JPH0985027A - Filter for treating carbon particle in exhaust gas and carbon particle device using the filter - Google Patents

Filter for treating carbon particle in exhaust gas and carbon particle device using the filter

Info

Publication number
JPH0985027A
JPH0985027A JP7270464A JP27046495A JPH0985027A JP H0985027 A JPH0985027 A JP H0985027A JP 7270464 A JP7270464 A JP 7270464A JP 27046495 A JP27046495 A JP 27046495A JP H0985027 A JPH0985027 A JP H0985027A
Authority
JP
Japan
Prior art keywords
carbon
stainless steel
high temperature
temperature heat
resistant stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7270464A
Other languages
Japanese (ja)
Other versions
JP3677328B2 (en
Inventor
Masato Imamura
正人 今村
Kiichi Nakajima
紀一 中島
Katsumi Shindou
克美 神道
Toshio Asami
登志雄 浅見
Tatsuhiko Kato
龍彦 加藤
Koichi Goi
光一 後夷
Yukio Aizawa
幸雄 相澤
Masao Sekido
容夫 関戸
Akira Goto
後藤  晃
Tomonari Komiyama
知成 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Eneos Corp
Original Assignee
Sintokogio Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Nippon Oil Corp filed Critical Sintokogio Ltd
Priority to JP27046495A priority Critical patent/JP3677328B2/en
Priority to DE69624890T priority patent/DE69624890T2/en
Priority to EP96115170A priority patent/EP0764455B1/en
Priority to US08/718,997 priority patent/US5800790A/en
Publication of JPH0985027A publication Critical patent/JPH0985027A/en
Application granted granted Critical
Publication of JP3677328B2 publication Critical patent/JP3677328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide high ability for treating carbon particles in exhaust gas and improved durability by accumulating fibers made of coiled material of high temperature heat resistant stainless steel to form them into a web and forming an alumina film thereon, thereby to form high temperature heat resistant stainless steel fiber sintered material. SOLUTION: A high temperature heat resistant stainless steel fiber sintered material 2 has a porous structure, wherein high temperature heat resistant stainless steel fibers 20 are oriented randomly and intersections between the fibers are welded to one another as shown in Fig. (a), and the sintered fibers 20 have each a nearly square cross section perpendicular to axial direction as shown in Fig. (b) and a thin alumina film 21 with uniform thickness is deposited on the surfaces of the fibers. The film 21 is formed so as to surround cross contact part 200 between the fibers 20, 20 as shown in Fig. (c), whereby a metallic touch is produced in the point 200. Thus, in the material 2, a resistance heating circuit state, which is uniform as a whole, is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はディーゼル内燃機関
や加熱炉、ボイラなどの燃焼装置から排出される排気ガ
ス中の炭素系微粒子を処理するためのフィルタ及びこれ
を用いた少なくとも1つ以上の処理ユニットからなる排
ガス中の炭素系微粒子処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter for treating carbonaceous fine particles in exhaust gas discharged from a combustion device such as a diesel internal combustion engine, a heating furnace, or a boiler, and at least one treatment using the filter. The present invention relates to a device for treating carbon-based fine particles in exhaust gas, which is composed of a unit.

【0002】[0002]

【従来の技術】ディーゼル内燃機関は、エネルギー効率
が高く、また耐久性が優れているため、自動車などの輸
送機用、一般動力用、発電用などに汎用されているが、
排ガス中に主としてスート,カーボンミスト等からなる
炭素系微粒子が含まれているため、環境上大きな問題と
なっている。この対策として、自動車などの輸送機では
エンジンの改良、燃料噴射系の改良などが行われ、これ
によりディーゼル内燃機関より排出される炭素系微粒子
をある程度低減することができている。しかしながら、
これらの方法による炭素系微粒子の低減ではまだ十分で
はないため、さらに炭素系微粒子を低減する方法とし
て、酸化(燃焼)触媒を利用したり、セラミック製フィル
タで炭素系微粒子を捕集した後、炭素系微粒子を電気ヒ
ータ,バーナなどで着火させ、炭素系微粒子自体の燃焼
熱で伝播燃焼させて除去する方法などが検討されてい
る。一方、定置式や産業用のディーゼルエンジン、加熱
炉、コージェネレーションシステム,ヒートポンプ、ボ
イラ等の燃焼装置では、排ガス対策としてサイクロン,
バグフィルタなどの集塵装置を用いる方法がとられてい
る。
2. Description of the Related Art Since a diesel internal combustion engine is high in energy efficiency and excellent in durability, it is widely used for transportation machines such as automobiles, general power, and power generation.
Since the exhaust gas contains carbon-based fine particles mainly composed of soot and carbon mist, it is a serious environmental problem. As measures against this, improvements have been made to engines and fuel injection systems in transportation machines such as automobiles, which have made it possible to reduce carbon-based fine particles emitted from diesel internal combustion engines to some extent. However,
Since reduction of carbon-based fine particles by these methods is not yet sufficient, as a method for further reducing carbon-based fine particles, an oxidation (combustion) catalyst is used, or carbon-based fine particles are collected by a ceramic filter, and then carbon A method of igniting fine particles with an electric heater, a burner, etc., and propagating and burning with the combustion heat of the fine carbon particles themselves has been studied. On the other hand, in stationary and industrial diesel engines, heating furnaces, cogeneration systems, heat pumps, combustion equipment such as boilers, cyclone,
A method of using a dust collector such as a bag filter is adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸化
(燃焼)触媒を用いる方法やセラミック製フィルタで炭素
系微粒子を捕集し燃焼除去する方法では性能、耐久性お
よび経済性に問題がある。特に、セラミック製フィルタ
を用いる方法は、炭素系微粒子の捕集率は高いものの、
再生の際に炭素系微粒子の燃焼に伴う発熱がフィルタ内
で一様でなく高低の差があることや炭素系微粒子の燃焼
温度が高いことにより、フィルタが破損したり溶解する
問題や、排ガス中の灰分がフィルタ内に堆積し長時間使
用できない問題などがある。また、定置式や産業用のデ
ィーゼルエンジンや加熱炉やボイラ等の燃焼装置で用い
られているサイクロン,バグフィルタなどの集塵装置
は、処理能力が低かったり装置が高価であったり、捕集
した炭素系微粒子を廃棄処理しなければならなかったり
するなどの問題がある。
[Problems to be Solved by the Invention] However, oxidation
A method using a (combustion) catalyst and a method of collecting and burning and removing carbon-based fine particles with a ceramic filter have problems in performance, durability and economy. In particular, although the method using a ceramic filter has a high collection rate of carbon-based fine particles,
The heat generated by the combustion of the carbon-based particles during regeneration is not uniform in the filter and there is a difference in height, and the combustion temperature of the carbon-based particles is high, which may cause the filter to break or melt, There is a problem that the ash content of is accumulated in the filter and cannot be used for a long time. In addition, dust collectors such as cyclones and bag filters used in stationary and industrial diesel engines, combustion furnaces, boilers, and other combustion systems have low processing capacity, are expensive, or have been collected. There are problems such as having to dispose of carbon-based fine particles.

【0004】本発明は上記問題点を解消するために研究
して創案されたもので、その第1の目的は、ディーゼル
内燃機関や燃焼装置から排出される排ガス中の炭素系微
粒子の処理能力が高いとともにすぐれた耐久性を備え、
また経済性やメンテナンス性も良好な排ガス中の炭素系
微粒子処理用フィルタを提供することにある。また、本
発明の他の目的は、上記目的に加え、再生が容易かつ炭
素系微粒子処理能力が高い処理装置を提供することにあ
る。
The present invention was made by research to solve the above problems, and a first object of the present invention is to improve the treatment capacity of carbon-based fine particles in exhaust gas discharged from a diesel internal combustion engine or a combustion device. With high and excellent durability,
Another object of the present invention is to provide a filter for treating carbon-based fine particles in exhaust gas, which has good economical efficiency and maintainability. Another object of the present invention is to provide a processing apparatus which is easy to recycle and has a high carbon-based particle processing capacity in addition to the above objects.

【0005】[0005]

【課題を解決する手段】上記第1の目的を達成するため
本発明は、抵抗発熱性を有する高温耐熱性ステンレス鋼
の薄板を巻回したコイル材を端面切削して製造した繊維
を集積してウエブにし、それを焼結および熱処理して焼
結繊維表面にアルミナ皮膜を形成した高温耐熱性ステン
レス鋼繊維焼結体からなる構成としたものである。また
第2の目的を達成するため本発明は、排ガスの導入部と
排出部を有する器体と、抵抗発熱性を有する高温耐熱性
ステンレス鋼の薄板を巻回したコイル材を端面切削して
製造した繊維を集積してウエブにしそれを焼結および熱
処理して焼結繊維表面にアルミナ皮膜を形成ししかも自
由端に電極を取り付けた高温耐熱性ステンレス鋼繊維焼
結体からなる炭素系微粒子処理用フィルタと、要時に前
記電極に通電して炭素系微粒子処理用フィルタを自己発
熱させるための通電装置を備えた構成としたものであ
る。本発明の排ガス中の炭素系微粒子処理装置は、前記
第2発明の構成を備えたものを1つの処理ユニットと
し、これを複数配した形態を含む。
In order to achieve the above first object, the present invention integrates fibers produced by cutting the end face of a coil material wound with a thin plate of high temperature heat resistant stainless steel having resistance heating property. The web is made of a high temperature heat resistant stainless steel fiber sintered body having an alumina film formed on the surface of the sintered fiber by sintering and heat treating the web. In order to achieve the second object, the present invention is manufactured by cutting an end face of a coil member having an exhaust gas introducing portion and an exhaust portion and a thin plate of high temperature heat resistant stainless steel having resistance heating property. For the treatment of carbon-based fine particles consisting of a high temperature heat resistant stainless steel fiber sintered body, which is made by accumulating the formed fibers into a web, sintering and heat treating it to form an alumina film on the surface of the sintered fiber, and attaching an electrode to the free end The filter and a current-carrying device for electrically heating the electrode to heat the carbon-based fine particle treatment filter when necessary are provided. The apparatus for treating carbon-based fine particles in exhaust gas according to the present invention includes a configuration in which a unit having the configuration of the second aspect of the invention is used as one treatment unit and a plurality of the units are arranged.

【0006】[0006]

【発明の実施の形態】以下本発明を添付図面に基いて説
明する。図1ないし図3は本発明による排ガス中の炭素
系微粒子処理用フィルタの実施態様を示している。1は
炭素系微粒子処理用フィルタであり、高温耐熱性ステン
レス鋼繊維焼結体2と、これの自由端部に溶接などによ
り固着された電極3とを備えている。前記高温耐熱性ス
テンレス鋼繊維焼結体2は、図1(a)では帯板状をなし
これを所要の間隔ごとに波状に屈曲した形状となってい
る。(b)では周方向の一部が分離された円筒状をなして
おり、(c)では周方向の一部が分離した断面星形類似の
筒状をなしている。もとよりこれら形状に限定されるも
のではなく、平板状、閉鎖断面の筒状、カップ状、皿状
など任意である。電極3は図1(b)(c)においては自由端
部全体に設けられるかあるいは図示のように自由端部に
沿って固着される帯状部30を有している。なお、目詰
まりした場合の再生法が通電方式によらない場合には電
極3は設けられなくてもよい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the accompanying drawings. 1 to 3 show an embodiment of a filter for treating carbon-based fine particles in exhaust gas according to the present invention. Reference numeral 1 denotes a carbon-based fine particle treatment filter, which includes a high temperature heat resistant stainless steel fiber sintered body 2 and an electrode 3 fixed to a free end of the sintered body 2 by welding or the like. The high temperature heat resistant stainless steel fiber sintered body 2 is in the form of a strip plate in FIG. 1 (a) and is bent in a wave shape at required intervals. In (b), it has a cylindrical shape with a part separated in the circumferential direction, and in (c), it has a cylindrical shape with a star-shaped cross-section with a part separated in the circumferential direction. Of course, the shape is not limited to these shapes, and any shape such as a flat plate shape, a cylindrical shape with a closed cross section, a cup shape, and a dish shape is possible. The electrode 3 has a strip 30 which is either provided over the entire free end in FIGS. 1 (b) (c) or which is secured along the free end as shown. The electrode 3 may not be provided when the regeneration method when clogging does not depend on the energization method.

【0007】前記高温耐熱性ステンレス鋼繊維焼結体2
は、通電により抵抗発熱する材質のもの、たとえばFe-C
r-Al-REM系のステンレス鋼を用いることが望ましい。具
体的には、重量比でCr:17〜21%、Al:2.5〜6.0%、RE
MとしてはLa,Y,Ceの一種または2種以上が用いられ、添
加量は0.02〜0.25%である。CrとAlが下限未満では後述
する耐熱のためのアルミナ皮膜厚さが不十分なものとな
り、上限を超える含有量では結晶構造が不安定になる。
また、REMはアルミナ皮膜の安定性に寄与し、これが下
限を下回る添加量では前記機能を発揮できず、上限を超
える添加量は経済性を損なうため不適当である。なお、
他の組成として、C:0.008%以下、Si:1.0%以下、Mn:1.0%
以下を含有していてもよい。
The high temperature heat resistant stainless steel fiber sintered body 2
Is a material that generates resistance heat when energized, such as Fe-C
It is desirable to use r-Al-REM stainless steel. Specifically, by weight ratio, Cr: 17-21%, Al: 2.5-6.0%, RE
As M, one or more of La, Y and Ce are used, and the addition amount is 0.02 to 0.25%. If Cr and Al are less than the lower limits, the alumina coating thickness for heat resistance, which will be described later, becomes insufficient, and if the contents exceed the upper limits, the crystal structure becomes unstable.
Further, REM contributes to the stability of the alumina coating, and if the amount added is less than the lower limit, the above-mentioned function cannot be exhibited, and the amount added more than the upper limit impairs economic efficiency, and is therefore unsuitable. In addition,
As other composition, C: 0.008% or less, Si: 1.0% or less, Mn: 1.0%
It may contain:

【0008】前記高温耐熱性ステンレス鋼繊維焼結体2
は、図2(a)のように高温耐熱性ステンレス鋼繊維20
をランダムに配向して接触部を融着した多孔構造からな
り、焼結されている各高温耐熱性ステンレス鋼繊維20
は、図2(b)のように軸方向と直角の断面が略四角形
状をなし、表面には均一な厚さの薄いアルミナ皮膜21
が析出されている。しかし、このアルミナ皮膜21は図
2(c)のように高温耐熱性ステンレス鋼繊維20,2
0の交差接触部分200ではこれを囲むように形成さ
れ、交差接触部分200はメタルタッチとなっている。
このように交差接触部分がメタルタッチであることによ
り高温耐熱性ステンレス鋼繊維焼結体2は全体として均
一な抵抗発熱回路状態が構成されている。
The high temperature heat resistant stainless steel fiber sintered body 2
Is a high temperature heat resistant stainless steel fiber 20 as shown in FIG.
20. Each high temperature heat resistant stainless steel fiber 20 having a porous structure in which the
2B, the cross section perpendicular to the axial direction has a substantially quadrangular shape, and the surface of the thin alumina film 21 has a uniform thickness.
Have been deposited. However, the alumina coating 21 is formed on the high temperature heat resistant stainless steel fibers 20, 2 as shown in FIG.
The zero crossing contact portion 200 is formed so as to surround it, and the crossing contact portion 200 is a metal touch.
As described above, since the cross-contact portions are metal touch, the high temperature heat resistant stainless steel fiber sintered body 2 has a uniform resistance heating circuit state as a whole.

【0009】各高温耐熱性ステンレス鋼繊維20は、長
さが10〜300mm、軸方向と直角の断面の1辺の長さ(幅
tまたは厚さw)が5〜200μm、より好適には10〜100
μmである。長さが10mm未満では繊維同士の絡み合いが
少なくなり、500mmを超える長さでは不均一にかたまっ
てしまい均一な通気孔を形成しにくくなる。また、断面
の1辺が5μm未満では、炭素系微粒子中や排ガス中の
灰分が堆積して通気孔22の目詰まりを起こしやすく、
また機械的強度や耐熱性が低くなる不都合がある。しか
し、200μmを超える太さとした場合には、排ガス中の
炭素系微粒子がほどんど通過してしまい、フィルタとし
ての基本機能が発揮されなくなるため不可である。高温
耐熱性ステンレス鋼繊維焼結体2は、上記高温耐熱性ス
テンレス鋼繊維20を目付け重量で300〜5000g/m2有し
ている。これは、目付重量が300g/m2以下であると気孔
率が高すぎ、排ガス中の炭素系微粒子をほとんど処理で
きずに通過させてしまい、5000g/m2以上にした場合に
は、排ガス中の炭素系微粒子の処理能力はそれ以上変化
せず、かえって高温耐熱性ステンレス鋼繊維20を大量
に使用するので経済性が悪くなるからである。
Each high temperature heat resistant stainless steel fiber 20 has a length of 10 to 300 mm and a length (width t or thickness w) of one side of a cross section perpendicular to the axial direction is 5 to 200 μm, and more preferably 10 ~ 100
μm. If the length is less than 10 mm, the entanglement of the fibers is reduced, and if the length is more than 500 mm, the fibers are unevenly aggregated and it becomes difficult to form a uniform vent hole. Further, if one side of the cross section is less than 5 μm, the ash content in the carbon-based fine particles and the exhaust gas is likely to be deposited, and the vent hole 22 is likely to be clogged.
Further, there is a disadvantage that mechanical strength and heat resistance are lowered. However, when the thickness exceeds 200 μm, the carbon-based fine particles in the exhaust gas almost pass through and the basic function as a filter cannot be exhibited, which is not possible. The high temperature heat resistant stainless steel fiber sintered body 2 has the high temperature heat resistant stainless steel fiber 20 in a basis weight of 300 to 5000 g / m 2 . This is because if the basis weight is 300 g / m 2 or less, the porosity is too high, and the carbon-based fine particles in the exhaust gas can be hardly treated, and if it is 5000 g / m 2 or more, the This is because the treatment capacity of the carbon-based fine particles does not change any more, and since the high temperature heat resistant stainless steel fiber 20 is used in a large amount, the economical efficiency is deteriorated.

【0010】前記諸元の高温耐熱性ステンレス鋼繊維2
0は、原料としての高温耐熱性ステンレス鋼がフェライ
ト系であるため常温加工性が悪く、したがって、引抜き
法による細線化が困難であるため、従来では実際上存在
しなかった。また、溶融紡糸法でも高温耐熱性ステンレ
ス鋼の繊維化が困難であり、ワイヤー切削法では繊維形
状が特定できなく、歩止まりも悪い問題があり、びびり
振動切削法も短繊維しか製造できない問題がある。そこ
で本発明はこれを解消すべく、コイル材切削法にて高温
耐熱性ステンレス鋼繊維20を得るのである。すなわ
ち、図3のように、板厚がたとえば5〜150μmの高
温耐熱性ステンレス鋼の薄板(箔)11を旋削主軸12
にタイトにコイル状に巻回し、このコイル材11の端面
110を旋削主軸12と平行な送りを与えた工具13に
より所定の切り込みで切削することにより製造するので
ある。これにより三次元的に適度にカールした高温耐熱
性ステンレス長繊維束20”が工具すくい面に沿って後
方に流出し、とぎれなく連続的に創成される。そして前
記繊維束を幅方向に展張し、10mm〜300mmの長さに切断
することで高温耐熱性ステンレス鋼繊維20’とされ
る。図4(a)(b)は上記方法で得られた1本の高温耐熱性
ステンレス鋼繊維20’を示しており、断面は四角形状
をなし、一辺201はしわ状の粗面を有している。上記
コイル材端面切削法によれば、高温耐熱性ステンレス鋼
繊維20’は、一辺(繊維幅W)が板厚に一致し、一辺
(繊維厚さt)が工具送り量sによって決定される。し
たがって、高温耐熱性ステンレス鋼薄板11の厚さと切
込み(工具送り量)を調整することで様々な寸法の繊維
を製造することができる。上記繊維製造条件としては、
工具すくい角:15〜45°とし、切削速度:30〜95m/min、
送り量s:5〜40μm/minなどから採用すればよい。
High temperature heat resistant stainless steel fiber 2 having the above specifications
In the case of No. 0, the high temperature heat resistant stainless steel as a raw material is ferritic and thus the room temperature workability is poor. Therefore, since it is difficult to thin the wire by the drawing method, it has not practically existed in the past. Further, even in the melt spinning method, it is difficult to fiberize the high temperature heat resistant stainless steel, the fiber shape cannot be specified by the wire cutting method, the yield is bad, and the chatter vibration cutting method has a problem that only short fibers can be produced. is there. Therefore, in order to solve this, the present invention obtains the high temperature heat resistant stainless steel fiber 20 by the coil material cutting method. That is, as shown in FIG. 3, a thin plate (foil) 11 of high temperature heat-resistant stainless steel having a plate thickness of 5 to 150 μm, for example, is used as a turning spindle 12
It is manufactured by tightly winding it into a coil and cutting the end surface 110 of the coil material 11 with a predetermined cut by a tool 13 which is fed in parallel with the turning spindle 12. As a result, the three-dimensionally appropriately curled high temperature heat resistant stainless steel long fiber bundle 20 ″ flows backward along the tool rake face and is continuously created without interruption. Then, the fiber bundle is stretched in the width direction. , A high temperature heat resistant stainless steel fiber 20 'is obtained by cutting it into a length of 10 mm to 300 mm.Figs. 4 (a) and 4 (b) show one high temperature heat resistant stainless steel fiber 20' obtained by the above method. The cross section has a quadrangular shape, and one side 201 has a wrinkle-shaped rough surface.According to the coil material end face cutting method, the high temperature heat resistant stainless steel fiber 20 'has one side (fiber width W) corresponds to the plate thickness, and one side (fiber thickness t) is determined by the tool feed amount s. Therefore, it can be varied by adjusting the thickness and the cut (tool feed amount) of the high temperature heat resistant stainless steel thin plate 11. Fibers of various sizes can be manufactured. As a condition,
Tool rake angle: 15 to 45 °, cutting speed: 30 to 95 m / min,
The feed rate s: 5 to 40 μm / min may be adopted.

【0011】本発明による高温耐熱性ステンレス鋼繊維
焼結体2は、前記高温耐熱性ステンレス鋼繊維20を原
料として次の工程で製造される。すなわち、前記高温耐
熱性ステンレス鋼繊維20’を目付け重量300g/m2〜500
0g/m2に集積し、所望形状たとえば板状(場合によっては
図1に例示するような形状にしてもよい)のウェブに成
形する。次に、前記ウェブを真空または非酸化性雰囲気
中で800〜1250℃の範囲で10分〜10時間加熱して焼
結する。この焼結時に荷重をかけることも好適である。
こうして得られた焼結体から必要寸法のフィルタを切り
出す。フィルタ形状が図1のようなものである場合に
は、この時点で曲げ加工などを施す。そして、その後、
空気などの酸化性雰囲気中にて600〜1100℃,1〜20時間
の条件で熱処理する。この熱処理は焼結体自体の抵抗発
熱性を利用して通電加熱によって行うこともできる。こ
の熱処理により、図2(b)(c)に示すようなアルミナ被膜
21が焼結繊維表面に析出される。熱処理温度が600℃
以下ではアルミナ被膜21が十分に析出せず、1100℃を
超える高温では異常酸化によりアルミナが剥離、飛散し
てしまう問題がある。上記温度範囲であれば、700℃
以下では、2(Fe,Cr,Al)+4.5O2→Fe2O3+Cr2O3+Al2O3の反
応により、また、700℃以上では、Fe2O3+2Al→Al2O3
+2Feの反応により各々耐久性被膜が生成される。しか
も、組成としてREMが添加されているため、高温でのア
ルミナ皮膜の安定性が向上させられ、したがって、90
0℃以下の使用温度で良好な機械的特性を示す。
The high temperature heat resistant stainless steel fiber sintered body 2 according to the present invention is manufactured by the following steps using the high temperature heat resistant stainless steel fiber 20 as a raw material. That is, the high-temperature heat-resistant stainless steel fiber 20 'has a basis weight of 300 g / m 2 to 500
It is accumulated at 0 g / m 2 and formed into a web having a desired shape, for example, a plate shape (may be a shape as illustrated in FIG. 1). Next, the web is sintered by heating in a vacuum or non-oxidizing atmosphere in the range of 800 to 1250 ° C. for 10 minutes to 10 hours. It is also preferable to apply a load during this sintering.
A filter having a required size is cut out from the thus obtained sintered body. When the filter shape is as shown in FIG. 1, bending or the like is performed at this point. And then
Heat-treat in an oxidizing atmosphere such as air at 600 to 1100 ° C for 1 to 20 hours. This heat treatment can also be performed by electric heating by utilizing the resistance heating property of the sintered body itself. By this heat treatment, the alumina coating 21 as shown in FIGS. 2B and 2C is deposited on the surface of the sintered fiber. Heat treatment temperature is 600 ℃
In the following, there is a problem that the alumina coating 21 is not sufficiently deposited, and at a high temperature exceeding 1100 ° C., alumina is peeled and scattered due to abnormal oxidation. 700 ° C within the above temperature range
Below, due to the reaction of 2 (Fe, Cr, Al) + 4.5O 2 → Fe 2 O 3 + Cr 2 O 3 + Al 2 O 3 , and above 700 ° C., Fe 2 O 3 + 2Al → Al 2 O 3
A durable film is formed by the reaction of + 2Fe. Moreover, since REM is added as a composition, the stability of the alumina coating at high temperatures is improved, and therefore 90%
It exhibits good mechanical properties at operating temperatures below 0 ° C.

【0012】本発明の炭素系微粒子処理用フィルタ1
は、高温耐熱性ステンレス鋼のコイル材11を端面切削
することによって低コストで製造される繊維を基材とし
ているため、均一な形状寸法と高温耐熱性がありながら
これを低コストで製造できという特徴を有している。ま
た、高温耐熱性ステンレス鋼繊維20’を集積してウェ
ブにして焼結するだけでなく、焼結後に熱処理して繊維
表面にアルミナ被膜21を生成させているので、高温耐
久性、耐酸化性、機械強度が高い。また、製造される繊
維の径や集積してウェブにする際の集積する量を自由に
変化させることで細孔径を調整できるため、排ガス中の
炭素系微粒子の処理率を任意に変えることができるとと
もに、炭素系微粒子中や排ガス中の灰分を堆積しないよ
うにすることができる。さらに高温耐熱性ステンレス鋼
繊維20は寸法形状が揃っている上に表面積が大きく、
かつ断面が四角形状であるため、排ガス中の炭素系微粒
子を各辺のエッジで確実に捕捉することができる。
The carbon-based particulate treatment filter 1 of the present invention
Uses a fiber that is manufactured at low cost by cutting the end surface of the coil material 11 of high temperature heat resistant stainless steel as a base material, so that it can be manufactured at low cost while having uniform shape dimensions and high temperature heat resistance. It has features. Further, not only the high temperature heat resistant stainless steel fibers 20 'are collected and web-sintered, but also the heat treatment is performed after the sintering to form the alumina coating 21 on the fiber surface, so high temperature durability and oxidation resistance are obtained. , High mechanical strength. In addition, since the pore size can be adjusted by freely changing the diameter of the fibers to be produced or the amount of the fibers to be accumulated in the web to be accumulated, it is possible to arbitrarily change the treatment rate of the carbon-based fine particles in the exhaust gas. At the same time, it is possible to prevent the ash content in the carbon-based fine particles and in the exhaust gas from accumulating. Further, the high temperature heat resistant stainless steel fiber 20 has a large dimensional shape and a large surface area,
Moreover, since the cross section is quadrangular, the carbon-based fine particles in the exhaust gas can be reliably captured at the edges of each side.

【0013】次に本発明による排ガス中の炭素系微粒子
処理装置の実施態様を説明する。本発明による炭素系微
粒子処理装置は、図5ないし図7に例示するような炭素
系微粒子処理ユニット(以下単に処理ユニットと称す)5
の少なくとも1つから構成される。図8は処理ユニット
5を複数用いた炭素系微粒子処理装置を例示しており、
(a)は排ガス流路に複数の処理ユニット5を並列に接続
し、処理ユニット5の上流と下流に切換弁8を設けて排
ガスを選択的に処理ユニット5に送って処理するように
したものである。(b)は排ガス流路に複数の処理ユニッ
ト5を直列に接続し、排ガスを多段処理するようにした
ものである。図5は図1(a)に示す炭素系微粒子処理
用フィルタ1を使用した例を示している。50はステン
レス鋼などの耐熱性材料からなる器体であり、長手方向
一端にはガス導入部500が、他端には排出部501を
有している。器体50には電気絶縁性と断熱性を有する
内張り9が施されており、炭素系微粒子処理用フィルタ
1は自由端の電極3,3が器体50から突出するように
ガス導入部500と排出部501間の排ガス通路502
に配置されている。実際上は器体は電極3,3を取り付
けるため上下2分割されているが、図面では簡略化して
いる。Eは前記炭素系微粒子処理用フィルタ1を自己発
熱させるための通電装置であり、電源6とコントローラ
7を備えている。電源6から給電線60,60が前記電
極3,3に接続され、電源6にはコントローラ7が電気
的に接続されている。このコントローラ7は所定の時間
ごとに電源6を作動させるタイマでもよいが、この実施
例ではマイクロコンピュータが用いられ、ガス導入部5
00と排出部501の排ガス圧力検出器70,71の出
力側を接続することにより、導入排ガスの圧力P1と排
出ガスの圧力P2の差圧P3を検出し、その差圧P3が設
定値に達したときに電源6を作動させ、あるいはさらに
通電量を自動調整するようにしている。
Next, an embodiment of the apparatus for treating carbon-based fine particles in exhaust gas according to the present invention will be described. The carbon-based fine particle processing apparatus according to the present invention is a carbon-based fine particle processing unit (hereinafter simply referred to as a processing unit) 5 as illustrated in FIGS.
Of at least one of FIG. 8 illustrates a carbon-based fine particle processing apparatus using a plurality of processing units 5,
(a) is a structure in which a plurality of processing units 5 are connected in parallel to an exhaust gas flow path, and a switching valve 8 is provided upstream and downstream of the processing unit 5 so that exhaust gas is selectively sent to the processing unit 5 for processing. Is. (b) is a system in which a plurality of processing units 5 are connected in series to the exhaust gas flow path to process the exhaust gas in multiple stages. FIG. 5 shows an example in which the carbon-based particulate treatment filter 1 shown in FIG. Reference numeral 50 is a container made of a heat resistant material such as stainless steel, and has a gas introduction portion 500 at one longitudinal end and a discharge portion 501 at the other longitudinal end. The container body 50 is provided with an inner lining 9 having electrical insulation and heat insulation properties, and the carbon-based particulate treatment filter 1 is provided with a gas introduction portion 500 so that the electrodes 3 at the free ends protrude from the container body 50. Exhaust gas passage 502 between the discharge parts 501
Are located in In practice, the body is divided into upper and lower parts for attaching the electrodes 3 and 3, but it is simplified in the drawing. E is an energizing device for causing the carbon-based particulate treatment filter 1 to self-heat, and includes a power source 6 and a controller 7. Power supply lines 60, 60 from the power source 6 are connected to the electrodes 3, 3 and a controller 7 is electrically connected to the power source 6. The controller 7 may be a timer that activates the power supply 6 at predetermined time intervals, but in this embodiment, a microcomputer is used and the gas introduction unit 5 is used.
00 and by connecting the output side of the exhaust gas pressure detector 70 and 71 of the discharge unit 501 detects the differential pressure P 3 of the pressure P 2 of the pressure P 1 and the discharge gas introducing exhaust gas, the differential pressure P 3 When the set value is reached, the power supply 6 is operated, or the energization amount is automatically adjusted.

【0014】図6は図1(c)に示す炭素系微粒子処理
用フィルタ1を使用した例を示し、図7は図1(b)に
示す炭素系微粒子処理用フィルタ1を使用した例を示し
ている。これら例においては、排ガスGを側方に流通し
て炭素系微粒子を捕集するため炭素系微粒子処理用フィ
ルタ1の下端外径側が閉止されると共に、上端に耐熱電
気絶縁性の蓋部材10が固着されている。なお、他の構
成は前記図5と同様であるから、説明は省略する。本発
明における炭素系微粒子処理用フィルタ1は形状を自由
に設定できるため、処理ユニット単位体積当たりの炭素
系微粒子処理用フィルタ1の表面積を任意に変化させる
ことができる。そのため、図8のように排ガス流路に前
記処理ユニット5を複数連結した処理装置においても、
ディーゼル内燃機関や燃焼装置に高い背圧をかけたり、
燃焼状態が悪化するのを防ぐことができる。このように
炭素系微粒子処理装置が複数の処理ユニット5,5から
構成される場合には、各処理ユニット5,5に対する通
電タイミングを処理ユニット毎にずらしてもよい。これ
により、一度に過大な電力を使わないようにすることが
できる。なお、本発明における処理ユニット5への炭素
系微粒子処理用フィルタ1の設置方法は前記した例に限
られず、たとえば器体50中に多段に設置するなど任意
である。
FIG. 6 shows an example using the carbon-based fine particle processing filter 1 shown in FIG. 1C, and FIG. 7 shows an example using the carbon-based fine particle processing filter 1 shown in FIG. 1B. ing. In these examples, since the exhaust gas G is circulated laterally to collect the carbon-based particles, the outer diameter side of the lower end of the carbon-based particle treatment filter 1 is closed and the heat-resistant and electrically-insulating lid member 10 is provided at the upper end. It is fixed. Note that the other configurations are the same as those in FIG. 5, so description thereof will be omitted. Since the shape of the carbon-based fine particle processing filter 1 in the present invention can be freely set, the surface area of the carbon-based fine particle processing filter 1 per unit volume of the processing unit can be arbitrarily changed. Therefore, even in a processing apparatus in which a plurality of processing units 5 are connected to the exhaust gas passage as shown in FIG.
Applying high back pressure to the diesel internal combustion engine and combustion device,
It is possible to prevent the combustion state from deteriorating. When the carbon-based fine particle processing apparatus is composed of a plurality of processing units 5 and 5 as described above, the energization timing for each processing unit 5 and 5 may be shifted for each processing unit. As a result, it is possible to avoid using too much power at one time. The method of installing the carbon-based fine particle processing filter 1 in the processing unit 5 according to the present invention is not limited to the above-described example, and may be arbitrary, for example, installed in multiple stages in the container 50.

【0015】本発明の炭素系微粒子処理装置の作用を説
明すると、ディーゼル内燃機関や燃焼装置から排出され
炭素系微粒子cを含む高温の排ガスGは排ガス導入部5
00から排ガス通路502を通り、図5ないし図7の矢
印のように炭素系微粒子処理用フィルタ1を通過し、そ
の間に炭素系微粒子cが捕集され、浄化された排ガスは
排出部501から排出される。本発明の炭素系微粒子処
理用フィルタ1は高温耐熱性ステンレス鋼繊維を焼結し
た多孔性の高温耐熱性ステンレス鋼繊維焼結体2によっ
て構成されており、しかも高温耐熱性ステンレス鋼繊維
20の母地表面が安定したアルミナ皮膜21でコーティ
ングされている。したがって、酸化性雰囲気においても
機械的強度が高いとともにすぐれた耐熱性を発揮する。
また、高温耐熱性ステンレス鋼繊維20は前記製造法の
特徴から表面積が大きく、かつ断面形状が四角であるた
めそのエッジに炭素系微粒子cが引掛かりやすく、確実
に炭素系微粒子cを捕集することができる。
The operation of the carbon-based fine particle treating apparatus of the present invention will be described. High-temperature exhaust gas G containing carbon-based fine particles c discharged from a diesel internal combustion engine or a combustion apparatus is introduced into the exhaust gas introducing section 5.
00 through the exhaust gas passage 502 and the carbon-based fine particle treatment filter 1 as indicated by the arrows in FIGS. 5 to 7, while the carbon-based fine particles c are collected and purified, the purified exhaust gas is discharged from the discharge section 501. To be done. The carbon-based fine particle treatment filter 1 of the present invention is composed of a porous high-temperature heat-resistant stainless steel fiber sintered body 2 obtained by sintering high-temperature heat-resistant stainless steel fiber, and is a mother of the high-temperature heat-resistant stainless steel fiber 20. The ground surface is coated with a stable alumina film 21. Therefore, it exhibits high mechanical strength and excellent heat resistance even in an oxidizing atmosphere.
Further, the high temperature heat resistant stainless steel fiber 20 has a large surface area and has a square cross-section due to the characteristics of the above-mentioned manufacturing method. be able to.

【0016】このように排ガスの処理を続けると、炭素
系微粒子cは炭素系微粒子処理用フィルタ1の高温耐熱
性ステンレス鋼繊維焼結体2の通気孔22を埋めるよう
に堆積していく。これが図9(a)の状態であり、これ
により通気抵抗が増して炭素系微粒子処理用フィルタ1
の前後の差圧が上昇し、ディーゼル内燃機関や燃焼装置
の燃焼状態が悪くなる。したがって、炭素系微粒子処理
用フィルタ1に捕集した炭素系微粒子cを処理し、炭素
系微粒子処理用フィルタ1を再生しなければならない。
炭素系微粒子処理用フィルタ1の再生は、前述のように
処理用フィルタに付着している炭素系微粒子cを電気ヒ
ータやバーナにより着火させて伝播燃焼させる方法や、
排ガス流れと逆方向から圧縮空気を送り、炭素系微粒子
を払い落とす方法などを用いることができるが、いずれ
も煩雑であるうえに確実性に乏しかったり、処理に時間
がかかる。
When the treatment of the exhaust gas is continued in this manner, the carbon-based fine particles c are deposited so as to fill the ventilation holes 22 of the high temperature heat-resistant stainless steel fiber sintered body 2 of the carbon-based fine particle treatment filter 1. This is the state shown in FIG. 9 (a), which increases the ventilation resistance and increases the carbon-based particulate treatment filter 1.
The differential pressure before and after rises, and the combustion state of the diesel internal combustion engine or combustion device deteriorates. Therefore, it is necessary to treat the carbon-based fine particles c collected in the carbon-based fine-particle treatment filter 1 to regenerate the carbon-based fine-particle treatment filter 1.
Regeneration of the carbon-based fine particle processing filter 1 is performed by igniting the carbon-based fine particles c adhering to the processing filter by an electric heater or a burner to propagate and burn as described above,
It is possible to use a method in which compressed air is sent in the direction opposite to the exhaust gas flow to blow off carbonaceous fine particles, but all of them are complicated and lack certainty, and the treatment takes time.

【0017】しかし、本発明においては高温耐熱性ステ
ンレス鋼繊維焼結体2が良好な熱伝導率を有することに
加えて通電による抵抗発熱性を有している。しかも高温
耐熱性ステンレス鋼繊維20は繊維交差部が母地同士接
合しているから、高温耐熱性ステンレス鋼繊維焼結体2
は全体で均一な抵抗発熱性を有している。そこで、上記
のように差圧が高くなったときに通電装置Eの電源6か
ら電極3,3を通して炭素系微粒子処理用フィルタ1に
電気を流せば、図9(b)のように炭素系微粒子処理用
フィルタ1自体がジュール熱により全体が均一に発熱
し、その熱により高温耐熱性ステンレス鋼繊維20の目
に捕集されている炭素系微粒子cが確実に着火され、燃
焼除去させられる。これにより炭素系微粒子処理用フィ
ルタ1の前後の差圧は初期の状態に戻る。このように、
炭素系微粒子処理用フィルタ1へ通電し、それ自体の発
熱により再生を行うため炭素系微粒子の燃え残りは生じ
ず、かつ高温耐熱性ステンレス鋼繊維20は上記したよ
うに表面のアルミナ皮膜21によりすぐれた耐熱性があ
るため炭素系微粒子処理用フィルタ1の破損や溶融が起
こらない。前記再生操作は、コントローラ7がタイマで
ある場合には、あらかじめ実験などで測定した結果に基
いて設定した時間間隔で自動的に電源6が作動すること
によって行われ、また、差圧検出系を有している場合に
は、排ガス圧力検出器70,71からの信号から差圧を
求め、それがある設定した差圧Psになったときに自動
的に電源6が作動することによって行われる。
However, in the present invention, the high temperature heat resistant stainless steel fiber sintered body 2 has not only good thermal conductivity but also resistance heat generation due to energization. Moreover, since the high temperature heat resistant stainless steel fiber 20 has the fiber intersections bonded to each other at the base material, the high temperature heat resistant stainless steel fiber sintered body 2
Has a uniform resistance heating property as a whole. Therefore, when electric power is applied from the power source 6 of the energizing device E to the carbon-based particulate treatment filter 1 through the electrodes 3 and 3 when the differential pressure becomes high as described above, the carbon-based particulates are discharged as shown in FIG. 9B. The whole of the processing filter 1 itself is uniformly heated by Joule heat, and the heat reliably ignites and removes the carbon-based fine particles c captured in the eyes of the high temperature heat resistant stainless steel fiber 20 by burning. As a result, the differential pressure before and after the carbon-based particulate treatment filter 1 returns to the initial state. in this way,
Since the carbon-based particulate treatment filter 1 is energized and regenerated by its own heat generation, no carbon-based particulates remain unburned, and the high-temperature heat-resistant stainless steel fiber 20 is excellent due to the alumina coating 21 on the surface as described above. Since it has heat resistance, the carbon-based particulate treatment filter 1 is not damaged or melted. When the controller 7 is a timer, the regeneration operation is performed by automatically operating the power source 6 at a time interval set based on a result measured in advance by an experiment or the like. If it does, the differential pressure is obtained from the signals from the exhaust gas pressure detectors 70 and 71, and when the differential pressure Ps reaches a set differential pressure, the power source 6 is automatically operated.

【0018】[0018]

【実施例】次に本発明の実施例を説明する。 実施例1 1)C:0.004%、Si:0.14%、Mn:0.13%、Cr:20.02%、Al:4.
9%、La:0.08%残部鉄及び不可避的不純物からなる厚さ20
μmのFe-Cr-Al-REM系ステンレス薄板を主軸にコイル状
に巻き、回転させながら工具の送り量を10μm/minで切
削して、断面が30μm×15μmのFe-Cr-Al-REM系ステン
レス長繊維を製作した。その長繊維を長さ150mmに切断
した後、2000g/m2になるように集積してウェブを作っ
た。このウェブを非酸化性雰囲気で1120℃、2時間で40g
/m2の荷重をかけて焼成した。その後、空気雰囲気で100
0℃で6時間熱処理し、形状が長方形で、寸法が500×90
0×0.8mmの炭素系微粒子処理用フィルタを得た。 2)上記炭素系微粒子処理用フィルタを直噴式ディーゼ
ルエンジンの排ガス配管の途中に取り付け、温度300℃
の排ガス中の炭素系微粒子の捕集試験を行った。炭素系
微粒子処理用フィルタの差圧が水柱で200mmになったと
きの炭素系微粒子の捕集率は61%であった。炭素系微
粒子の捕集率は、炭素系微粒子処理用フィルタの入口と
出口の排ガス中の炭素系微粒子の濃度より算出した。
Next, embodiments of the present invention will be described. Example 1 1) C: 0.004%, Si: 0.14%, Mn: 0.13%, Cr: 20.02%, Al: 4.
9%, La: 0.08% Thickness consisting of balance iron and unavoidable impurities 20
Fem-Cr-Al-REM series of Fe-Cr-Al-REM series with a thickness of 30 µm x 15 µm is obtained by winding a thin plate of Fe-Cr-Al-REM series stainless steel around the main shaft in a coil shape and cutting at a tool feed rate of 10 µm / min while rotating. We made stainless long fibers. The long fibers were cut into a length of 150 mm and then accumulated to 2000 g / m 2 to form a web. 40g of this web in a non-oxidizing atmosphere at 1120 ℃ for 2 hours
Firing was performed by applying a load of / m 2 . Then 100 in air atmosphere
Heat treated at 0 ℃ for 6 hours, the shape is rectangular and the size is 500 × 90
A 0 × 0.8 mm carbon-based fine particle treatment filter was obtained. 2) Attach the above-mentioned carbon-based particulate treatment filter in the middle of the exhaust gas pipe of a direct injection diesel engine, and keep the temperature at 300 ° C.
A collection test of carbon-based fine particles in the exhaust gas was conducted. When the differential pressure of the carbon-based fine particle treatment filter was 200 mm in the water column, the collection rate of carbon-based fine particles was 61%. The collection rate of carbon-based fine particles was calculated from the concentration of carbon-based fine particles in the exhaust gas at the inlet and outlet of the carbon-based particulate treatment filter.

【0019】実施例2 1)実施例1の方法によって厚さ0.8mm、幅25mm、長さ9
00mmの平面帯状の焼結体を作り、これを波付け加工した
後、前記条件で熱処理し、図5(a)のような形状の炭素
系微粒子処理用フィルタ本体を製作し、両端に銅製の電
極を取り付けて炭素系微粒子処理用フィルタを得た。こ
の処理用フィルタをステンレス製の容器に絶縁材及び断
熱材を介して配置し、電極には制御回路と電源を取り付
け、制御回路には排ガス入口と出口の差圧を計測する差
圧計を接続した。上記のように作製した炭素系微粒子処
理装置を直噴式ディーゼルエンジンの排ガス配管の途中
に取り付けて排ガスを処理する試験を行った。その試験
結果を図10に示す。図10に示したように、炭素系微
粒子処理用フィルタが排ガス中の炭素系微粒子を捕集す
るにつれて、炭素系微粒子処理装置の装置差圧は次第に
上昇し、装置差圧が設定差圧に達したときに、制御回路
から電極を通じて炭素系微粒子処理用フィルタへ100A
の電流を印加したところ、炭素系微粒子処理装置の装置
差圧は初期の差圧近くまで減少した。この操作を1000回
繰り返し行ったが、同様の差圧の変化を示した。このと
き、炭素系微粒子の処理率は60〜70%であった。また、
炭素系微粒子処理用フィルタは溶融や破損などが何ら生
じなかった。このことから本発明は炭素系微粒子を含む
排ガス処理能力が高く、耐久性も良好であるこことがわ
かる。
Example 2 1) According to the method of Example 1, the thickness is 0.8 mm, the width is 25 mm, and the length is 9 mm.
After making a 00mm flat band-shaped sintered body, corrugating it, and then heat treating it under the above conditions, a carbon-based fine particle treatment filter body of the shape shown in FIG. An electrode was attached to obtain a carbon-based particulate treatment filter. This processing filter was placed in a stainless steel container via an insulating material and a heat insulating material, a control circuit and a power source were attached to the electrodes, and a differential pressure gauge for measuring the differential pressure between the exhaust gas inlet and the outlet was connected to the control circuit. . A test for treating the exhaust gas was conducted by mounting the carbon-based fine particle treatment device produced as described above in the middle of the exhaust gas pipe of a direct injection diesel engine. The test results are shown in FIG. As shown in FIG. 10, as the carbon-based particulate treatment filter collects the carbon-based particulates in the exhaust gas, the apparatus differential pressure of the carbon-based particulate processing apparatus gradually rises, and the apparatus differential pressure reaches the set differential pressure. At that time, 100A from the control circuit through the electrode to the carbon-based particulate treatment filter
When the current was applied, the device pressure difference of the carbon-based particulate treatment device decreased to near the initial pressure difference. This operation was repeated 1000 times, but the same change in differential pressure was observed. At this time, the treatment rate of the carbon-based fine particles was 60 to 70%. Also,
The carbon-based particulate treatment filter did not melt or break. From this, it can be seen that the present invention has a high exhaust gas treatment capacity containing carbonaceous fine particles and a good durability.

【0020】[0020]

【発明の効果】以上説明した本発明の請求項1によれ
ば、排ガス中の炭素系微粒子処理用フィルタが高温耐熱
性ステンレス鋼のコイル材を切削して低コストに製造さ
れた繊維を集積してウェブにした後に、焼結、熱処理し
て得た高温耐熱性ステンレス鋼繊維焼結体からなってお
り、高温耐熱性ステンレス鋼繊維焼結体の繊維表面にア
ルミナ皮膜を有しているため、機械的強度が良好である
上にすぐれた高温耐熱性と高い熱伝導率を備え、しか
も、高温耐熱性ステンレス鋼繊維の断面形状にエッジを
有している。したがって、ディーゼル内燃機関や燃焼装
置から排出される高温の排ガス中の炭素系微粒子を効率
よく捕集することができ、耐久性も良好であるというす
ぐれた効果が得られる。また、高温耐熱性ステンレス鋼
繊維の径や集積してウエブにする際の集積量によって通
気孔径を調整できるため、炭素系微粒子や排ガス中の灰
分を堆積しないようにすることができ、従って長時間使
用可能であるというすぐれた効果が得られる。請求項2
と請求項3によれば、高温の排ガス中の炭素系微粒子を
効率よく捕集することができるうえに、炭素系微粒子処
理用フィルタ自体に通電して全体を均一に自己発熱させ
ることができるため炭素系微粒子を燃え残りなく確実に
燃焼除去することができ、したがって、短時間で簡単、
確実に再生を行うことができるというすぐれた効果が得
られる。
According to claim 1 of the present invention described above, a filter for treating carbon-based fine particles in exhaust gas accumulates fibers produced at low cost by cutting a coil material of high temperature heat resistant stainless steel. After being made into a web, it is made of high temperature heat resistant stainless steel fiber sintered body obtained by sintering and heat treatment, and since it has an alumina film on the fiber surface of the high temperature heat resistant stainless steel fiber sintered body, It has good mechanical strength, excellent high-temperature heat resistance and high thermal conductivity, and also has edges in the cross-sectional shape of high-temperature heat-resistant stainless steel fiber. Therefore, the excellent effect that the carbon-based fine particles in the high-temperature exhaust gas discharged from the diesel internal combustion engine or the combustion device can be efficiently collected and the durability is also good is obtained. In addition, since the vent hole diameter can be adjusted by the diameter of the high temperature heat resistant stainless steel fibers and the amount of accumulation when accumulated into a web, it is possible to prevent carbonaceous fine particles and ash in exhaust gas from accumulating, and thus for a long time. It has the excellent effect of being usable. Claim 2
According to the third aspect, the carbon-based fine particles in the high-temperature exhaust gas can be efficiently collected, and at the same time, the carbon-based fine particle treatment filter itself can be energized to uniformly and entirely generate heat. It is possible to burn and remove the carbon-based fine particles without burning, so that it is easy and quick.
An excellent effect that the reproduction can be surely performed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による炭素系微粒子処理用フィルタを例
示する斜視図である。
FIG. 1 is a perspective view illustrating a carbon-based particulate treatment filter according to the present invention.

【図2】(a)は本発明による炭素系微粒子処理用フィル
タの部分的拡大図、(b)(c)は高温耐熱性ステンレス鋼繊
維焼結体繊維の拡大断面図である。
2 (a) is a partially enlarged view of a filter for treating carbon-based fine particles according to the present invention, and (b) (c) is an enlarged cross-sectional view of a high temperature heat resistant stainless steel fiber sintered body fiber.

【図3】高温耐熱性ステンレス鋼繊維の製造法を示す説
明図である。
FIG. 3 is an explanatory view showing a method for producing high temperature heat resistant stainless steel fibers.

【図4】(a)は図3の方法で得られた高温耐熱性ステン
レス鋼繊維の拡大斜視図、(b)はその拡大断面図であ
る。
4 (a) is an enlarged perspective view of a high temperature heat resistant stainless steel fiber obtained by the method of FIG. 3, and FIG. 4 (b) is an enlarged sectional view thereof.

【図5】(a)は本発明による排ガス中の炭素系微粒子処
理装置の実施例を示す縦断側面図、(b)はその横断面図
である。
FIG. 5 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle treatment apparatus for exhaust gas according to the present invention, and FIG. 5 (b) is a cross-sectional view thereof.

【図6】(a)は本発明による炭素系微粒子処理装置の実
施例を示す縦断側面図、(b)はその横断面図である。
FIG. 6 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle processing apparatus according to the present invention, and FIG. 6 (b) is a transverse sectional view thereof.

【図7】(a)は本発明による炭素系微粒子処理装置の実
施例を示す縦断側面図、(b)はその横断面図である。
FIG. 7 (a) is a vertical sectional side view showing an embodiment of a carbon-based fine particle processing apparatus according to the present invention, and FIG. 7 (b) is a transverse sectional view thereof.

【図8】(a)(b)は複数の処理ユニットを使用した本発明
装置の実施例を示す縦断側面図である。
8 (a) and 8 (b) are longitudinal side views showing an embodiment of the apparatus of the present invention using a plurality of processing units.

【図9】本発明の作用を模式的に示す説明図である。FIG. 9 is an explanatory view schematically showing the action of the present invention.

【図10】本発明による炭素系微粒子処理装置の実験結
果を示す線図である。
FIG. 10 is a diagram showing an experimental result of the carbon-based fine particle processing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 炭素系微粒子処理用フィルタ 2 高温耐熱性ステンレス鋼繊維焼結体 3 電極 5 炭素系微粒子処理ユニット 6 電源 20 高温耐熱性ステンレス鋼繊維 21 アルミナ皮膜 E 通電装置 1 Filter for carbon-based fine particle treatment 2 High-temperature heat-resistant stainless steel fiber sintered body 3 Electrode 5 Carbon-based fine-particle treatment unit 6 Power supply 20 High-temperature heat-resistant stainless steel fiber 21 Alumina coating E Current-carrying device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神道 克美 愛知県豊川市国府町豊成44 (72)発明者 浅見 登志雄 愛知県豊川市諏訪3−123 (72)発明者 加藤 龍彦 愛知県新城市緑が丘5−6−5 (72)発明者 後夷 光一 愛知県岡崎市上地3−23−26 (72)発明者 相澤 幸雄 神奈川県川崎市中原区木月大町203 (72)発明者 関戸 容夫 神奈川県横浜市磯子区洋光台6−28−7 (72)発明者 後藤 晃 神奈川県横浜市鶴見区栄町通3−32−1 (72)発明者 小宮山 知成 神奈川県川崎市幸区南幸町2−46−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Shinto 44, Toyonari, Kofu-cho, Toyokawa-shi, Aichi (72) Inventor Toshio Asami 3-123, Suwa, Toyokawa-shi, Aichi (72) Inventor Tatsuhiko Kato 5 Midorigaoka, Shinshiro-shi, Aichi -6-5 (72) Inventor Koichi Gozo 3-23-26 Uechi, Okazaki City, Aichi Prefecture (23) Inventor Yukio Aizawa 203 Kitsuki Omachi, Nakahara Ward, Kawasaki City, Kanagawa Prefecture (72) Inoue Sekido, Kanagawa Prefecture 6-28-7 Yokodai, Isogo-ku, Yokohama (72) Inventor Akira Goto 3-32-1, Sakaemachi-dori, Tsurumi-ku, Yokohama, Kanagawa Prefecture (72) Tomonari Komiyama 2-46, Minami-sachi-cho, Kawasaki-shi, Kanagawa Two

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】抵抗発熱性を有する高温耐熱性ステンレス
鋼の薄板を巻回したコイル材を端面切削して製造した繊
維を集積してウエブにし、それを焼結および熱処理して
焼結繊維表面にアルミナ皮膜を形成した高温耐熱性ステ
ンレス鋼繊維焼結体からなることを特徴とする排ガス中
の炭素系微粒子処理用フィルタ。
1. A fiber made by cutting an end face of a coil material wound with a thin plate of high temperature heat resistant stainless steel having a resistance heating property is integrated into a web, which is sintered and heat treated to obtain a surface of the sintered fiber. A filter for treating carbon-based fine particles in exhaust gas, characterized by comprising a high temperature heat resistant stainless steel fiber sintered body having an alumina coating formed thereon.
【請求項2】排ガスの導入部と排出部を有する器体と、
抵抗発熱性を有する高温耐熱性ステンレス鋼の薄板を巻
回したコイル材を端面切削して製造した繊維を集積して
ウエブにしそれを焼結および熱処理して焼結繊維表面に
アルミナ皮膜を形成ししかも自由端に電極を取り付けた
高温耐熱性ステンレス鋼繊維焼結体からなる炭素系微粒
子処理用フィルタと、要時に前記電極に通電して炭素系
微粒子処理用フィルタを自己発熱させるための通電装置
を備えていることを特徴とする排ガス中の炭素系微粒子
処理装置。
2. A container having an exhaust gas introduction part and an exhaust part,
Fiber produced by cutting the end surface of a coil material wound with a thin plate of high temperature heat resistant stainless steel having resistance heat generation is integrated into a web, which is sintered and heat treated to form an alumina film on the surface of the sintered fiber. Moreover, a carbon-based particulate treatment filter made of a high temperature heat-resistant stainless steel fiber sintered body having an electrode attached to its free end, and an energizing device for self-heating the carbon-based particulate treatment filter by energizing the electrode when necessary. An apparatus for treating carbon-based fine particles in exhaust gas, which is characterized by being provided.
【請求項3】排ガスの導入部と排出部を有する器体と、
抵抗発熱性を有する高温耐熱性ステンレス鋼の薄板を巻
回したコイル材を端面切削して製造した繊維を集積して
ウエブにしそれを焼結および熱処理して焼結繊維表面に
アルミナ皮膜を形成ししかも自由端に電極を取り付けた
高温耐熱性ステンレス鋼繊維焼結体からなる炭素系微粒
子処理用フィルタと、要時に前記電極に通電して炭素系
微粒子処理用フィルタを自己発熱させるための通電装置
を備えた処理ユニットを複数備えていることを特徴とす
る排ガス中の炭素系微粒子処理装置。
3. A container having an exhaust gas introduction part and an exhaust part,
Fiber produced by cutting the end surface of a coil material wound with a thin plate of high temperature heat resistant stainless steel having resistance heat generation is integrated into a web, which is sintered and heat treated to form an alumina film on the surface of the sintered fiber. Moreover, a carbon-based particulate treatment filter made of a high temperature heat-resistant stainless steel fiber sintered body having an electrode attached to its free end, and an energizing device for self-heating the carbon-based particulate treatment filter by energizing the electrode when necessary. An apparatus for treating carbon-based particulates in exhaust gas, comprising a plurality of treatment units provided.
JP27046495A 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same Expired - Fee Related JP3677328B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27046495A JP3677328B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same
DE69624890T DE69624890T2 (en) 1995-09-25 1996-09-20 Filter for separating soot particles from exhaust gas and device for using the same
EP96115170A EP0764455B1 (en) 1995-09-25 1996-09-20 A filter for a treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter
US08/718,997 US5800790A (en) 1995-09-25 1996-09-24 Filter for treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27046495A JP3677328B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same

Publications (2)

Publication Number Publication Date
JPH0985027A true JPH0985027A (en) 1997-03-31
JP3677328B2 JP3677328B2 (en) 2005-07-27

Family

ID=17486672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27046495A Expired - Fee Related JP3677328B2 (en) 1995-09-25 1995-09-25 Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle device using the same

Country Status (1)

Country Link
JP (1) JP3677328B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042963A1 (en) * 1997-03-25 1998-10-01 Nippon Oil Co., Ltd. Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
JP2003502142A (en) * 1999-06-18 2003-01-21 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High temperature gas filtration system
JP2006176906A (en) * 2004-12-21 2006-07-06 Nippon Felt Co Ltd Fiber aggregate, and heat-resistant felt, dry filter material and bag filter using the same
JP2007253151A (en) * 2006-03-23 2007-10-04 Fiber Tech Co Ltd Metal fiber medium, filter for exhaust gas purifier using this metal fiber medium as filter member, and method for manufacturing this filter
JP2008501498A (en) * 2004-06-01 2008-01-24 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Sintered sintered metal fiber media
JP2011518985A (en) * 2008-04-23 2011-06-30 エスケー エナジー カンパニー リミテッド Exhaust gas reduction device and control method thereof
US8142747B2 (en) 1998-02-06 2012-03-27 Anders Andreasson Catalytic reduction of NOx
JP2014502327A (en) * 2010-11-19 2014-01-30 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Particle separator including a metal layer through which exhaust gas can flow
WO2019139546A3 (en) * 2018-01-11 2019-08-15 Si̇smar Tedari̇k Ve Dağitim Pazarlama Ti̇caret Li̇mi̇ted Şi̇rketi̇ Solid particle-holding turbo exhaust gas inlet filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042963A1 (en) * 1997-03-25 1998-10-01 Nippon Oil Co., Ltd. Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
US8142747B2 (en) 1998-02-06 2012-03-27 Anders Andreasson Catalytic reduction of NOx
JP2003502142A (en) * 1999-06-18 2003-01-21 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High temperature gas filtration system
JP2008501498A (en) * 2004-06-01 2008-01-24 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Sintered sintered metal fiber media
JP2006176906A (en) * 2004-12-21 2006-07-06 Nippon Felt Co Ltd Fiber aggregate, and heat-resistant felt, dry filter material and bag filter using the same
JP2007253151A (en) * 2006-03-23 2007-10-04 Fiber Tech Co Ltd Metal fiber medium, filter for exhaust gas purifier using this metal fiber medium as filter member, and method for manufacturing this filter
JP4569783B2 (en) * 2006-03-23 2010-10-27 ファイバー テック カンパニー リミテッド Metal fiber media, filter for exhaust gas purification apparatus using the same as filter member, and method for manufacturing the filter
JP2011518985A (en) * 2008-04-23 2011-06-30 エスケー エナジー カンパニー リミテッド Exhaust gas reduction device and control method thereof
JP2014502327A (en) * 2010-11-19 2014-01-30 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Particle separator including a metal layer through which exhaust gas can flow
WO2019139546A3 (en) * 2018-01-11 2019-08-15 Si̇smar Tedari̇k Ve Dağitim Pazarlama Ti̇caret Li̇mi̇ted Şi̇rketi̇ Solid particle-holding turbo exhaust gas inlet filter

Also Published As

Publication number Publication date
JP3677328B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
US5800790A (en) Filter for treatment of carbon-based particles in exhaust gas and a device for said treatment using said filter
US5405422A (en) Self-heating filter
JP2732031B2 (en) Exhaust particulate filter for diesel engine
JPH06257422A (en) Particulate trap for diesel engine
JPH0985027A (en) Filter for treating carbon particle in exhaust gas and carbon particle device using the filter
EP0903476A1 (en) Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
JP3677329B2 (en) Filter for treating carbon-based fine particles in exhaust gas and carbon-based fine particle processing apparatus using the same
KR100283491B1 (en) Exhaust gas filter
JP2003097253A (en) Porous metallic complex, dpf using porous metallic complex, and diesel exhaust gas purifier provided with dpf
JP3909450B2 (en) Self-heating diesel particulate filter
US5938802A (en) Exhaust gas purifier
WO1992005857A1 (en) Self-heating filter
JP3770998B2 (en) Gas processing equipment
JPH07127434A (en) Diesel particulate filter
JP4304238B2 (en) Method and apparatus for exhaust gas purification of internal combustion engine
JP2005030280A (en) Filter
JPH11280451A (en) Exhaust emission control device
JPH10274030A (en) Exhaust emission control device
JPS6356814B2 (en)
JP2000154712A (en) Engine-exhaust emission control device
JP2004293417A (en) Exhaust emission control method of internal combustion engine and its device
JPH0610649A (en) Filter for exhaust gas emission control
JPH05345110A (en) Filter for purifying waste gas
JPH06193430A (en) Collecting method of particulate in exhaust gas and filter
JPH10274029A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees