JPH0982882A - Multi-chip module - Google Patents

Multi-chip module

Info

Publication number
JPH0982882A
JPH0982882A JP7241559A JP24155995A JPH0982882A JP H0982882 A JPH0982882 A JP H0982882A JP 7241559 A JP7241559 A JP 7241559A JP 24155995 A JP24155995 A JP 24155995A JP H0982882 A JPH0982882 A JP H0982882A
Authority
JP
Japan
Prior art keywords
cover
substrate
chip
semiconductor chip
semiconductor chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7241559A
Other languages
Japanese (ja)
Inventor
Kenichi Tokuno
健市 得能
Akihiro Dotani
明裕 銅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7241559A priority Critical patent/JPH0982882A/en
Publication of JPH0982882A publication Critical patent/JPH0982882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a board and a cover from warping and to prevent a gap from being produced between a semiconductor chip and the cover by a method wherein a cover fixing rod is fixed to the board which supports the center of the cover that covers semiconductor chips, and a flexible heat conductive resin is provided between the cover and the semiconductor chips. SOLUTION: Semiconductor chips 3 are mounted on a wiring board 1 through the intermediary of bumps 5, and a cover fixing rod 7 which fixes the center of a cover 6 to cover the semiconductor chips 3 with the cover 6 is fixed to the board 1. Flexible heat conductive resins 14 are interposed between the cover 6 and the semiconductor chips 3, heat released from the semiconductor chips 3 is conducted to the cover 6 through the intermediary of the heat conductive resins 14 and then dissipated into the air. By this setup, the board 1 and the cover 6 are protected against deformation caused by a thermal expansion coefficient difference between them, so that a gap is prevented from being produced between the semiconductor chips 3 and the cover 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、1枚の基板に複数
の半導体チップを搭載したマルチチップモジュールに関
し、特にそのカバーを用いた冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chip module in which a plurality of semiconductor chips are mounted on a single substrate, and more particularly to a cooling structure using its cover.

【0002】[0002]

【従来の技術】従来のマルチチップモジュールは、図5
に示すように表面を下に向けた半導体チップ3を、バン
プ5で配線基板1に接続し、半導体チップ3と基板1と
の間を封止樹脂4で封止し、基板1の下面には外部接続
電極2が設けられている。半導体チップ3を覆うカバー
17は周辺部で基板1に取付けられており、カバー17
と半導体チップ3の裏面との間には両者に接する状態で
熱伝導性樹脂14が配置されている。
2. Description of the Related Art A conventional multi-chip module is shown in FIG.
As shown in FIG. 3, the semiconductor chip 3 with the front surface facing downward is connected to the wiring substrate 1 by the bumps 5, and the space between the semiconductor chip 3 and the substrate 1 is sealed with the sealing resin 4. The external connection electrode 2 is provided. The cover 17 that covers the semiconductor chip 3 is attached to the substrate 1 at the peripheral portion.
The heat conductive resin 14 is disposed between the semiconductor chip 3 and the back surface of the semiconductor chip 3 so as to be in contact with both of them.

【0003】また図7に示す従来のマルチチップモジュ
ールでは、基板1に搭載された半導体チップ3の裏面に
ヒートスプレッダー15が固着されている。さらに図8
に示す従来のマルチチップモジュールではヒートシンク
16が半導体チップ3の裏面に固着されている構造にな
っている。
In the conventional multi-chip module shown in FIG. 7, a heat spreader 15 is fixed to the back surface of the semiconductor chip 3 mounted on the substrate 1. Further FIG.
In the conventional multi-chip module shown in (1), the heat sink 16 is fixed to the back surface of the semiconductor chip 3.

【0004】[0004]

【発明が解決しようとする課題】図5に示す従来のマル
チチップモジュールは、カバー6が周辺で基板1に固定
されているため、半導体チップ3が発熱して温度が上昇
すると熱膨張係数(CTE)差により熱応力が基板1に
加わり、基板1に反りの変形が生じる。基板1及びカバ
ー17は共に全長が40mmとし、基板1はガラエポ
(ガラスエポキシ)基板とし、カバー6はアルミからな
るものとする。ガラエポ基板の熱膨張係数は30pp
m、アルミの熱膨張係数は20ppmなので、温度が6
0℃上昇した場合は、熱膨張により基板1が0.072
mm伸び、カバー17が0.048mm伸びる。基板1
がカバー17より0.024mm多く伸びる一方、基板
1の周辺がカバー17に固定されているため、基板1は
熱膨張により反ることとなる。図5はこの反りにより基
板1の撓み量の計算を説明するための図である。図5で
は計算を簡単にするために、熱膨張によるカバー17の
伸びは0と仮定し、基板1の伸びは0.024mm(カ
バー17と基板1の伸びの差)とし、熱膨張後に基板1
の全長が40.024mmとなるものとして示してあ
る。図5において、二等辺三角形ABCの底辺ABはカ
バー17の長さを示し40.000mmである。辺AC
と辺BCは共に20.012mmとなる。二等辺三角形
ABCの高さCD、すなわち熱膨張による基板1の撓み
量は計算により概略0.5mmとなる。
In the conventional multi-chip module shown in FIG. 5, since the cover 6 is fixed to the substrate 1 at the periphery, when the semiconductor chip 3 generates heat and the temperature rises, the coefficient of thermal expansion (CTE) is increased. The thermal stress is applied to the substrate 1 due to the difference, and the substrate 1 is warped and deformed. Both the substrate 1 and the cover 17 have a total length of 40 mm, the substrate 1 is a glass epoxy (glass epoxy) substrate, and the cover 6 is made of aluminum. Glass epoxy substrate has a thermal expansion coefficient of 30 pp
m, the coefficient of thermal expansion of aluminum is 20ppm, so the temperature is 6
When the temperature rises by 0 ° C., the substrate 1 is 0.072 due to thermal expansion.
mm, and the cover 17 extends 0.048 mm. Board 1
Is extended by 0.024 mm more than the cover 17, while the periphery of the substrate 1 is fixed to the cover 17, the substrate 1 is warped due to thermal expansion. FIG. 5 is a diagram for explaining the calculation of the bending amount of the substrate 1 due to this warp. In FIG. 5, in order to simplify the calculation, it is assumed that the expansion of the cover 17 due to thermal expansion is 0, the expansion of the substrate 1 is 0.024 mm (difference in expansion between the cover 17 and the substrate 1), and the substrate 1 is not expanded after thermal expansion.
Is shown as having a total length of 40.024 mm. In FIG. 5, the base AB of the isosceles triangle ABC indicates the length of the cover 17 and is 40.000 mm. Side AC
And the side BC are both 20.12 mm. The height CD of the isosceles triangle ABC, that is, the amount of bending of the substrate 1 due to thermal expansion is calculated to be approximately 0.5 mm.

【0005】チップ3とカバー17の間の熱伝導樹脂1
4の変形ではこの基板1の反りを吸収できず、チップ3
とカバー17の間にすき間ができてしまい冷却性能が悪
化するという問題が発生しやすい。従来はこれを避ける
ためにカバー17と基板1の熱膨張係数を一致させる必
要があり、材料選択上大きな制約となっていた。
Thermal conductive resin 1 between the chip 3 and the cover 17
In the deformation of 4, the warp of the substrate 1 cannot be absorbed and the chip 3
A gap between the cover 17 and the cover 17 is likely to occur, and the cooling performance is likely to deteriorate. In the past, in order to avoid this, it was necessary to match the thermal expansion coefficients of the cover 17 and the substrate 1, which was a great limitation in material selection.

【0006】また図7に示す従来のマルチチップモジュ
ールは半導体チップに固着するヒートスプレッダーのみ
で冷却するため十分な冷却能力が得られない。
Further, the conventional multi-chip module shown in FIG. 7 cannot be cooled sufficiently because it is cooled only by the heat spreader fixed to the semiconductor chip.

【0007】また図8に示す従来のマルチチップモジュ
ールは、半導体チップ3に個別のヒートシンク16が取
付けられており、半導体チップ3でこのヒートシンク1
6を支えるために、半導体チップ3に過大な力が加わる
恐れがある。このためヒートシンク16を大きくするこ
とも制約がある。また個別のヒートシンク16が基板1
上に半導体チップ3の数だけ複数個並ぶため、互いに干
渉しないようにヒートシンク16間に一定の距離を置く
必要があり、基板1上のスペースを冷却に有効に活用で
きない。さらに強制冷却の場合は空気流の流れを考慮し
てヒートシンク16を並べる必要があり配置や形状に制
約が大きいという問題がある。
In the conventional multi-chip module shown in FIG. 8, an individual heat sink 16 is attached to the semiconductor chip 3, and the heat sink 1 is attached to the semiconductor chip 3.
An excessive force may be applied to the semiconductor chip 3 to support the semiconductor chip 6. Therefore, there is a limitation in making the heat sink 16 large. In addition, the individual heat sink 16 is the substrate 1
Since a plurality of semiconductor chips 3 are arranged on the upper side, it is necessary to set a certain distance between the heat sinks 16 so as not to interfere with each other, and the space on the substrate 1 cannot be effectively used for cooling. Further, in the case of forced cooling, it is necessary to arrange the heat sinks 16 in consideration of the flow of the air flow, and there is a problem that the arrangement and the shape are largely restricted.

【0008】[0008]

【課題を解決するための手段】本発明のマルチチップモ
ジュールは、基板上に搭載された複数の半導体チップを
覆うカバーと、このカバーの中央部を支持する前記基板
に固定されたカバー固定柱部と、前記カバーと前記半導
体チップとの間に配置された柔軟な熱伝導性樹脂とを備
えている。
A multi-chip module of the present invention comprises a cover for covering a plurality of semiconductor chips mounted on a substrate, and a cover fixing column portion fixed to the substrate for supporting a central portion of the cover. And a flexible heat conductive resin disposed between the cover and the semiconductor chip.

【0009】本発明のマルチチップモジュールは、カバ
ーは互いに間隔を有して並設された複数枚の平面板から
なり、この平面板のうち最も基板側のもののみが半導体
チップとの間に設けられた熱伝導性樹脂と接するように
もできる。
In the multi-chip module of the present invention, the cover is composed of a plurality of flat plates arranged in parallel with a space between each other, and only the flat plate closest to the substrate is provided between the cover and the semiconductor chip. It can also be in contact with the heat conductive resin.

【0010】本発明のマルチチップモジュールは、半導
体チップにヒートスプレッダーが固着され、熱伝導性樹
脂はカバーと前記ヒートスプレッダーとの間に配置され
るようにもできる。
In the multi-chip module of the present invention, the heat spreader may be fixed to the semiconductor chip, and the heat conductive resin may be disposed between the cover and the heat spreader.

【0011】[0011]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0012】図1は本発明の第1の実施の形態のマルチ
チップモジュールの縦断面図である。
FIG. 1 is a vertical sectional view of a multi-chip module according to a first embodiment of the present invention.

【0013】半導体チップ3がバンプ5で配線基板1に
フリップチップ実装されている。カバー6はカバー固定
柱部7によって基板1に固定される。本図ではカバー6
とカバー固定柱部7が分かれて2つの部材からなってい
るが、これらが一体化して一つの部材からなっていても
によい。カバー固定柱部7は、接着,螺合または基板1
に設けた穴への嵌合等により基板1に固定する。
The semiconductor chip 3 is flip-chip mounted on the wiring board 1 with the bumps 5. The cover 6 is fixed to the substrate 1 by the cover fixing pillar portion 7. In this figure, cover 6
The cover fixing column portion 7 is divided into two members, but they may be integrated into one member. The cover fixing pillar portion 7 is bonded, screwed or the substrate 1
It is fixed to the substrate 1 by fitting it into the hole provided in the substrate 1.

【0014】カバー6と半導体チップ3の間には、この
両者に接して熱伝導性樹脂14が配置されている。半導
体チップ3から発生する熱は熱伝導性樹脂14を介して
カバー6に伝わり、さらに空気中に放散される。熱伝導
性樹脂14の材料としては、シリコン樹脂に熱伝導性の
良いフィラー(銀、アルミナ、ダイヤモンド、シリコン
カーバイド、ボロンナイトライド等)を分散させたコン
パウンド、銀エポキシ樹脂、シリコンラバーなどがあ
る。これらの材料は柔軟性に富み、半導体チップ3やカ
バー6の表面の凹凸、反りなどにもなじみやすい。基板
1の材料としてはガラスエポキシの他に、ポリイミドや
BTレジン、紙フェノールなどの使用が可能である。ま
たカバー6の材料としてはアルミ、アルミ合金、銅など
がある。
A heat conductive resin 14 is disposed between the cover 6 and the semiconductor chip 3 so as to contact them. The heat generated from the semiconductor chip 3 is transmitted to the cover 6 via the heat conductive resin 14 and further dissipated in the air. Examples of the material of the heat conductive resin 14 include compounds in which a filler having good heat conductivity (silver, alumina, diamond, silicon carbide, boron nitride, etc.) is dispersed in silicon resin, silver epoxy resin, silicon rubber and the like. These materials are highly flexible and easily adapt to unevenness and warpage of the surface of the semiconductor chip 3 and the cover 6. As the material of the substrate 1, besides glass epoxy, polyimide, BT resin, paper phenol or the like can be used. The material of the cover 6 includes aluminum, aluminum alloy, copper and the like.

【0015】本形態では、カバー固定柱部7は基板1の
中央付近にあるためカバー6と基板1との熱膨張係数
(CTE)差により基板1及びカバー6に発生する応力
を最小限にすることができる。従って半導体チップ3に
過大な応力を加えることなく良好な放熱特性を得ること
が出来る。本形態の基板等に熱膨張によって生じる応力
の減少効果をもう少し具体的に説明する。実施用環境に
おいてチップ3の温度は85℃程度になり、常温よりの
温度上昇を60℃とするとカバー6がアルミ(CTE:
20ppm)の場合は常温時と比べ約0.12%伸び、
基板1はガラエポ基板(CTE:30ppm)の場合で
約0.2%伸びる。この両者の伸び率の違いが取付け構
造によっては大きな応力を引き起こすが、本形態ではカ
バー固定柱部7は基板1の中央付近にあるためカバー6
と基板1との熱膨張係数(CTE)差により発生する応
力を最小限にすることができる。
In this embodiment, since the cover fixing pillar portion 7 is located near the center of the substrate 1, the stress generated in the substrate 1 and the cover 6 due to the difference in coefficient of thermal expansion (CTE) between the cover 6 and the substrate 1 is minimized. be able to. Therefore, good heat dissipation characteristics can be obtained without applying excessive stress to the semiconductor chip 3. The effect of reducing the stress caused by the thermal expansion of the substrate or the like of this embodiment will be described more specifically. In the working environment, the temperature of the chip 3 is about 85 ° C., and if the temperature rise from room temperature is 60 ° C., the cover 6 is made of aluminum (CTE:
In the case of 20 ppm), it expands by about 0.12% compared to normal temperature,
Substrate 1 is about 0.2% elongated in the case of glass epoxy substrate (CTE: 30 ppm). Although the difference between the two elongation rates causes a large stress depending on the mounting structure, in the present embodiment, the cover fixing column portion 7 is located near the center of the substrate 1, so that the cover 6 is covered.
The stress caused by the difference in coefficient of thermal expansion (CTE) between the substrate 1 and the substrate 1 can be minimized.

【0016】例えばカバー固定柱部7はアルミ(CT
E:20ppm)で、幅が3mmとすると、上昇温度が
60℃とすると、カバー固定柱7の幅方向の熱膨張によ
る伸びは約4μm程度であり、図5に示す従来のカバー
16の伸びの48μmより非常に小さい。またカバー6
の周辺部は何物にも固定されておらずフリーのためこの
伸びによる応力はカバー6には発生しない。すなわちカ
バー6は水平方向に自由に伸長変形することができる。
従って、カバー6にも基板1にも熱膨張による反りは生
じない。チップ3とカバー6の間には柔軟な樹脂14が
有り、温度によるカバー6の伸びは樹脂14の変形もし
くはカバー6と樹脂14の間の滑りにより吸収されチッ
プ3には応力は加わらない。つまりカバー6としてチッ
プ3や基板1と熱膨張係数の異なる材料を使用してもチ
ップ3に応力を発生させることはない。
For example, the cover fixing pillar portion 7 is made of aluminum (CT
E: 20 ppm), the width is 3 mm, and the rising temperature is 60 ° C., the expansion due to the thermal expansion of the cover fixing column 7 in the width direction is about 4 μm, and the expansion of the conventional cover 16 shown in FIG. It is much smaller than 48 μm. Also cover 6
Since the peripheral portion of is not fixed to anything and is free, stress due to this elongation does not occur in the cover 6. That is, the cover 6 can be freely stretched and deformed in the horizontal direction.
Therefore, neither the cover 6 nor the substrate 1 is warped due to thermal expansion. There is a soft resin 14 between the chip 3 and the cover 6, and the expansion of the cover 6 due to the temperature is absorbed by the deformation of the resin 14 or the slip between the cover 6 and the resin 14, and no stress is applied to the chip 3. That is, even if a material having a different thermal expansion coefficient from that of the chip 3 or the substrate 1 is used as the cover 6, no stress is generated in the chip 3.

【0017】また熱伝導性樹脂14の材料として導電性
材料、カバーとして銅を選ぶことにより、半導体チップ
3の裏面を基板上の最低電位に接続することが出来る。
この場合カバー固定柱部7の接続部分の基板表面には最
低電位につながる導体パターンが形成されている。図5
に示す従来のフリップチップ構造では上述のような問題
点を避けるためカバー17の材質に金属ではないものを
使用すると半導体チップ3の裏面と基板表面の導体層を
接続することが困難であった。ある種のLSIにおいて
はチップ裏面を最低電位に落すことは安定動作上必要で
あり、本形態はそのための有力な手段である。
By selecting a conductive material as the material of the heat conductive resin 14 and copper as the cover, the back surface of the semiconductor chip 3 can be connected to the lowest potential on the substrate.
In this case, a conductor pattern connected to the lowest potential is formed on the substrate surface of the connection portion of the cover fixing pillar portion 7. FIG.
In the conventional flip-chip structure shown in FIG. 2, it is difficult to connect the back surface of the semiconductor chip 3 and the conductor layer on the substrate surface when a material other than metal is used for the cover 17 in order to avoid the above problems. In a certain type of LSI, it is necessary to drop the back surface of the chip to the lowest potential for stable operation, and this embodiment is an effective means for that purpose.

【0018】図2は本発明の第2の実施の形態のマルチ
チップモジュールの縦断面図である。
FIG. 2 is a vertical sectional view of a multichip module according to a second embodiment of the present invention.

【0019】半導体チップ3がバンプ5で配線基板1に
フリップチップ実装されており、その裏面にはヒートス
プレッダー15が固着されている。カバー6はカバー固
定柱部7によって基板1に固定される。本形態ではカバ
ー6とカバー固定柱部7が一体化して一つの部材からな
っている。ヒートスプレッダー15とカバー6の間に
は、この両者に接して熱伝導性樹脂14が配置されてい
る。半導体チップ3から発生する熱流はヒートスプレッ
ダー15によって広がり、熱伝導性樹脂14を介してカ
バー6に伝わり、さらに空気中に放散される。半導体チ
ップ3の大きさが比較的小さくしかも発熱量が大きい場
合にはこのヒートスプレッダー15が有効である。図1
に形態では熱伝導性樹脂14がチップ裏面に直接接触し
ているのに対し、本形態ではヒートスプレッダー15が
チップ3の裏面に固着している。ヒートスプレッダー1
5は熱伝導性樹脂14と比べ熱抵抗は大幅に小さく、広
がりによる低熱抵抗化の効果が大きい。ヒートスプレッ
ダー15の材料として、アルミニウム、アルミ合金、
銅、銅合金、銅タングステンなどの金属や、チッカアル
ミなどのセラミックスが使用できる。
The semiconductor chip 3 is flip-chip mounted on the wiring board 1 with the bumps 5, and the heat spreader 15 is fixed to the back surface thereof. The cover 6 is fixed to the substrate 1 by the cover fixing pillar portion 7. In this embodiment, the cover 6 and the cover fixing pillar portion 7 are integrally formed of one member. A heat conductive resin 14 is arranged between the heat spreader 15 and the cover 6 so as to contact them. The heat flow generated from the semiconductor chip 3 is spread by the heat spreader 15, is transmitted to the cover 6 via the heat conductive resin 14, and is further dissipated in the air. The heat spreader 15 is effective when the size of the semiconductor chip 3 is relatively small and the amount of heat generated is large. FIG.
In the second embodiment, the heat conductive resin 14 is in direct contact with the back surface of the chip, whereas in this embodiment, the heat spreader 15 is fixed to the back surface of the chip 3. Heat spreader 1
The thermal resistance of No. 5 is much smaller than that of the heat conductive resin 14, and the effect of lowering the thermal resistance due to the spread is great. As the material of the heat spreader 15, aluminum, aluminum alloy,
Metals such as copper, copper alloys and copper tungsten, and ceramics such as ticker aluminum can be used.

【0020】また、本形態と図7の従来のマルチチップ
モジュールとを比べると、従来のものの冷却構造がヒー
トスプレッダー15のみなのに対し本形態ではカバー6
が熱伝導性樹脂14を介してヒートスプレッダー15に
接触しており、これによる放熱面積の拡大により放熱能
力が大幅に増大していることがわかる。しかもカバー6
に接触で不要な応力が発生しないことは図1に示す形態
と同じである。
Further, comparing this embodiment with the conventional multi-chip module of FIG. 7, the cooling structure of the conventional one is only the heat spreader 15, whereas in this embodiment the cover 6 is used.
Are in contact with the heat spreader 15 via the heat conductive resin 14, and it is understood that the heat dissipation capacity is greatly increased due to the expansion of the heat dissipation area. Moreover, the cover 6
As in the embodiment shown in FIG. 1, no unnecessary stress is generated by the contact with.

【0021】またヒートスプレッダー15として、チッ
カアルミを用いることによりこれが電気的絶縁物なの
で、図1の形態と異なりチップ裏面をカバー6から電気
的に絶縁することができる。これは例えばカバー6を接
地し、チップ3の裏面をVcc電源などに接続する場合
に有効である。
Since the heat spreader 15 is made of ticker aluminum and is an electrical insulator, the back surface of the chip can be electrically insulated from the cover 6 unlike the configuration of FIG. This is effective, for example, when the cover 6 is grounded and the back surface of the chip 3 is connected to a Vcc power source or the like.

【0022】図3(a)及び(b)はそれぞれ本発明の
第3の実施の形態マルチチップモジュールの縦断面図及
び平面図である。
FIGS. 3A and 3B are a vertical sectional view and a plan view, respectively, of a multichip module according to a third embodiment of the present invention.

【0023】半導体チップ3がバンプ5で配線基板1に
フリップチップ実装されている。カバー6はカバー固定
柱部7によって基板1に固定される。カバー6はカバー
固定柱部7を軸として複数段の金属板が平行して並んで
設けられたもので放熱用のフィン構造になっている。こ
の金属板は円形状で基板1に取り付ける際に取り付け向
きに依存しない構造になっている。カバー6の最下段の
金属板は熱伝導性樹脂14を介して半導体チップ3に接
している。半導体チップ3から発生する熱は熱伝導性樹
脂14を介してカバー6に伝わり、さらに空気中に放散
される。本実施例の構造をとることにより、半導体チッ
プ3からの熱は効率良く空気中に放熱される。カバー6
の材料としてはアルミ、アルミ合金、銅などがある。本
形態では半導体チップ3に固着するヒートスプレッダー
を示していないが、もちろん図2のように半導体チップ
3に固着するヒートスプレッダーがある構造でもかまわ
ない。
The semiconductor chip 3 is flip-chip mounted on the wiring board 1 with the bumps 5. The cover 6 is fixed to the substrate 1 by the cover fixing pillar portion 7. The cover 6 has a plurality of stages of metal plates arranged in parallel with the cover fixing column portion 7 as an axis and has a fin structure for heat dissipation. This metal plate is circular and has a structure that does not depend on the mounting direction when mounted on the substrate 1. The lowermost metal plate of the cover 6 is in contact with the semiconductor chip 3 via the heat conductive resin 14. The heat generated from the semiconductor chip 3 is transmitted to the cover 6 via the heat conductive resin 14 and further dissipated in the air. With the structure of this embodiment, the heat from the semiconductor chip 3 is efficiently dissipated into the air. Cover 6
Examples of materials include aluminum, aluminum alloys, and copper. Although the heat spreader fixed to the semiconductor chip 3 is not shown in the present embodiment, it goes without saying that a structure having a heat spreader fixed to the semiconductor chip 3 may be used as shown in FIG.

【0024】本形態はカバー6が基板1上の複数の半導
体チップ3に一括して接触する構造なので基板1上のス
ペース全体をヒートシンクとして利用でき、効率良く冷
却することができる。また全体が一つのヒートシンクと
なっているため空気流の乱れも発生しにくい。さらにカ
バー6の重量を半導体チップ3で支えるのではなく、カ
バー固定柱部7で支える構造であり半導体チップ3には
不要な力が加わらない。
In this embodiment, since the cover 6 is in contact with the plurality of semiconductor chips 3 on the substrate 1 at a time, the entire space on the substrate 1 can be used as a heat sink and can be cooled efficiently. Moreover, since the whole is a single heat sink, turbulence of the air flow is unlikely to occur. Further, the weight of the cover 6 is not supported by the semiconductor chip 3, but is supported by the cover fixing column portion 7, so that unnecessary force is not applied to the semiconductor chip 3.

【0025】図4は本発明の第4の実施の形態の平面
図、5個の半導体チップ3がバンプで配線基板1にフリ
ップチップ実装されている。1つの半導体チップ3が基
板1及びカバー6の中央に配置され、この中央の半導体
チップ3の周囲に4つのカバー固定柱部7が設けられて
いる。
FIG. 4 is a plan view of the fourth embodiment of the present invention, and five semiconductor chips 3 are flip-chip mounted on the wiring board 1 by bumps. One semiconductor chip 3 is arranged in the center of the substrate 1 and the cover 6, and four cover fixing pillar portions 7 are provided around the center semiconductor chip 3.

【0026】[0026]

【発明の効果】以上説明したように、本発明のマルチチ
ップモジュールは、平面板状のカバーをカバー固定柱部
のみで基板と接合し、基板に実装された半導体チップと
は熱伝導性樹脂を介して接触する構造としたので、従来
のマルチチップモジュールのようにカバーと基板との熱
膨張係数差による基板及びカバーの反りの変形がなく半
導体チップとカバーの間のすき間の発生を防止し、効率
よく半導体チップの冷却を行えるという効果を有する。
またカバーを基板上の複数個の半導体チップに一括して
接触させることにより、単純な構造でかつ無駄なスペー
スがなくせるため効率良く冷却することができる。さら
にカバーを複数枚の平面板を平行して並べるヒートシン
ク構造とすることにより、冷却性能を向上させることが
できる。
As described above, according to the multi-chip module of the present invention, the flat plate-like cover is joined to the substrate only by the cover fixing column portion, and the semiconductor chip mounted on the substrate is made of the heat conductive resin. Since it has a structure in which the cover and the substrate are in contact with each other, unlike the conventional multi-chip module, there is no deformation of the warp of the substrate and the cover due to the difference in thermal expansion coefficient between the cover and the substrate, and the occurrence of a gap between the semiconductor chip and the cover is prevented, This has the effect of efficiently cooling the semiconductor chip.
Further, since the cover is brought into contact with a plurality of semiconductor chips on the substrate all at once, a simple structure and a useless space can be eliminated, so that the cooling can be efficiently performed. Further, the cooling performance can be improved by providing the cover with a heat sink structure in which a plurality of flat plates are arranged in parallel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態のマルチチップモジ
ュールの縦断面図である。
FIG. 1 is a vertical sectional view of a multi-chip module according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態のマルチチップモジ
ュールの縦断面図である。
FIG. 2 is a vertical sectional view of a multichip module according to a second embodiment of the present invention.

【図3】(a)及び(b)はそれぞれ本発明の第3の実
施の形態のマルチチップモジュールの縦断面図及び平面
図である。
3A and 3B are a vertical cross-sectional view and a plan view, respectively, of a multi-chip module according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態のマルチチップモジ
ュールの平面図である。
FIG. 4 is a plan view of a multi-chip module according to a fourth embodiment of the present invention.

【図5】従来のマルチチップモジュールの縦断面図であ
る。
FIG. 5 is a vertical sectional view of a conventional multi-chip module.

【図6】図5に示す従来のマルチチップモジュールの基
板1の変形量の計算を説明するための図である。
FIG. 6 is a diagram for explaining calculation of a deformation amount of the substrate 1 of the conventional multi-chip module shown in FIG.

【図7】従来の他のマルチチップモジュールの縦断面図
である。
FIG. 7 is a vertical cross-sectional view of another conventional multi-chip module.

【図8】従来のさらに他のマルチチップモジュールの縦
断面図である。
FIG. 8 is a vertical cross-sectional view of still another conventional multi-chip module.

【符号の説明】[Explanation of symbols]

1 基板 2 外部接続電極 3 半導体チップ 4 封止樹脂 5 バンプ 6 カバー 7 カバー固定柱部 14 熱伝導性樹脂 15 ヒートスプレッダー 16 ヒートシンク 17 カバー 1 Substrate 2 External Connection Electrode 3 Semiconductor Chip 4 Sealing Resin 5 Bump 6 Cover 7 Cover Fixing Column 14 Thermal Conductive Resin 15 Heat Spreader 16 Heat Sink 17 Cover

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板像に搭載された複数の半導体チップ
を覆うカバーと、このカバーの中央部を支持する前記基
板に固定されたカバー固定柱部と、前記カバーと前記半
導体チップとの間に配置された柔軟な熱伝導性樹脂とを
含むことを特徴とするマルチチップモジュール。
1. A cover for covering a plurality of semiconductor chips mounted on a substrate image, a cover fixing pillar portion fixed to the substrate for supporting a central portion of the cover, and a space between the cover and the semiconductor chip. A multi-chip module including a flexible heat conductive resin arranged.
【請求項2】 カバーは互いに間隔を有して並設された
複数枚の平面板からなり、この平面板のうち最も基板側
のもののみが半導体チップとの間に設けられた熱伝導性
樹脂と接することを特徴とする請求項1記載のマルチチ
ップモジュール。
2. The heat conductive resin in which the cover is composed of a plurality of plane plates arranged in parallel with a space between each other, and only the plane plate closest to the substrate is provided between the cover and the semiconductor chip. The multi-chip module according to claim 1, wherein the multi-chip module is in contact with.
【請求項3】 半導体チップにヒートスプレッダーが固
着され、熱伝導性樹脂はカバーと前記ヒートスプレッダ
ーとの間に配置されたことを特徴とする請求項1又は2
記載のマルチチップモジュール。
3. The heat spreader is fixed to the semiconductor chip, and the heat conductive resin is arranged between the cover and the heat spreader.
The described multi-chip module.
【請求項4】 カバー固定柱部は、カバーの中央に一本
だけ設けられたことを特徴とする請求項1又は3記載の
マルチチップモジュール。
4. The multi-chip module according to claim 1, wherein only one cover fixing pillar portion is provided in the center of the cover.
【請求項5】 カバー固定柱部は、カバーの中央部に位
置する半導体チップの周囲に複数本が設けられたことを
特徴とする請求項1又は3記載のマルチチップモジュー
ル。
5. The multi-chip module according to claim 1, wherein a plurality of cover fixing pillar portions are provided around a semiconductor chip located in a central portion of the cover.
JP7241559A 1995-09-20 1995-09-20 Multi-chip module Pending JPH0982882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7241559A JPH0982882A (en) 1995-09-20 1995-09-20 Multi-chip module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7241559A JPH0982882A (en) 1995-09-20 1995-09-20 Multi-chip module

Publications (1)

Publication Number Publication Date
JPH0982882A true JPH0982882A (en) 1997-03-28

Family

ID=17076156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7241559A Pending JPH0982882A (en) 1995-09-20 1995-09-20 Multi-chip module

Country Status (1)

Country Link
JP (1) JPH0982882A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542626A (en) * 1999-04-20 2002-12-10 タイコ・エレクトロニクス・コーポレイション Dissipation of heat from circuit boards with bare silicon chips
JP2003060523A (en) * 2001-08-09 2003-02-28 Tdk Corp Radio communication module
EP1198005A4 (en) * 1999-03-26 2004-11-24 Hitachi Ltd Semiconductor module and method of mounting
US6940162B2 (en) 1999-03-26 2005-09-06 Renesas Technology Corp. Semiconductor module and mounting method for same
JP2008235369A (en) * 2007-03-16 2008-10-02 Fujitsu Ltd Semiconductor device
JP2009283958A (en) * 2005-04-19 2009-12-03 Renesas Technology Corp Semiconductor device
CN103066027A (en) * 2011-08-25 2013-04-24 丰田自动车株式会社 Power module, method for manufacturing power module, and molding die
US8575757B2 (en) 2005-04-19 2013-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN104716109A (en) * 2013-12-11 2015-06-17 台湾积体电路制造股份有限公司 Packages with Thermal Management Features for Reduced Thermal Crosstalk and Methods of Forming Same
CN105702691A (en) * 2014-12-11 2016-06-22 株式会社东芝 Solid-state imaging device, camera module, and method for manufacturing solid-state imaging device
US10115694B2 (en) 2015-12-25 2018-10-30 Fujitsu Limited Electronic device, electronic device fabrication method, and electronic apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198005A4 (en) * 1999-03-26 2004-11-24 Hitachi Ltd Semiconductor module and method of mounting
US6940162B2 (en) 1999-03-26 2005-09-06 Renesas Technology Corp. Semiconductor module and mounting method for same
JP2002542626A (en) * 1999-04-20 2002-12-10 タイコ・エレクトロニクス・コーポレイション Dissipation of heat from circuit boards with bare silicon chips
JP2003060523A (en) * 2001-08-09 2003-02-28 Tdk Corp Radio communication module
US8928147B2 (en) 2005-04-19 2015-01-06 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9299681B2 (en) 2005-04-19 2016-03-29 Renesas Electronics Corporation Semiconductor device and method of manufacturing
US10714415B2 (en) 2005-04-19 2020-07-14 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8575757B2 (en) 2005-04-19 2013-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8581410B2 (en) 2005-04-19 2013-11-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8822269B2 (en) 2005-04-19 2014-09-02 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US10283444B2 (en) 2005-04-19 2019-05-07 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US9831166B2 (en) 2005-04-19 2017-11-28 Renesas Electronics Corporation Semiconductor device
US9576890B2 (en) 2005-04-19 2017-02-21 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2009283958A (en) * 2005-04-19 2009-12-03 Renesas Technology Corp Semiconductor device
US9496153B2 (en) 2005-04-19 2016-11-15 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2008235369A (en) * 2007-03-16 2008-10-02 Fujitsu Ltd Semiconductor device
US9059145B2 (en) 2011-08-25 2015-06-16 Toyota Jidosha Kabushiki Kaisha Power module, method for manufacturing power module, and molding die
CN103066027A (en) * 2011-08-25 2013-04-24 丰田自动车株式会社 Power module, method for manufacturing power module, and molding die
CN104716109A (en) * 2013-12-11 2015-06-17 台湾积体电路制造股份有限公司 Packages with Thermal Management Features for Reduced Thermal Crosstalk and Methods of Forming Same
CN104716109B (en) * 2013-12-11 2017-09-19 台湾积体电路制造股份有限公司 With packaging part of thermal management component for reducing hot crosstalk and forming method thereof
CN105702691A (en) * 2014-12-11 2016-06-22 株式会社东芝 Solid-state imaging device, camera module, and method for manufacturing solid-state imaging device
US10115694B2 (en) 2015-12-25 2018-10-30 Fujitsu Limited Electronic device, electronic device fabrication method, and electronic apparatus

Similar Documents

Publication Publication Date Title
US5777847A (en) Multichip module having a cover wtih support pillar
EP0871352B1 (en) Integrated circuit device cooling structure
JP3241639B2 (en) Multi-chip module cooling structure and method of manufacturing the same
KR900002213B1 (en) Cooling system for electron circuit device
US5396403A (en) Heat sink assembly with thermally-conductive plate for a plurality of integrated circuits on a substrate
US7361986B2 (en) Heat stud for stacked chip package
US7772692B2 (en) Semiconductor device with cooling member
US10342160B2 (en) Heat sink attachment on existing heat sinks
JPH07147466A (en) Electronic component unit and manufacture thereof
JPS62123747A (en) Mounting of semiconductor chip and electrical contact device
KR970077570A (en) Semiconductor device and manufacturing method
JPH0982882A (en) Multi-chip module
JP2001244391A (en) Cooling structure of multichip module
US6014314A (en) Package structure of a multi-chip module
JP2002110869A (en) Semiconductor device
JPH10335521A (en) Semiconductor device
JPH02276264A (en) Ceramic package provided with heat sink
JPH04291750A (en) Head radiating fin and semiconductor integrated circuit device
JP3157541B2 (en) Semiconductor package with heat sink
JP2003258165A (en) Semiconductor device
JPH06232294A (en) Semiconductor integrated circuit device
JPH05206320A (en) Multi-chip module
JPH08264688A (en) Ceramic package for semiconductor
JP2004087700A (en) Semiconductor device and its manufacturing method
CN111554643A (en) Heat sink design for flip chip ball grid array

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990608