウォッシ
ュコートする方法や、活性金属を触媒担体に沈着させて
調製したスラリーをウォッシュコートする方法、あるい
は触媒担体をウォッシュコートした後に活性金属を含浸
する方法などがあげられる。
The high temperature heat resistant stainless steel fiber sintered body 2 according to the present invention is generally manufactured from the high temperature heat resistant stainless steel fiber 20 as a raw material in the steps of web-sintering-molding-heat treatment-catalyst loading. To be done. That is, first, the high temperature heat resistant stainless steel fiber 20 'is weighted to 300 g / m 2 to 500.
It is accumulated at 0 g / m 2 and formed into a desired shape, for example, a plate-shaped web. Next, the web is sintered by heating in a vacuum or non-oxidizing atmosphere in the range of 800 to 1250 ° C. for 10 minutes to 10 hours. It is also preferable to apply a load during this sintering. A filter having a required size is cut out from the thus obtained sintered body. If the filter shape looks like Figure 1,
At this point, bending processing is performed. However, in some cases, a filter shape as illustrated in FIG. After that, in an oxidizing atmosphere such as air
Heat treatment is performed at 600 to 1100 ° C. for 1 to 20 hours. This heat treatment can also be performed by electric heating by utilizing the resistance heating property of the sintered body. By this heat treatment, an alumina coating 21 as shown in FIGS. 2B and 2C is deposited on the surface of the sintered fiber. When the heat treatment temperature is 600 ° C. or lower, the alumina coating 21 is not sufficiently deposited, and at a high temperature exceeding 1100 ° C., there is a problem that alumina is peeled off and scattered due to abnormal oxidation. In the above temperature range, 2 (Fe, Cr, Al) + 4.5O 2 → Fe 2 O 3 at 700 ° C or lower
By the reaction of + Cr 2 O 3 + Al 2 O 3 , and above 700 ° C,
A durable coating is formed by the reaction of Fe 2 O 3 + 2Al → Al 2 O 3 + 2Fe. Moreover, since REM is added as a composition, the stability of the alumina coating at high temperature is improved, and therefore, good mechanical properties are exhibited at a use temperature of 900 ° C. or lower. After this heat treatment, the catalyst is supported on the high temperature heat resistant stainless steel fiber sintered body 2. As a method for supporting the catalyst, an ordinary method is used, for example, a method of wash-coating a slurry prepared by impregnating an active metal into a catalyst carrier or a slurry prepared by depositing an active metal on a catalyst carrier. Or a method of impregnating with an active metal after washcoating the catalyst carrier.

【0013】本発明の炭素系微粒子処理用フィルタ1
は、高温耐熱性ステンレス鋼のコイル材11を端面切削
することによって低コストで製造される繊維を基材とし
ているため、均一な形状寸法と高温耐熱性がありながら
これを低コストで製造できという特徴を有している。ま
た、高温耐熱性ステンレス鋼繊維20’を集積してウェ
ブにして焼結するだけでなく、焼結後に熱処理して繊維
表面にアルミナ被膜21を生成させているので、高温耐
久性、耐酸化性、機械強度が高い。さらにアルミナ被膜
21の外側に触媒層4を有しており、アルミナ被膜21
が触媒担体に対し親和性があるため、触媒層4の密着性
を良好なものにすることができる。そしてこの触媒によ
り炭素系微粒子の燃焼を促進することができる。また、
製造される繊維の径や集積してウェブにする際の集積す
る量や触媒の担持量を自由に変化させることで細孔径を
調整できるため、排ガス中の炭素系微粒子の処理率を任
意に変えることができるとともに、炭素系微粒子中や排
ガス中の灰分を堆積しないようにすることができる。さ
らに、高温耐熱性ステンレス鋼繊維20は寸法形状が揃
っている上に表面積が大きく、かつ断面が四角形状であ
るため、排ガス中の炭素系微粒子を各辺のエッジで確実
に捕捉することができる。
The carbon-based particulate treatment filter 1 of the present invention
Uses a fiber that is manufactured at low cost by cutting the end surface of the coil material 11 of high temperature heat resistant stainless steel as a base material, so that it can be manufactured at low cost while having uniform shape dimensions and high temperature heat resistance. It has features. Further, not only the high temperature heat resistant stainless steel fibers 20 'are collected and web-sintered, but also the heat treatment is performed after the sintering to form the alumina coating 21 on the fiber surface, so high temperature durability and oxidation resistance are obtained. , High mechanical strength. Further, the catalyst layer 4 is provided outside the alumina coating 21.
Has an affinity for the catalyst carrier, so that the adhesion of the catalyst layer 4 can be improved. The catalyst can accelerate the combustion of the carbon-based fine particles. Also,
Since the pore size can be adjusted by freely changing the diameter of the fibers to be produced, the amount of the accumulated fibers in the web and the amount of the catalyst supported, the treatment rate of the carbon-based fine particles in the exhaust gas can be arbitrarily changed. In addition, it is possible to prevent the ash content in the carbon-based fine particles and the exhaust gas from being deposited. Further, since the high temperature heat resistant stainless steel fiber 20 has a uniform dimensional shape, a large surface area, and a rectangular cross section, the carbon-based fine particles in the exhaust gas can be reliably captured at the edges of each side. .

【0014】次に本発明による排ガス中の炭素系微粒子
処理装置の実施態様を説明する。本発明による炭素系微
粒子処理装置は、図5ないし図7に例示するような炭素
系微粒子処理ユニット(以下単に処理ユニットと称す)5
の少なくとも1つから構成される。図8は処理ユニット
5を複数用いた炭素系微粒子処理装置を例示しており、
(a)は排ガス流路に複数の処理ユニット5を並列に接続
し、処理ユニット5の上流と下流に切換弁8を設けて排
ガスを選択的に処理ユニット5に送って処理するように
したものである。(b)は排ガス流路に複数の処理ユニッ
ト5を直列に接続し、排ガスを多段処理するようにした
ものである。図5は図1(a)に示す炭素系微粒子処理
用フィルタ1を使用した例を示している。50はステン
レス鋼などの耐熱性材料からなる器体であり、長手方向
一端にはガス導入部500が、他端には排出部501を
有している。器体50には電気絶縁性と断熱性を有する
内張り9が施されており、炭素系微粒子処理用フィルタ
1は自由端の電極3,3が器体50から突出するように
ガス導入部500と排出部501間の排ガス通路502
に配置されている。実際上は器体は電極3,3を取り付
けるため上下2分割されているが、図面では簡略化して
いる。Eは前記炭素系微粒子処理用フィルタ1を自己発
熱させるための通電装置であり、電源6とコントローラ
7とを備えている。電源6から給電線60,60が前記
電極3,3に接続され、電源6にはコントローラ7が電
気的に接続される。このコントローラ7は所定の時間ご
とに電源6を作動させるタイマでもよいが、この実施例
ではマイクロコンピュータが用いられ、ガス導入部50
0と排出部501の排ガス圧力検出器70,71の出力
側を接続することにより、導入排ガスの圧力P1と排出
ガスの圧力P2の差圧P3を検出し、その差圧P3が設定
値に達したときに電源6を作動させ、あるいはさらに通
電量を自動制御するようにしている。
Next, an embodiment of the apparatus for treating carbon-based fine particles in exhaust gas according to the present invention will be described. The carbon-based fine particle processing apparatus according to the present invention is a carbon-based fine particle processing unit (hereinafter simply referred to as a processing unit) 5 as illustrated in FIGS.
Of at least one of FIG. 8 illustrates a carbon-based fine particle processing apparatus using a plurality of processing units 5,
(a) is a structure in which a plurality of processing units 5 are connected in parallel to an exhaust gas flow path, and a switching valve 8 is provided upstream and downstream of the processing unit 5 so that exhaust gas is selectively sent to the processing unit 5 for processing. Is. (b) is a system in which a plurality of processing units 5 are connected in series to the exhaust gas flow path to process the exhaust gas in multiple stages. FIG. 5 shows an example in which the carbon-based particulate treatment filter 1 shown in FIG. Reference numeral 50 is a container made of a heat resistant material such as stainless steel, and has a gas introduction portion 500 at one longitudinal end and a discharge portion 501 at the other longitudinal end. The container body 50 is provided with an inner lining 9 having electrical insulation and heat insulation properties, and the carbon-based particulate treatment filter 1 is provided with a gas introduction portion 500 so that the electrodes 3 at the free ends protrude from the container body 50. Exhaust gas passage 502 between the discharge parts 501
Are located in In practice, the body is divided into upper and lower parts for attaching the electrodes 3 and 3, but it is simplified in the drawing. E is an energizing device for causing the carbon-based particulate treatment filter 1 to self-heat, and includes a power source 6 and a controller 7. Power supply lines 60, 60 from the power supply 6 are connected to the electrodes 3, 3 and a controller 7 is electrically connected to the power supply 6. The controller 7 may be a timer that activates the power supply 6 at predetermined time intervals, but in this embodiment, a microcomputer is used and the gas introduction unit 50 is used.
By connecting 0 and the output side of the exhaust gas pressure detectors 70 and 71 of the exhaust unit 501, the differential pressure P 3 between the introduced exhaust gas pressure P 1 and the exhaust gas pressure P 2 is detected, and the differential pressure P 3 is When the set value is reached, the power supply 6 is operated, or the energization amount is automatically controlled.

【0015】図6は図1(c)に示す炭素系微粒子処理
用フィルタ1を使用した例を示し、図7は図1(b)に
示す炭素系微粒子処理用フィルタ1を使用した例を示し
ている。これらの例においては、排ガスGを側方に流通
して炭素系微粒子を捕集するため炭素系微粒子処理用フ
ィルタ1の下端外径側が閉止される一方、上端には耐熱
電気絶縁性の蓋部材10が固着されている。その他の構
成は前記図5と同様であるから、説明は省略する。本発
明における炭素系微粒子処理用フィルタ1は形状を自由
に設定できるため、処理ユニット単位体積当たりの炭素
系微粒子処理用フィルタ1の表面積を任意に変化させる
ことができる。そのため、図8のように排ガス流路に前
記処理ユニット5を複数連結した排ガス処理装置におい
ても、ディーゼル内燃機関や燃焼装置に高い背圧をかけ
たり、燃焼状態が悪化するのを防ぐことができる。この
ように排ガス中の炭素系微粒子処理装置が複数の処理ユ
ニット5,5から構成される場合には、各処理ユニット
5,5に対する通電タイミングを処理ユニット毎にずら
してもよく、これにより一度に過大な電力を使わないよ
うにすることができる。なお、本発明における処理ユニ
ット5への炭素系微粒子処理用フィルタ1の設置方法は
前記した例に限られず、たとえば器体50中に多段に設
置するなど任意である。
FIG. 6 shows an example in which the carbon-based fine particle processing filter 1 shown in FIG. 1 (c) is used, and FIG. 7 shows an example in which the carbon-based fine particle processing filter 1 shown in FIG. 1 (b) is used. ing. In these examples, since the exhaust gas G flows laterally to collect the carbon-based particles, the outer diameter side of the lower end of the carbon-based particle treatment filter 1 is closed, while the upper end has a heat-resistant and electrically-insulating lid member. 10 is fixed. The other structure is the same as that of FIG. 5, and the description thereof will be omitted. Since the shape of the carbon-based fine particle processing filter 1 in the present invention can be freely set, the surface area of the carbon-based fine particle processing filter 1 per unit volume of the processing unit can be arbitrarily changed. Therefore, even in the exhaust gas processing apparatus in which a plurality of the processing units 5 are connected to the exhaust gas passage as shown in FIG. 8, it is possible to prevent a high back pressure from being applied to the diesel internal combustion engine or the combustion apparatus, or to prevent the combustion state from deteriorating. . When the apparatus for treating carbon-based fine particles in exhaust gas is composed of a plurality of processing units 5 and 5 as described above, the energization timing for each of the processing units 5 and 5 may be shifted for each processing unit. You can avoid using too much power. The method of installing the carbon-based fine particle processing filter 1 in the processing unit 5 according to the present invention is not limited to the above-described example, and may be arbitrary, for example, installed in multiple stages in the container 50.

【0016】次に本発明の排ガス中の炭素系微粒子処理
装置の作用を説明する。ディーゼル内燃機関や燃焼装置
から排出され炭素系微粒子cを含む高温の排ガスGは排
ガス導入部500から排ガス通路502を通り、図5な
いし図7の矢印のように炭素系微粒子処理用フィルタ1
を通過し、その間に炭素系微粒子cが捕集され、浄化さ
れた排ガスは排出部501から排出される。本発明の排
ガス処理用触媒フィルタ1は高温耐熱性ステンレス鋼繊
維を焼結した多孔性の高温耐熱性ステンレス鋼繊維焼結
体2によって構成されており、しかも高温耐熱性ステン
レス鋼繊維20の母地表面が安定したアルミナ皮膜21
でコーティングされている。したがって、酸化性雰囲気
においても機械的強度が高いとともにすぐれた耐熱性を
発揮する。また、高温耐熱性ステンレス鋼繊維20は前
記製造法の特徴から表面積が大きく、かつ断面形状が四
角であるためそのエッジに炭素系微粒子cが引掛かりや
すく、確実に炭素系微粒子cを捕集することができる。
Next, the operation of the apparatus for treating carbon-based fine particles in exhaust gas according to the present invention will be described. The high-temperature exhaust gas G discharged from the diesel internal combustion engine or the combustion device and containing the carbon-based fine particles c passes from the exhaust-gas introduction portion 500 through the exhaust-gas passage 502, and the carbon-based fine-particle treatment filter 1 as shown by the arrows in FIGS.
The carbon-based fine particles c are collected during this period, and the purified exhaust gas is discharged from the discharge part 501. The exhaust gas treating catalyst filter 1 of the present invention is composed of a porous high temperature heat resistant stainless steel fiber sintered body 2 obtained by sintering high temperature heat resistant stainless steel fiber, and further, a base material of the high temperature heat resistant stainless steel fiber 20. Alumina film 21 with stable surface
Is coated with. Therefore, it exhibits high mechanical strength and excellent heat resistance even in an oxidizing atmosphere. Further, the high temperature heat resistant stainless steel fiber 20 has a large surface area and has a square cross-section due to the characteristics of the above-mentioned manufacturing method. be able to.

【0017】しかも、アルミナ皮膜21の上に活性金属
を含む触媒層4を有している。このため、炭素系微粒子
処理用フィルタ1が炭素系微粒子cを燃焼できる温度よ
りも排ガスGの温度が高い場合には、排ガス中の炭素系
微粒子cは常に炭素系微粒子処理用フィルタ1上で確実
に燃焼処理される。排ガスGの温度が炭素系微粒子処理
用フィルタ1が炭素系微粒子cを燃焼できる温度より低
い場合には、徐々に炭素系微粒子cが炭素系微粒子処理
用フィルタ1に捕集され、高温耐熱性ステンレス鋼繊維
焼結体2の通気孔22を埋めるように堆積していく。こ
れが図9(a)の状態であり、これにより通気抵抗が増
して炭素系微粒子処理用フィルタ1の前後の差圧が上昇
し、ディーゼル内燃機関や燃焼装置の燃焼状態が悪くな
る。したがって、炭素系微粒子処理用フィルタ1に捕集
した炭素系微粒子cを処理し、炭素系微粒子処理用フィ
ルタ1を再生しなければならない。炭素系微粒子処理用
フィルタ1の再生は、前述のようにフィルタに付着して
いる炭素系微粒子を電気ヒータやバーナにより着火させ
て伝播燃焼させる方法や、排ガス流れと逆方向から圧縮
空気を送り、炭素系微粒子を払い落とす方法などを用い
ることができるが、いずれも煩雑であるうえに確実性に
乏しかったり、処理に時間がかかる。
Moreover, the catalyst layer 4 containing an active metal is provided on the alumina film 21. Therefore, when the temperature of the exhaust gas G is higher than the temperature at which the carbon-based fine particle processing filter 1 can burn the carbon-based fine particle c, the carbon-based fine particle c in the exhaust gas is always ensured on the carbon-based fine particle processing filter 1. Burned to. When the temperature of the exhaust gas G is lower than the temperature at which the carbon-based fine particle processing filter 1 can burn the carbon-based fine particle c, the carbon-based fine particle c is gradually collected by the carbon-based fine particle processing filter 1 and the high temperature heat resistant stainless steel is obtained. The steel fiber sintered body 2 is deposited so as to fill the ventilation holes 22. This is the state of FIG. 9A, which increases the ventilation resistance and increases the differential pressure across the carbon-based particulate treatment filter 1, which deteriorates the combustion state of the diesel internal combustion engine or the combustion device. Therefore, it is necessary to treat the carbon-based fine particles c collected in the carbon-based fine-particle treatment filter 1 to regenerate the carbon-based fine-particle treatment filter 1. The regeneration of the filter 1 for treating carbon-based fine particles is performed by igniting the carbon-based fine particles adhering to the filter by an electric heater or a burner as described above to propagate combustion, or by sending compressed air from the direction opposite to the exhaust gas flow, A method of removing the carbonaceous fine particles can be used, but all of them are complicated and lack in certainty, and the processing takes time.

【0018】しかし、本発明においては高温耐熱性ステ
ンレス鋼繊維焼結体2が良好な熱伝導率を有することに
加えて通電による抵抗発熱性を有している。しかも高温
耐熱性ステンレス鋼繊維20は繊維交差部200が母地
同士接合しているから、高温耐熱性ステンレス鋼繊維焼
結体2は全体で均一な抵抗発熱性を有している。そこ
で、上記のように差圧が高くなったときに通電装置Eの
電源6から電極3,3を通して炭素系微粒子処理用フィ
ルタ1に電気を流せば、図9(b)のように炭素系微粒
子処理用フィルタ1自体がジュール熱により全体が均一
に発熱し、その熱により高温耐熱性ステンレス鋼繊維2
0の目に捕集されている炭素系微粒子cが確実に着火さ
れ、燃焼除去させられる。これにより炭素系微粒子処理
用フィルタ1の前後の差圧は初期の状態に戻る。この場
合、高温耐熱性ステンレス鋼繊維20には触媒が担持さ
れていることから炭素系微粒子cの燃焼が促進され、通
電電力量を低下することができる。このように、炭素系
微粒子処理用フィルタ1へ通電し、それ自体の発熱によ
り再生を行うため炭素系微粒子の燃え残りは生じず、か
つ高温耐熱性ステンレス鋼繊維20は上記したように表
面のアルミナ皮膜21によりすぐれた耐熱性があるため
炭素系微粒子処理用フィルタ1の破損や溶融が起こらな
い。前記再生操作は、コントローラ7がタイマである場
合には、あらかじめ実験などで測定した結果に基いて設
定した時間間隔で自動的に電源6が作動することによっ
て行われ、また、差圧検出系を有している場合には、排
ガス圧力検出器70,71からの信号から差圧を求め、
それがある設定した差圧Psになったときに自動的に電
源6が作動することによって行われる。
However, in the present invention, the high temperature heat resistant stainless steel fiber sintered body 2 has not only good thermal conductivity but also resistance heat generation due to energization. Moreover, since the fiber crossing portions 200 of the high-temperature heat-resistant stainless steel fibers 20 are bonded to each other, the high-temperature heat-resistant stainless steel fiber sintered body 2 has a uniform resistance heating property as a whole. Therefore, when electric power is applied from the power source 6 of the energizing device E to the carbon-based particulate treatment filter 1 through the electrodes 3 and 3 when the differential pressure becomes high as described above, the carbon-based particulates are discharged as shown in FIG. 9B. The processing filter 1 itself itself uniformly generates heat due to Joule heat, and due to the heat, high temperature heat resistant stainless steel fiber 2
The carbon-based fine particles c collected in the 0th eye are ignited without fail and burned and removed. As a result, the differential pressure before and after the carbon-based particulate treatment filter 1 returns to the initial state. In this case, since the catalyst is supported on the high temperature heat resistant stainless steel fiber 20, the combustion of the carbon-based fine particles c is promoted, and the amount of electric power supplied can be reduced. As described above, since the carbon-based fine particle treatment filter 1 is energized and is regenerated by the heat generated by itself, no unburned residue of the carbon-based fine particles is generated, and the high temperature heat resistant stainless steel fiber 20 has the alumina on the surface as described above. Since the coating 21 has excellent heat resistance, the carbon-based particulate treatment filter 1 is not damaged or melted. When the controller 7 is a timer, the regeneration operation is performed by automatically operating the power source 6 at a time interval set based on a result measured in advance by an experiment or the like. If it has, the differential pressure is obtained from the signals from the exhaust gas pressure detectors 70, 71,
This is performed by automatically operating the power source 6 when the set differential pressure Ps is reached.

【0019】[0019]

〔具体例1〕[Specific example 1]

1)C:0.004%、Si:0.14%、Mn:0.13%、Cr:20.02%、Al:4.
9%、La:0.08%残部鉄及び不可避的不純物からなる厚さ20
μmのFe-Cr-Al-REM系ステンレス薄板を主軸にコイル状
に巻き、回転させながら工具の送り量を10μm/minで切
削して、断面が30μm×15μmのFe-Cr-Al-REM系ステン
レス長繊維を製作した。その長繊維を長さ150mmに切断
した後、2000g/m2になるように集積してウェブを作っ
た。このウェブを非酸化性雰囲気で1120℃、2時間で40g
/m2の荷重をかけて焼成した。その後、空気雰囲気で100
0℃で6時間熱処理し、形状が長方形で寸法が500×900
×0.8mmの炭素系微粒子処理用フィルタ素体を得た。粒
径1μmのアルミナ粒子に硫酸銅を含浸させた後、粉
砕、乾燥し、500℃で焼成した後に水と混合し、ボール
ミルで粉砕して5%のスラリーを調製した。このスラリ
ーを炭素系微粒子処理用フィルタ素体にウォッシュコー
トして110℃で乾燥した後、500℃で焼成する操作を炭素
系微粒子処理用フィルタ素体1g当たり3mgの銅が担
持されるまで繰り返し、実施例1の炭素系微粒子処理用
フィルタを得た。 2)また、前記炭素系微粒子処理用フィルタ素体を用
い、触媒として粒径1μmのアルミナ粒子に塩化白金酸
を含浸させた後、粉砕、乾燥し、500℃で焼成した後に
水と混合し、ボールミルで粉砕して5%のスラリーを調
製した。このスラリーを炭素系微粒子処理用フィルタ素
体にウォッシュコートして110℃で乾燥した後、500℃で
焼成する操作を炭素系微粒子処理用フィルタ素体1g当
たり3mgの白金が担持されるまで繰り返し、実施例2
の炭素系微粒子処理用フィルタを得た。
1) C: 0.004%, Si: 0.14%, Mn: 0.13%, Cr: 20.02%, Al: 4.
9%, La: 0.08% Thickness consisting of balance iron and unavoidable impurities 20
Fem-Cr-Al-REM series of Fe-Cr-Al-REM series with a thickness of 30 µm x 15 µm is obtained by winding a thin plate of Fe-Cr-Al-REM series stainless steel around the main shaft in a coil shape and cutting at a tool feed rate of 10 µm / min while rotating. We made stainless long fibers. The long fibers were cut into a length of 150 mm and then accumulated to 2000 g / m 2 to form a web. 40g of this web in a non-oxidizing atmosphere at 1120 ℃ for 2 hours
Firing was performed by applying a load of / m 2 . Then 100 in air atmosphere
Heat treated at 0 ℃ for 6 hours, rectangular shape with dimensions of 500 × 900
A filter element for carbon-based particulate treatment having a size of 0.8 mm was obtained. Alumina particles having a particle size of 1 μm were impregnated with copper sulfate, pulverized, dried, calcined at 500 ° C., mixed with water, and pulverized with a ball mill to prepare a 5% slurry. This slurry was wash-coated on a carbon-based fine particle treatment filter element, dried at 110 ° C., and then fired at 500 ° C. until 3 mg of copper was carried per 1 g of the carbon-based fine particle treatment filter element, A carbon-based fine particle treatment filter of Example 1 was obtained. 2) Further, using the above-mentioned carbon-based fine particle treatment filter element, alumina particles having a particle size of 1 μm were impregnated with chloroplatinic acid as a catalyst, then pulverized, dried, baked at 500 ° C., and then mixed with water, A 5% slurry was prepared by grinding with a ball mill. This slurry was wash-coated on the carbon-based fine particle treatment filter element, dried at 110 ° C., and then fired at 500 ° C. until 3 mg of platinum was carried per 1 g of the carbon-based fine particle treatment filter element, Example 2
A carbon-based fine particle treatment filter was obtained.

【0020】4)得られたフィルタの性能を試験するた
め、実施例1および実施例2のフィルタを直噴式ディー
ゼルエンジンの排ガス配管の途中に取り付け、それぞれ
のフィルタの差圧が水柱で200mmになるまで、排ガス中
の炭素系微粒子を捕集させた。この結果を表1に示す。
また、それぞれのフィルタに10%酸素と90%窒素を混合
したガスを20℃/minの速度で昇温させながら通過さ
せ、フィルタの温度とフィルタの差圧からフィルタに捕
集した炭素系微粒子の着火温度と燃え切り温度を測定し
た。その結果を表2に示す。
4) In order to test the performance of the obtained filters, the filters of Example 1 and Example 2 were attached in the middle of the exhaust gas pipe of a direct injection diesel engine, and the differential pressure of each filter was 200 mm in the water column. Up to this point, the carbon-based fine particles in the exhaust gas were collected. Table 1 shows the results.
In addition, a gas mixed with 10% oxygen and 90% nitrogen was passed through each filter while increasing the temperature at a rate of 20 ° C / min, and the carbon-based fine particles collected in the filter were detected based on the temperature of the filter and the differential pressure of the filter. The ignition temperature and burnout temperature were measured. The results are shown in Table 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1から本発明は捕集効率が高いことがわ
かる。また、表2から実施例1及び実施例2の炭素系微
粒子処理用フィルタが着火温度、燃え切り温度ともに低
いことがわかる。
From Table 1, it can be seen that the present invention has high collection efficiency. Further, it can be seen from Table 2 that the carbon-based particulate treatment filters of Example 1 and Example 2 have low ignition temperatures and burnout temperatures.

【0024】〔具体例2〕 1)具体例1の方法によって厚さ0.8mm、幅25mm、長さ9
00mmの平面帯状の焼結体を作り、これを波付け加工した
後、前記条件で熱処理し、さらに実施例1,2のように
触媒を担持させて図5(a)のような形状の炭素系微粒子
処理用フィルタ本体を製作し、これの両端に銅製の電極
を取り付けて炭素系微粒子処理用フィルタを得た。この
炭素系微粒子処理用フィルタをステンレス製の容器に絶
縁材及び断熱材を介して配置し、電極には制御回路と電
源からなる通電装置を取り付けて炭素系微粒子処理装置
を作り、制御回路には排ガス入口と出口の差圧を計測す
る差圧計を接続した。
[Specific Example 2] 1) According to the method of Specific Example 1, the thickness is 0.8 mm, the width is 25 mm, and the length is 9 mm.
A 00 mm flat band-shaped sintered body was prepared, which was corrugated and then heat-treated under the above-mentioned conditions. Further, as in Examples 1 and 2, a catalyst was supported to form a carbon having a shape as shown in FIG. 5 (a). A filter-based fine particle processing filter body was manufactured, and electrodes made of copper were attached to both ends of the main body to obtain a carbon-based fine particle processing filter. This carbon-based particle treatment filter is placed in a stainless steel container through an insulating material and a heat insulating material, and a current-carrying device consisting of a control circuit and a power source is attached to the electrodes to make a carbon-based particle treatment apparatus. A differential pressure gauge for measuring the differential pressure between the exhaust gas inlet and the outlet was connected.

【0025】2)上記のように作製した炭素系微粒子処
理装置を直噴式ディーゼルエンジンの排ガス配管の途中
に取り付け、排ガスを処理する試験を行った。実施例1
のフィルタを設けた炭素系微粒子処理装置を用いて、排
ガス温度が550℃以上の場合に行った試験の結果を図1
0に示す。図10に示したように、炭素系微粒子処理装
置の装置差圧は上昇せず、初期差圧で一定であった。こ
のときの炭素系微粒子の処理率は70〜80%であっ
た。
2) The carbon-based fine particle treatment apparatus produced as described above was attached to the middle of the exhaust gas pipe of a direct injection diesel engine, and a test for treating exhaust gas was conducted. Example 1
Fig. 1 shows the results of tests conducted when the exhaust gas temperature was 550 ° C or higher using the carbon-based fine particle treatment apparatus equipped with the filter
0 is shown. As shown in FIG. 10, the device pressure difference of the carbon-based particulate treatment device did not rise and was constant at the initial pressure difference. The treatment rate of the carbon-based fine particles at this time was 70 to 80%.

【0026】3)排ガス温度が350℃のときに、実施例
1のフィルタを設けた炭素系微粒子処理装置を用いて行
った試験の結果を図11に示す。図11に示したよう
に、炭素系微粒子処理用フィルタが排ガス中の炭素系微
粒子を捕集するにつれて、炭素系微粒子処理装置の装置
差圧は次第に上昇し、装置差圧が設定差圧に達したとき
に、制御回路から電極を通じて炭素系微粒子処理用フィ
ルタへ100Aの電流を印加したところ、炭素系微粒子処
理装置の装置差圧は初期の差圧近くまで減少した。この
操作を1000回繰り返し行ったが、同様の差圧の変化を示
した。このとき、炭素系微粒子の処理率は70〜80%であ
った。また、炭素系微粒子処理用フィルタは溶融や破損
などが何ら生じなかった。なお、同じ排ガス温度のとき
に比較例1のフィルタを設けた炭素系微粒子処理装置で
試験を行った場合には、炭素系微粒子処理装置の差圧を
初期差圧に戻すのに必要な電力量が実施例1のフィルタ
を設けた炭素系微粒子処理装置よりも多く必要であっ
た。このことから本発明は炭素系微粒子を含む排ガス処
理能力が高く、耐久性も良好であるこことがわかる。
3) FIG. 11 shows the results of a test conducted using the carbon-based fine particle treatment apparatus provided with the filter of Example 1 when the exhaust gas temperature was 350 ° C. As shown in FIG. 11, as the carbon-based particulate treatment filter collects the carbon-based particulates in the exhaust gas, the apparatus differential pressure of the carbon-based particulate processing apparatus gradually rises, and the apparatus differential pressure reaches the set differential pressure. At that time, when a current of 100 A was applied from the control circuit to the carbon-based fine particle processing filter through the electrodes, the apparatus differential pressure of the carbon-based fine particle processing apparatus decreased to near the initial differential pressure. This operation was repeated 1000 times, but the same change in differential pressure was observed. At this time, the treatment rate of the carbon-based fine particles was 70 to 80%. Further, the carbon-based particulate treatment filter did not melt or break. When the test was conducted with the carbon-based fine particle processing apparatus provided with the filter of Comparative Example 1 at the same exhaust gas temperature, the amount of electric power required to return the differential pressure of the carbon-based fine particle processing apparatus to the initial differential pressure. However, it was necessary to use more than the carbon-based fine particle processing apparatus provided with the filter of Example 1. From this, it can be seen that the present invention has a high exhaust gas treatment capacity containing carbonaceous fine particles and a good durability.

【0027】[0027]

【発明の効果】以上説明した本発明の請求項1によれ
ば、排ガス中の炭素系微粒子処理用フィルタが高温耐熱
性ステンレス鋼のコイル材を切削して低コストに製造さ
れた繊維を集積してウェブにした後に、焼結、熱処理し
さらに触媒を担持させた高温耐熱性ステンレス鋼繊維焼
結体からなっており、高温耐熱性ステンレス鋼繊維焼結
体の繊維表面にアルミナ皮膜を有しているため、機械的
強度が良好である上にすぐれた高温耐熱性と高い熱伝導
率を備え、かつ高温耐熱性ステンレス鋼繊維は断面形状
にエッジを有している。したがって、ディーゼル内燃機
関や燃焼装置から排出される高温の排ガス中の炭素系微
粒子を効率よく捕集することができる。しかも、繊維表
面にアルミナ皮膜を有しているため触媒の密着性が良
く、この触媒により炭素系微粒子の燃焼を促進すること
ができるいうすぐれた効果が得られる。請求項2と請求
項3によれば、高温の排ガス中の炭素系微粒子を効率よ
く捕集することができるうえに、炭素系微粒子処理用フ
ィルタ自体に通電して自己発熱させることで炭素系微粒
子を燃焼除去することができ、したがって、短時間で簡
単、確実に再生を行うことができる。しかも炭素系微粒
子処理用フィルタが表面に触媒を担持しているため通電
電力量を低下させることができ、処理コストを低減する
ことが可能となるというすぐれた効果が得られる。
According to claim 1 of the present invention described above, a filter for treating carbon-based fine particles in exhaust gas accumulates fibers produced at low cost by cutting a coil material of high temperature heat resistant stainless steel. It is made of a high temperature heat resistant stainless steel fiber sintered body that is sintered, heat treated and further loaded with a catalyst after being made into a web, and has an alumina coating on the fiber surface of the high temperature heat resistant stainless steel fiber sintered body. Therefore, the high-temperature heat-resistant stainless steel fiber has good mechanical strength, excellent high-temperature heat resistance and high thermal conductivity, and the cross-sectional shape of the high-temperature heat-resistant stainless steel fiber has an edge. Therefore, it is possible to efficiently collect the carbon-based fine particles in the high-temperature exhaust gas discharged from the diesel internal combustion engine or the combustion device. Moreover, since the fiber surface has an alumina coating, the catalyst has good adhesion, and this catalyst has the excellent effect of promoting the combustion of carbon-based fine particles. According to the second and third aspects, the carbon-based fine particles in the high-temperature exhaust gas can be efficiently collected, and the carbon-based fine particles can be self-heated by energizing the filter itself for treating the carbon-based fine particles. Can be removed by burning, and therefore, regeneration can be performed easily and surely in a short time. Moreover, since the carbon-based fine particle treatment filter carries the catalyst on the surface, it is possible to reduce the amount of electric power to be supplied, and it is possible to obtain the excellent effect that the treatment cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による炭素系微粒子処理用フィルタを例
示する斜視図である。
FIG. 1 is a perspective view illustrating a carbon-based particulate treatment filter according to the present invention.

【図2】(a)は本発明による炭素系微粒子処理用フィル
タの部分的拡大図、(b)(c)は高温耐熱性ステンレス鋼繊
維焼結体の拡大断面図である。
FIG. 2A is a partially enlarged view of a filter for treating carbon-based fine particles according to the present invention, and FIGS. 2B and 2C are enlarged cross-sectional views of a high temperature heat resistant stainless steel fiber sintered body.

【図3】高温耐熱性ステンレス鋼繊維の製造法を示す説
明図である。
FIG. 3 is an explanatory view showing a method for producing high temperature heat resistant stainless steel fibers.

【図4】(a)は図3の方法で得られた高温耐熱性ステン
レス鋼繊維の拡大斜視図、(b)はその拡大断面図であ
る。
4 (a) is an enlarged perspective view of a high temperature heat resistant stainless steel fiber obtained by the method of FIG. 3, and FIG. 4 (b) is an enlarged sectional view thereof.

【図5】(a)は本発明による排ガス中の炭素系微粒子処
理装置の実施例を示す縦断側面図、(b)はその横断面図
である。
FIG. 5 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle treatment apparatus for exhaust gas according to the present invention, and FIG. 5 (b) is a cross-sectional view thereof.

【図6】(a)は本発明による炭素系微粒子処理装置の実
施例を示す縦断側面図、(b)はその横断面図である。
FIG. 6 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle processing apparatus according to the present invention, and FIG. 6 (b) is a transverse sectional view thereof.

【図7】(a)は本発明による炭素系微粒子処理装置の実
施例を示す縦断側面図、(b)はその横断面図である。
FIG. 7 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle processing apparatus according to the present invention, and FIG. 7 (b) is a transverse sectional view thereof.

【図8】(a)(b)は複数の炭素系微粒子処理ユニットを使
用した本発明装置の実施例を示す縦断側面図である。
8 (a) and 8 (b) are longitudinal side views showing an embodiment of the device of the present invention using a plurality of carbon-based fine particle processing units.

【図9】本発明の作用を模式的に示す説明図である。FIG. 9 is an explanatory view schematically showing the action of the present invention.

【図10】本発明による炭素系微粒子処理装置の実験結
果を示す線図である。
FIG. 10 is a diagram showing an experimental result of the carbon-based fine particle processing apparatus according to the present invention.

【図11】本発明による炭素系微粒子処理装置の実験結
果を示す線図である。
FIG. 11 is a diagram showing an experimental result of the carbon-based fine particle processing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 炭素系微粒子処理用フィルタ 2 高温耐熱性ステンレス鋼繊維焼結体 3 電極 4 触媒層 5 炭素系微粒子処理ユニット 6 電源 20 高温耐熱性ステンレス鋼繊維 21 アルミナ皮膜 E 通電装置 1 Filter for carbon-based fine particle treatment 2 High-temperature heat-resistant stainless steel fiber sintered body 3 Electrode 4 Catalyst layer 5 Carbon-based fine-particle treatment unit 6 Power supply 20 High-temperature heat-resistant stainless steel fiber 21 Alumina coating E Current-carrying device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/02 321 F01N 3/02 341L 341 B01D 53/36 103C (72)発明者 神道 克美 愛知県豊川市国府町豊成44 (72)発明者 浅見 登志雄 愛知県豊川市諏訪3−123 (72)発明者 加藤 龍彦 愛知県新城市緑が丘5−6−5 (72)発明者 後夷 光一 愛知県岡崎市上地3−23−26 (72)発明者 相澤 幸雄 神奈川県川崎市中原区木月大町203 (72)発明者 関戸 容夫 神奈川県横浜市磯子区洋光台6−28−7 (72)発明者 後藤 晃 神奈川県横浜市鶴見区栄町通3−32−1 (72)発明者 小宮山 知成 神奈川県川崎市幸区南幸町2−46−2─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location F01N 3/02 321 F01N 3/02 341L 341 B01D 53/36 103C (72) Inventor Shindo Katsumi Aichi 44 Toyokawa City Kofucho Toyonari 44 (72) Inventor Toshio Asami 3-123 Suwa, Toyokawa City, Aichi Prefecture (123) Inventor Tatsuhiko Kato Shinjo City, Aichi Prefecture 5-6-5 Midorigaoka (72) Inventor Koichi Gozo Okazaki City, Aichi Prefecture Uechi 3-23-26 (72) Inventor Yukio Aizawa 203 Kitsuki Omachi, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Yoshio Sekido 6-28-7 Yokodai, Isogo-ku, Yokohama-shi, Kanagawa Prefecture (72) Goto Akira 3-32-1, Sakaemachi-dori, Tsurumi-ku, Yokohama-shi, Kanagawa (72) Inventor Tomonari Komiyama 2-46-2 Minami-sachi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】抵抗発熱性を有する高温耐熱性ステンレス
鋼の薄板を巻回したコイル材を端面切削して製造した繊
維を集積してウエブにし、それを焼結および熱処理して
焼結繊維表面にアルミナ皮膜を形成した高温耐熱性ステ
ンレス鋼繊維焼結体からなり、かつ該高温耐熱性ステン
レス鋼繊維焼結体が触媒を担持していることを特徴とす
る排ガス中の炭素系微粒子処理用フィルタ。
1. A fiber made by cutting an end face of a coil material wound with a thin plate of high temperature heat resistant stainless steel having a resistance heating property is integrated into a web, which is sintered and heat treated to obtain a surface of the sintered fiber. A filter for treating carbon-based fine particles in exhaust gas, characterized by comprising a high temperature heat resistant stainless steel fiber sintered body on which an alumina film is formed, and the high temperature heat resistant stainless steel fiber sintered body carries a catalyst. .
【請求項2】排ガスの導入部と排出部を有する器体と、 抵抗発熱性を有する高温耐熱性ステンレス鋼の薄板を巻
回したコイル材を端面切削して製造した繊維を集積して
ウエブにしそれを焼結および熱処理して焼結繊維表面に
アルミナ皮膜を形成ししかもその上に触媒を担持し、か
つ自由端に電極を取り付けた高温耐熱性ステンレス鋼繊
維焼結体からなる炭素系微粒子処理用フィルタと、 要時に前記電極に通電して炭素系微粒子処理用フィルタ
を自己発熱させるための通電装置を備えていることを特
徴とする排ガス中の炭素系微粒子処理装置。
2. A web having a body having an exhaust gas introduction part and an exhaust part, and a coil material wound around a thin plate of high temperature heat resistant stainless steel having resistance heating property, which is produced by cutting the end surface of the coil material into a web. Sintering and heat-treating it to form an alumina film on the surface of the sintered fiber, carrying a catalyst on it, and attaching a electrode to the free end of the high temperature heat resistant stainless steel fiber sintered body made of carbon-based fine particles Apparatus for treating carbon-based fine particles in an exhaust gas, and an energizing device for energizing the electrodes to cause the carbon-based particulate treatment filter to self-heat when necessary.
【請求項3】排ガスの導入部と排出部を有する器体と、 抵抗発熱性を有する高温耐熱性ステンレス鋼の薄板を巻
回したコイル材を端面切削して製造した繊維を集積して
ウエブにしそれを焼結および熱処理して焼結繊維表面に
アルミナ皮膜を形成ししかもその上に触媒を担持し、か
つ自由端に電極を取り付けた高温耐熱性ステンレス鋼繊
維焼結体からなる炭素系微粒子処理用フィルタと、 要時に前記電極に通電して炭素系微粒子処理用フィルタ
を自己発熱させるための通電装置を備えた処理ユニット
を複数備えていることを特徴とする排ガス中の炭素系微
粒子処理装置。
3. A container having an exhaust gas introducing part and an exhausting part, and a coil material formed by winding a thin plate of high-temperature heat-resistant stainless steel having resistance heating property, end-cutting the fibers to be integrated into a web. Sintering and heat-treating it to form an alumina film on the surface of the sintered fiber, carrying a catalyst on it, and attaching a electrode to the free end of the high temperature heat resistant stainless steel fiber sintered body made of carbon-based fine particles Apparatus for treating carbon-based fine particles in exhaust gas, comprising: a plurality of treatment filters; and a treatment unit equipped with a current-carrying device for self-heating the carbon-based fine-particle treatment filter by energizing the electrodes when necessary.
JP27048395A 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same Expired - Fee Related JP3677329B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27048395A JP3677329B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same
DE69624890T DE69624890T2 (en) 1995-09-25 1996-09-20 Filter for separating soot particles from exhaust gas and device for using the same
EP96115170A EP0764455B1 (en) 1995-09-25 1996-09-20 A filter for a treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter
US08/718,997 US5800790A (en) 1995-09-25 1996-09-24 Filter for treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27048395A JP3677329B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same

Publications (2)

Publication Number Publication Date
JPH0985028A true JPH0985028A (en) 1997-03-31
JP3677329B2 JP3677329B2 (en) 2005-07-27

Family

ID=17486930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27048395A Expired - Fee Related JP3677329B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same

Country Status (1)

Country Link
JP (1) JP3677329B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042963A1 (en) * 1997-03-25 1998-10-01 Nippon Oil Co., Ltd. Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
US6723120B2 (en) 1997-04-15 2004-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US6805898B1 (en) 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
JP2006095474A (en) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd Exhaust gas cleaning material
JP2008546515A (en) * 2005-06-17 2008-12-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing honeycomb body with metal fleece
US7718143B2 (en) 2003-01-10 2010-05-18 Toyota Jidosha Kabushiki Kaisha Filter catalyst for purifying exhaust gases
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
JP2020168625A (en) * 2015-02-13 2020-10-15 インテグリス・インコーポレーテッド Coatings for enhancement of properties and performance of substrate articles and apparatus
CN113813697A (en) * 2021-08-06 2021-12-21 中国科学院工程热物理研究所 Metal fiber filter material with dust removal and VOCs (volatile organic compounds) catalytic purification functions and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042963A1 (en) * 1997-03-25 1998-10-01 Nippon Oil Co., Ltd. Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
US6723120B2 (en) 1997-04-15 2004-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US6805898B1 (en) 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US7335314B2 (en) 2000-09-28 2008-02-26 Advanced Cardiovascular Systems Inc. Method of making an implantable medical device
US7718143B2 (en) 2003-01-10 2010-05-18 Toyota Jidosha Kabushiki Kaisha Filter catalyst for purifying exhaust gases
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
JP4687057B2 (en) * 2004-09-30 2011-05-25 パナソニック株式会社 Exhaust gas purification material
JP2006095474A (en) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd Exhaust gas cleaning material
JP4763781B2 (en) * 2005-06-17 2011-08-31 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing honeycomb body with metal fleece
JP2008546515A (en) * 2005-06-17 2008-12-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing honeycomb body with metal fleece
JP2020168625A (en) * 2015-02-13 2020-10-15 インテグリス・インコーポレーテッド Coatings for enhancement of properties and performance of substrate articles and apparatus
CN113813697A (en) * 2021-08-06 2021-12-21 中国科学院工程热物理研究所 Metal fiber filter material with dust removal and VOCs (volatile organic compounds) catalytic purification functions and preparation method thereof
CN113813697B (en) * 2021-08-06 2023-05-26 中国科学院工程热物理研究所 Metal fiber filter material with functions of dust removal and catalytic purification of VOCs and preparation method thereof

Also Published As

Publication number Publication date
JP3677329B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
EP0764455B1 (en) A filter for a treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter
US5405422A (en) Self-heating filter
JP2732031B2 (en) Exhaust particulate filter for diesel engine
US6245306B1 (en) Method for purification of exhaust gas
JP5649889B2 (en) Exhaust gas purification device
WO2006123801A1 (en) Pm purification device and method
JPH06257422A (en) Particulate trap for diesel engine
JPH0985028A (en) Filter for treating carbon particle in exhaust gas and carbon particle device using the filter
EP0903476A1 (en) Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
JP3677328B2 (en) Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same
JP2003097253A (en) Porous metallic complex, dpf using porous metallic complex, and diesel exhaust gas purifier provided with dpf
EP0741236A1 (en) Device for removing solid particles from exhaust gases, design of a unit for neutralising harmful waste gases and a method of manufacturing said unit
EP0879939A2 (en) Exhaust gas purifier
JP2002147218A (en) Device of removing particulate material in exhaust gas of diesel engine
JP3770998B2 (en) Gas processing equipment
CN100392213C (en) Spiral type filtering-regeneration device for particulates in exhaust gas from diesel vehicle
JP2009228618A (en) Exhaust emission control device
JP2005030280A (en) Filter
JP4848662B2 (en) How to use exhaust gas purification material
JPH10274030A (en) Exhaust emission control device
JPH11280451A (en) Exhaust emission control device
JPS6356814B2 (en)
JPH08100630A (en) Spherical electric conductor charging type particulate collecting filter
JP2009011921A (en) Diesel exhaust gas purifying filter
JPH10274029A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees