JPH0982667A - Abrasive and polishing and flattening - Google Patents

Abrasive and polishing and flattening

Info

Publication number
JPH0982667A
JPH0982667A JP24129995A JP24129995A JPH0982667A JP H0982667 A JPH0982667 A JP H0982667A JP 24129995 A JP24129995 A JP 24129995A JP 24129995 A JP24129995 A JP 24129995A JP H0982667 A JPH0982667 A JP H0982667A
Authority
JP
Japan
Prior art keywords
polishing
film
abrasive
cerium oxide
polishing rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24129995A
Other languages
Japanese (ja)
Inventor
Kenji Furusawa
健志 古沢
Kikuo Kusukawa
喜久雄 楠川
Yoshio Honma
喜夫 本間
Masayuki Nagasawa
正幸 長澤
Shigeo Moriyama
茂夫 森山
Hidekazu Goshima
秀和 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24129995A priority Critical patent/JPH0982667A/en
Publication of JPH0982667A publication Critical patent/JPH0982667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the surface of a stepped substrate flatten without increasing cost by a method wherein an abrasive obtainable by mixing a plurality of kinds of abrasives is used as the abrasive for materials to be polished, which contain silicon and have polishing rates different from each other. SOLUTION: A low-cost organic coat glass film (an organic SOG film) 4 is formed on an insulating film 2 to keep thickened the film thickness of the film 2 prior to a polishing. A plurality of abrasives having different abrasion characteristics are mixed and a laminated film consisting of the films 2 and 4 is polished and flattened using the abrasive adjusted so that the polishing rates of the films 2 and 4 become the same degree. The polishing rate of the film 4 at a region of pH >3 is high in a cerium oxide abrasive having small crystallites (30nm or smaller) and in contact with this, the polishing rate is low in a cerium oxide abrasive having large crystallites (60nm or larger). Accordingly, by mixing these abrasives, the polishing rate of the film 4 can be adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、素子や配線パターン等
による段差が表面に形成され、段差が生じた基板の表面
を平坦化するための研磨剤、および研磨平坦化方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing agent for flattening the surface of a substrate on which a step due to an element, a wiring pattern or the like is formed on the surface, and a polishing flattening method.

【0002】[0002]

【従来の技術】従来、広く用いられている段差付き基板
の研磨平坦化方法の代表例2種を図1および図2を用い
て説明する。
2. Description of the Related Art Conventionally, two typical examples of a method of polishing and flattening a stepped substrate will be described with reference to FIGS.

【0003】図1は、最もシンプルな方法である。ま
ず、同図(a)のように、段差付き基板1上に化学気相
成長法(以下、CVD)により、酸化珪素膜等の絶縁膜
2を形成する。この際、下地基板の凹部上の絶縁膜が少
なくとも下地基板の凸部よりも高くなるようにする必要
がある。次いで、同図(b)に示すように、基板表面を
化学機械研磨法(以下、CMP)を用いて研磨平坦化す
る。この例のように酸化珪素膜等を研磨する場合は、研
磨剤として、フュームドシリカをアルカリ中に分散した
研磨剤が用いられることが多い。研磨の結果、同図
(c)に示すような、研磨前よりも平坦化された表面を
得る。
FIG. 1 is the simplest method. First, as shown in FIG. 3A, an insulating film 2 such as a silicon oxide film is formed on a substrate 1 with steps by a chemical vapor deposition method (hereinafter, CVD). At this time, the insulating film on the concave portion of the base substrate needs to be at least higher than the convex portion of the base substrate. Then, as shown in FIG. 3B, the surface of the substrate is polished and flattened by a chemical mechanical polishing method (hereinafter, CMP). When polishing a silicon oxide film or the like as in this example, a polishing agent in which fumed silica is dispersed in an alkali is often used as the polishing agent. As a result of polishing, a flattened surface as compared with that before polishing is obtained as shown in FIG.

【0004】絶縁膜2を形成する際には、下地段差の間
隔が狭い場所で絶縁膜中2に空洞(ボイド)が生じない
ようにすることが望ましい。このため以下に示すよう
に、絶縁膜の形成法あるいは材料に工夫がされることが
多い。まず第一に、硼素,燐のいずれかあるいはその両
者を1原子%以上含む酸化珪素膜(以下、BPSG)を
用いることである。BPSGは800度から900度の
温度で流動化(リフロー)するため、この温度で加熱す
れば空洞をなくすことができる。第二に、バイアスエレ
クトロンサイクロトロンレゾナンス方式によるCVD
(以下、バイアスECR CVD)法を用いることであ
る。この方法は、膜形成時に基板1にバイアス(負電
圧)を加えることによって堆積とエッチングを同時に行
うため、埋め込み性がよい。従って、ボイドを生じるこ
となく酸化珪素膜で段差を埋め込むことができる。ま
た、このバイアスECR CVD法を用いて、低誘電率
のフッ素を1原子%以上含む酸化珪素膜(以下、SiO
F)で段差を埋め込むこともある。以下、BPSG,S
iOF等をドープド酸化珪素膜と呼ぶ。
When the insulating film 2 is formed, it is desirable that voids do not occur in the insulating film 2 in places where the gap between the underlying steps is narrow. Therefore, as shown below, a method or material for forming the insulating film is often devised. First of all, a silicon oxide film (hereinafter, BPSG) containing 1 atomic% or more of either or both of boron and phosphorus is used. Since BPSG fluidizes (reflows) at a temperature of 800 to 900 ° C., it is possible to eliminate voids by heating at this temperature. Second, CVD by bias electron cyclotron resonance method
(Hereinafter referred to as bias ECR CVD) method. In this method, since the deposition and the etching are performed at the same time by applying a bias (negative voltage) to the substrate 1 when forming the film, the embedding property is good. Therefore, the step can be filled with the silicon oxide film without generating voids. Further, by using this bias ECR CVD method, a silicon oxide film containing 1 atomic% or more of fluorine having a low dielectric constant (hereinafter referred to as SiO 2
The step may be embedded in F). Below, BPSG, S
iOF and the like are called a doped silicon oxide film.

【0005】図2は従来の段差付き基板の研磨平坦化方
法のもう一つの方法である。まず、同図(a)のよう
に、段差付き基板1上に化学気相成長法(以下、CV
D)により、酸化珪素膜等の絶縁膜2を形成する。この
際、絶縁膜2として用いられる材料及び形成方法は図1
に示した例と同様である。次いで、同図(b)に示すよ
うに、下地段差の凹部に研磨速度の遅い膜(研磨ストッ
パ)3を形成する。次に、基板表面をCMP法を用いて
研磨平坦化する。研磨剤も図1に示した例と同様であ
る。研磨の結果、同図(c)に示すような、研磨前より
も平坦化された表面を得る。
FIG. 2 shows another conventional method for flattening a stepped substrate by polishing. First, as shown in FIG. 3A, a chemical vapor deposition method (hereinafter, CV
The insulating film 2 such as a silicon oxide film is formed by D). At this time, the material used for the insulating film 2 and the forming method are shown in FIG.
This is the same as the example shown in FIG. Next, as shown in FIG. 3B, a film (polishing stopper) 3 having a slow polishing rate is formed in the concave portion of the underlying step. Next, the surface of the substrate is polished and flattened by the CMP method. The abrasive is also similar to the example shown in FIG. As a result of polishing, a flattened surface as compared with that before polishing is obtained as shown in FIG.

【0006】上記の例での研磨ストッパ3は、研磨速度
が絶縁膜2の1/5以下の材料を用いる。ここでの研磨
速度とは、図2(b)(c)のような段差付き基板上で
複数の膜を同時に研磨している場合の研磨速度ではな
く、平坦な基板上にこれらの材料を単独で形成し、それ
を図2(b)(c)と同じ条件で独立に研磨したときの
研磨速度のことである。以下、研磨速度とはこの意味で
用いる。例えば、フュームドシリカ研磨剤を用いる場
合、BPSG用の研磨ストッパとしては窒化珪素が用い
られる。窒化珪素の研磨速度はBPSGの約1/6であ
る。
The polishing stopper 3 in the above example uses a material whose polishing rate is ⅕ or less of that of the insulating film 2. The polishing rate here does not mean the polishing rate in the case where a plurality of films are simultaneously polished on a stepped substrate as shown in FIGS. 2B and 2C, but these materials alone on a flat substrate. And the polishing rate when independently polished under the same conditions as in FIGS. 2 (b) and 2 (c). Hereinafter, the polishing rate is used in this sense. For example, when using a fumed silica polishing agent, silicon nitride is used as a polishing stopper for BPSG. The polishing rate of silicon nitride is about 1/6 that of BPSG.

【0007】[0007]

【発明が解決しようとする課題】図1で示した方法で十
分な平坦性を得るには、絶縁膜2の膜厚を非常に厚く
し、研磨量を多くしなければならない。しかし、絶縁膜
2を形成するためのCVD法はコストが高いため、この
方法は実用的ではない。コストの問題は、膜形成速度の
遅いバイアスECR CVD法を用いた場合には特に深
刻である。従って、実用上のコストを考えた場合、絶縁
膜2の膜厚は最低限(下地基板の凹部上の絶縁膜が少な
くとも凸部よりも高くなるようにする)にせざるを得な
いため、図1(c)に示したように表面に段差が残る。
In order to obtain sufficient flatness by the method shown in FIG. 1, the insulating film 2 must be extremely thick and the polishing amount must be large. However, since the CVD method for forming the insulating film 2 is expensive, this method is not practical. The cost problem is particularly serious when the bias ECR CVD method having a low film formation rate is used. Therefore, in consideration of the practical cost, the film thickness of the insulating film 2 has to be minimized (the insulating film on the concave portion of the base substrate is at least higher than that on the convex portion). As shown in (c), a step remains on the surface.

【0008】図2に示した方法は、研磨ストッパ3を設
けて、少ない研磨量でも十分な平坦性が得られるように
工夫した方法である。しかしこの方法でも、図2(c)
に示したように表面に段差が残ってしまう。これは、図
2(b)のように研磨ストッパが露出した後にディッシ
ングが生じるからである。ディッシングとは、研磨速度
が極端に違う物質が同時に露出したときに、研磨速度の
速い方の物質が選択的に研磨されて表面が凹んでしまう
現象である。
The method shown in FIG. 2 is a method in which a polishing stopper 3 is provided so that sufficient flatness can be obtained even with a small polishing amount. However, even with this method, FIG.
As shown in, the step remains on the surface. This is because dishing occurs after the polishing stopper is exposed as shown in FIG. Dishing is a phenomenon in which when a substance having an extremely different polishing rate is exposed at the same time, the substance having a higher polishing rate is selectively polished and the surface is dented.

【0009】本発明の目的は、研磨後の基板表面の平坦
性が不足したり、平坦性は十分にできても著しくコスト
が増加してしまったりする問題を解決する研磨剤と研磨
平坦化方法を提供することにある。
An object of the present invention is to provide a polishing agent and a polishing flattening method for solving the problems that the flatness of the substrate surface after polishing is insufficient, or the cost is remarkably increased even if the flatness is sufficiently achieved. To provide.

【0010】[0010]

【課題を解決するための手段】本発明では、図3(a)
に示すように、絶縁膜2の上に低コストの有機塗布ガラ
ス膜4(以下、有機SOG)を形成して研磨前の絶縁膜
の膜厚を厚くしておく。ここで、有機SOGとは、オル
ガノシロキサンオリゴマ液を塗布・焼成して得られるオ
ルガノシロキサン系皮膜である。
In the present invention, as shown in FIG.
As shown in, the low-cost organic coating glass film 4 (hereinafter, organic SOG) is formed on the insulating film 2 to increase the thickness of the insulating film before polishing. Here, the organic SOG is an organosiloxane film obtained by applying and firing an organosiloxane oligomer solution.

【0011】また、本発明では、研磨特性の異なる複数
の研磨剤を混合し、絶縁膜2と有機塗布ガラス膜4の研
磨速度が同程度になるように調製した研磨剤を用いて、
上記の絶縁膜2と有機塗布ガラス膜4の積層膜を、図3
(b)(c)に示すように研磨平坦化する。
Further, in the present invention, a plurality of abrasives having different polishing characteristics are mixed, and the abrasives prepared so that the insulating film 2 and the organic coating glass film 4 have approximately the same polishing rate,
The laminated film of the insulating film 2 and the organic coating glass film 4 is shown in FIG.
(B) As shown in (c), the surface is polished and flattened.

【0012】[0012]

【作用】絶縁膜2の上に形成する有機SOG膜4は塗布
膜なので、絶縁膜2のようにCVD法により形成した膜
(以下、CVD膜)に比べて成膜コストは低い。また、
一回の塗布で形成するのであれば、膜厚が厚くても成膜
コストは低いままである。したがって、CVD膜を厚く
形成して研磨量を増やしたのと同等の平坦化効果を、低
成膜コストで得ることができる。さらに、有機SOG膜
の表面形状は同じ膜厚のCVD膜に比べて最初から平坦
に近いので、研磨後の平坦性の点からも有利である。
Since the organic SOG film 4 formed on the insulating film 2 is a coating film, the film forming cost is lower than that of a film formed by the CVD method like the insulating film 2 (hereinafter referred to as a CVD film). Also,
If the film is formed by one-time coating, the film formation cost remains low even if the film thickness is large. Therefore, it is possible to obtain the flattening effect equivalent to that when the CVD film is formed thick and the polishing amount is increased at a low film forming cost. Further, since the surface shape of the organic SOG film is closer to flat from the beginning as compared with the CVD film having the same film thickness, it is advantageous in terms of flatness after polishing.

【0013】また、絶縁膜2と有機SOG膜4の研磨速
度が同程度になるように調製した研磨剤を用いれば、こ
れらの膜を同時に研磨しても研磨速度差に起因する平坦
性の悪化を抑制することができる。理想的には同時に研
磨する膜の研磨速度は等しいのが望ましいが、実際には
研磨速度比(有機SOG膜4/絶縁膜2)が0.5 以上
2以下であれば、平坦性は殆ど悪化しない。この条件を
満たし、かつ研磨速度が高い実用的な研磨剤が必要であ
る。
Further, if the polishing agent prepared so that the insulating film 2 and the organic SOG film 4 have the same polishing rate, even if these films are simultaneously polished, the flatness is deteriorated due to the difference in polishing rate. Can be suppressed. Ideally, it is desirable that the films to be simultaneously polished have the same polishing rate, but in reality, if the polishing rate ratio (organic SOG film 4 / insulating film 2) is 0.5 or more and 2 or less, the flatness is almost deteriorated. do not do. A practical abrasive that satisfies this condition and has a high polishing rate is required.

【0014】しかし、従来、上記のような研磨剤は得ら
れていなかった。例えば、通常用いられるフュームドシ
リカ研磨剤では、研磨速度比(有機SOG膜4/絶縁膜
2)が1/4程度である。
However, hitherto, the above abrasives have not been obtained. For example, with a commonly used fumed silica polishing agent, the polishing rate ratio (organic SOG film 4 / insulating film 2) is about 1/4.

【0015】発明者らは、研磨特性の異なる酸化セリウ
ム研磨剤を複数種類混ぜて調製したことで上記のような
研磨剤を得られることを見い出した。まず、酸化セリウ
ム研磨剤の研磨特性について、以下で説明する。特願平
6−236445 号明細書には酸化セリウム研磨剤の研磨特性
について記載されている。ここで酸化セリウム研磨剤と
は、酸化セリウムの研磨粉を水などの溶媒中に分散さ
せ、酸やアルカリを用いてpHを調整したものである。
The inventors have found that the above-mentioned abrasive can be obtained by preparing a mixture of a plurality of cerium oxide abrasives having different polishing characteristics. First, the polishing characteristics of the cerium oxide abrasive will be described below. Japanese Patent Application
The specification of 6-236445 describes the polishing characteristics of cerium oxide abrasives. Here, the cerium oxide abrasive is one in which abrasive powder of cerium oxide is dispersed in a solvent such as water, and the pH is adjusted using acid or alkali.

【0016】上記の酸やアルカリの他にも、必要に応じ
て界面活性剤を加えて、酸化セリウム粒子を分散させて
沈殿しないようにすることもある。酸化セリウム研磨剤
の研磨特性は、その固体成分(研磨粉)の平均結晶子径
および研磨剤のpH(水素イオン濃度)によって大きく
変化する。
In addition to the above acids and alkalis, a surfactant may be added as necessary to disperse the cerium oxide particles so that they do not precipitate. The polishing characteristics of the cerium oxide abrasive greatly vary depending on the average crystallite size of the solid component (abrasive powder) and the pH (hydrogen ion concentration) of the abrasive.

【0017】図4は、結晶子の小さい(30nm以下)
酸化セリウム研磨剤(以下、酸化セリウムA)の研磨特
性である。pHが小さい(pH<3)領域では、酸化珪
素膜,ドープド酸化珪素膜,有機SOG膜の研磨速度は
同程度であるが、その値は低いので実用的ではない。p
Hがこれより大きい領域(特に、中性からアルカリ性)で
は、有機SOG膜の研磨速度は高いが、酸化珪素膜,ド
ープド酸化珪素膜は殆ど研磨されない。
FIG. 4 shows small crystallites (30 nm or less).
It is a polishing characteristic of a cerium oxide polishing agent (hereinafter, cerium oxide A). In the low pH region (pH <3), the polishing rates of the silicon oxide film, the doped silicon oxide film, and the organic SOG film are about the same, but the values are low, which is not practical. p
In a region where H is larger than this range (particularly, neutral to alkaline), the polishing rate of the organic SOG film is high, but the silicon oxide film and the doped silicon oxide film are hardly polished.

【0018】図5は、結晶子の大きい(60nm以上)
酸化セリウム研磨剤(以下、酸化セリウムB)の研磨特
性である。pHが小さい(pH<3)領域では、3種の
膜とも研磨速度は同程度であるが、その値は低すぎて実
用的ではない。pHがこれより大きい領域(特に、中性
からアルカリ性)では、酸化珪素膜とドープド酸化珪素
膜の研磨速度は高いが、有機SOG膜の研磨速度はこれ
に比べて低い。
FIG. 5 shows a large crystallite (60 nm or more).
It is a polishing characteristic of a cerium oxide abrasive (hereinafter, cerium oxide B). In the low pH region (pH <3), the polishing rates of the three types of films are about the same, but the values are too low to be practical. In a region where the pH is higher than this range (particularly from neutral to alkaline), the polishing rate of the silicon oxide film and the doped silicon oxide film is high, but the polishing rate of the organic SOG film is lower than this.

【0019】上記のように、pH>3の領域での有機S
OG膜の研磨速度は、酸化セリウムAでは高く、逆に酸
化セリウムBでは低い。従って、これらを混合すること
によって、有機SOG膜の研磨速度を調節することがで
きる。
As mentioned above, organic S in the region of pH> 3
The polishing rate of the OG film is high for cerium oxide A and conversely low for cerium oxide B. Therefore, by mixing these, the polishing rate of the organic SOG film can be adjusted.

【0020】図6は、酸化セリウムA及び酸化セリウム
Bの混合の割合と研磨速度の関係の一例である。図中に
示したように、有機SOG膜の研磨速度が高い酸化セリ
ウムAと有機SOG膜の研磨速度が低い酸化セリウムB
を混合することで、有機SOG膜とドープド酸化珪素膜の
研磨速度を等しくすることも、研磨速度比(有機SOG膜
/ドープド酸化珪素膜)を0.5 以上2以下にすること
も可能である。しかも、有機SOG膜とドープド酸化珪
素膜の研磨速度が等しくなる点では、図5の酸化セリウ
ムBのみで低pHの場合に比べて研磨速度が高く、実用
的な研磨が可能である。
FIG. 6 shows an example of the relationship between the mixing ratio of cerium oxide A and cerium oxide B and the polishing rate. As shown in the figure, cerium oxide A having a high polishing rate for the organic SOG film and cerium oxide B having a low polishing rate for the organic SOG film
It is possible to make the polishing rates of the organic SOG film and the doped silicon oxide film equal to each other and to make the polishing rate ratio (organic SOG film / doped silicon oxide film) 0.5 to 2 by mixing . In addition, in that the polishing rate of the organic SOG film and that of the doped silicon oxide film are equal, the polishing rate is higher than that of cerium oxide B alone in FIG. 5 and the pH is low, and practical polishing is possible.

【0021】上記では有機SOG膜とドープド酸化珪素
膜の研磨速度の調節の例を示したが、有機SOG膜とド
ープド酸化珪素膜の研磨速度も同様の方法で調節可能な
ことは明らかである。
Although an example of adjusting the polishing rates of the organic SOG film and the doped silicon oxide film has been shown above, it is clear that the polishing rates of the organic SOG film and the doped silicon oxide film can be adjusted by the same method.

【0022】上記の研磨剤の混合の際は、最初からpH
の等しい酸化セリウムAと酸化セリウムBを調製してか
ら混合してもよいが、pHを調整していない酸化セリウ
ムAと酸化セリウムBを混合した後に、酸やアルカリを
加えてpHを調整しても同様の効果が得られる。
When mixing the above-mentioned abrasives, the pH is adjusted from the beginning.
The cerium oxide A and the cerium oxide B having the same pH may be mixed and then mixed, but after mixing the cerium oxide A and the cerium oxide B whose pH is not adjusted, the pH is adjusted by adding an acid or an alkali. Also has the same effect.

【0023】上記のpH調整に用いる酸やアルカリとし
ては、金属を構成要素として含まず、腐食性の弱いもの
が望ましい。これは、半導体用途に用いた場合に、汚染
や腐食の問題を起こさないためである。このような酸や
アルカリの例としては、シュウ酸,スルファミン酸,リ
ン酸,琥珀酸,クエン酸,硝酸,アンモニア,抱水ヒド
ラジン,アミン,過酸化水素等がある。
As the acid or alkali used for the above-mentioned pH adjustment, those which do not contain a metal as a constituent and have weak corrosiveness are desirable. This is because when used for semiconductor applications, problems such as contamination and corrosion do not occur. Examples of such acids and alkalis include oxalic acid, sulfamic acid, phosphoric acid, succinic acid, citric acid, nitric acid, ammonia, hydrazine hydrate, amine, hydrogen peroxide and the like.

【0024】[0024]

【実施例】【Example】

(実施例1)固体濃度が10重量%で平均結晶子径が2
0nmの酸化セリウム研磨剤(以下、酸化セリウムA)
と固体濃度が10重量%で平均結晶子径が80nmの酸
化セリウム研磨剤(以下、酸化セリウムB)のpHを
8.6 に調整した。このpH調整には、シュウ酸あるい
はアンモニア水を用いた。これらを単独で、あるいは混
合して、BPSG膜,有機SOG膜を研磨した。これら
の膜は、平坦な基板上にそれぞれ単独で形成したもので
ある。
Example 1 A solid concentration of 10% by weight and an average crystallite size of 2
0 nm cerium oxide abrasive (hereinafter cerium oxide A)
Then, the pH of the cerium oxide abrasive (hereinafter, cerium oxide B) having a solid concentration of 10% by weight and an average crystallite diameter of 80 nm was adjusted to 8.6. Oxalic acid or aqueous ammonia was used for this pH adjustment. These were used alone or as a mixture to polish the BPSG film and the organic SOG film. These films are independently formed on a flat substrate.

【0025】研磨加重は0.15kg/cm2、研磨定盤の基
板に対する移動速度は30m/minである。BPSG膜
は、Bを10原子%、Pを4原子%含むものであり、形
成後に窒素中で850度の熱処理を加えた。有機SOG
膜は(株)日立化成工業製HSG2209S−R7であり、塗布後
の最終熱処理は窒素中で450℃で行った。
The polishing load is 0.15 kg / cm 2 , and the moving speed of the polishing platen with respect to the substrate is 30 m / min. The BPSG film contains 10 atomic% of B and 4 atomic% of P, and was subjected to heat treatment at 850 ° C. in nitrogen after formation. Organic SOG
The film was HSG2209S-R7 manufactured by Hitachi Chemical Co., Ltd., and the final heat treatment after coating was performed in nitrogen at 450 ° C.

【0026】研磨速度を図6に示す。酸化セリウムAの
割合を0.4から0.8にすることで、BPSG膜と有機
SOG膜の研磨速度が同程度(研磨速度比が0.5 以上
2以下)になった。また、pH2の酸化セリウムBのみ
を用いて研磨したときも両者の膜の研磨速度は同程度に
なったが、このときの研磨速度に比べて、上記のように
混合した酸化セリウム研磨剤を用いた場合の研磨速度は
2倍から3倍と速くなった。
The polishing rate is shown in FIG. By changing the ratio of cerium oxide A from 0.4 to 0.8, the polishing rates of the BPSG film and the organic SOG film were about the same (the polishing rate ratio was 0.5 or more and 2 or less). Further, even when polishing was performed using only cerium oxide B having a pH of 2, the polishing rates of both films were about the same, but compared with the polishing rate at this time, the cerium oxide abrasive mixed as described above was used. The polishing rate was 2 to 3 times faster.

【0027】上記の研磨剤を用いて、素子や配線で表面
に高さ500nmの段差のついた半導体基板を平坦化し
た。まず、図3(a)に示すように、絶縁膜2として厚
さ600nmのBPSG膜を形成し、この上に厚さ50
0nmの有機SOG膜4を形成した。これを上記の研磨
剤を用いて研磨平坦化した。最初は有機SOG膜4のみ
を研磨していたが、途中で、図3(b)に示すように絶
縁膜2が露出した。しかし、図3(c)に示すように平
坦性が悪化することは殆どなかった。研磨後の段差の高
さは20nm以下になっており、十分な平坦性が達成で
きた。これは、図1の従来の方法で、BPSG膜を12
00nm以上堆積した場合と同等であり、膜の堆積コス
トが低減できた。
Using the above-mentioned polishing agent, a semiconductor substrate having a height difference of 500 nm on the surface of the element or wiring was flattened. First, as shown in FIG. 3A, a BPSG film having a thickness of 600 nm is formed as the insulating film 2, and a thickness of 50 is formed thereon.
The 0 nm organic SOG film 4 was formed. This was polished and flattened using the above polishing agent. Initially, only the organic SOG film 4 was polished, but in the middle, the insulating film 2 was exposed as shown in FIG. 3B. However, as shown in FIG. 3C, the flatness hardly deteriorated. The height of the step after polishing was 20 nm or less, and sufficient flatness could be achieved. This is the conventional method of FIG.
This is equivalent to the case of depositing more than 00 nm, and the deposition cost of the film could be reduced.

【0028】(実施例2)実施例1のBPSG膜の代わ
りに、バイアスECR CVD法を用いて酸化珪素膜と
SiOF膜を形成して実施例1と同様の実験を行った。
これらの膜の場合は埋め込み状態は良好であり、形成後
に窒素中で高温(500度以上)の熱処理を加える必要
はなかった。また、SiOF膜のフッ素含有量は6原子
%であった。これらの膜を実施例1と同様の酸化セリウ
ム研磨剤で研磨し、有機SOG膜と研磨速度が同程度
(研磨速度比が0.5 以上2以下)になる条件を求め
た。酸化珪素膜の場合は、酸化セリウムAの割合が0.
55から0.95、SiOF膜の場合は、酸化セリウム
Aの割合が0.45から0.85で研磨速度が同程度にな
った。
Example 2 Instead of the BPSG film of Example 1, a silicon oxide film and a SiOF film were formed by using the bias ECR CVD method, and the same experiment as in Example 1 was conducted.
In the case of these films, the embedding state was good, and it was not necessary to apply heat treatment at high temperature (500 degrees or more) in nitrogen after formation. The fluorine content of the SiOF film was 6 atom%. These films were polished with the same cerium oxide abrasive as in Example 1, and conditions under which the polishing rate was about the same as the organic SOG film (polishing rate ratio was 0.5 or more and 2 or less) were obtained. In the case of a silicon oxide film, the proportion of cerium oxide A is 0.
In the case of the SiOF film of 55 to 0.95, the polishing rate was similar when the ratio of cerium oxide A was 0.45 to 0.85.

【0029】上記の研磨剤を用いて、実施例1と同様に
段差付きの半導体基板を平坦化した。絶縁膜2として、
上記の酸化珪素膜を用いた場合と、SiOF膜を用いた
場合を検討した。研磨前の段差高さは500nmであっ
たが、絶縁膜2の上に有機SOG膜4を形成して研磨し
た結果、段差の高さは20nm以下になっており、十分
な平坦性が低コストで達成できた。
The stepped semiconductor substrate was flattened using the above-mentioned polishing agent in the same manner as in Example 1. As the insulating film 2,
The case of using the silicon oxide film and the case of using the SiOF film were examined. The height of the step before polishing was 500 nm, but as a result of forming the organic SOG film 4 on the insulating film 2 and polishing, the height of the step was 20 nm or less, and sufficient flatness was obtained at low cost. Was achieved in.

【0030】[0030]

【発明の効果】本発明によれば、著しくコストを増加さ
せることなく段差付き基板の表面を十分に平坦化するこ
とができる、研磨剤と研磨平坦化方法が提供される。
According to the present invention, there are provided an abrasive and a polishing flattening method capable of sufficiently flattening the surface of a stepped substrate without significantly increasing the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の平坦化方法の一例の説明図。FIG. 1 is an explanatory diagram of an example of a conventional planarization method.

【図2】従来の平坦化方法の一例の説明図。FIG. 2 is a diagram illustrating an example of a conventional flattening method.

【図3】本発明の平坦化方法の一例の説明図。FIG. 3 is an explanatory diagram of an example of a flattening method of the present invention.

【図4】酸化セリウムAの水素イオン濃度と研磨速度の
関係の説明図。
FIG. 4 is an explanatory diagram of a relationship between a hydrogen ion concentration of cerium oxide A and a polishing rate.

【図5】酸化セリウムBの水素イオン濃度と研磨速度の
関係の説明図。
FIG. 5 is an explanatory diagram of a relationship between a hydrogen ion concentration of cerium oxide B and a polishing rate.

【図6】酸化セリウムA及びBの混合比と研磨速度の関
係の一例の説明図。
FIG. 6 is an explanatory diagram showing an example of the relationship between the mixing ratio of cerium oxides A and B and the polishing rate.

【符号の説明】[Explanation of symbols]

1…段差付き半導体基板、2…絶縁膜、3…研磨ストッ
パ、4…有機塗布ガラス膜。
1 ... Stepped semiconductor substrate, 2 ... Insulating film, 3 ... Polishing stopper, 4 ... Organic coated glass film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 喜夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 長澤 正幸 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 森山 茂夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 五嶋 秀和 東京都小平市上水本町5丁目20番1号 株 式会社日立製作所半導体事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Honma 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Masayuki Nagasawa 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Shigeo Moriyama 1-280 Higashi Koigokubo, Kokubunji City, Tokyo Hitachi Ltd. Central Research Laboratory (72) Inventor Hidekazu Goshima 5-20 1-1, Kamimizuhonmachi, Kodaira-shi, Tokyo Hitachi Within the Semiconductor Division of the manufacturing plant

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】珪素を含む被研磨材料の研磨速度が異なる
研磨剤を複数種類混合して得られることを特徴とする研
磨剤。
1. A polishing agent obtained by mixing a plurality of types of polishing agents having different polishing rates for a material to be polished containing silicon.
【請求項2】研磨剤の固体成分の組成が実質的に同一で
ありかつその平均結晶子径が異なる研磨剤を複数種類混
合して得られることを特徴とする研磨剤。
2. A polishing agent obtained by mixing a plurality of types of polishing agents having substantially the same composition of solid components of the polishing agent and having different average crystallite diameters.
【請求項3】研磨剤の固体成分が酸化セリウムである請
求項1または2に記載の研磨剤。
3. The abrasive according to claim 1, wherein the solid component of the abrasive is cerium oxide.
【請求項4】少なくとも、研磨剤の固体成分が酸化セリ
ウムであり平均結晶子径が30nm以下の第一の研磨剤
と、研磨剤の固体成分が酸化セリウムであり平均結晶子
径が60nm以上の第二の研磨剤を含む請求項1,2ま
たは3に記載の研磨剤。
4. A first abrasive having a solid component of cerium oxide having an average crystallite diameter of 30 nm or less, and a solid component of abrasive having cerium oxide having an average crystallite diameter of 60 nm or more. The polishing agent according to claim 1, wherein the polishing agent contains a second polishing agent.
【請求項5】複数種類の膜を同時に研磨する際に、それ
ぞれの膜を独立に研磨した場合の研磨速度の最大値が最
小値の2倍以下になるような研磨剤を用いて研磨する請
求項1,2,3または4に記載の研磨剤を用いた研磨平
坦化方法。
5. When polishing a plurality of types of films at the same time, polishing is performed using a polishing agent such that the maximum value of the polishing rate when polishing each film independently is less than twice the minimum value. Item 5. A method of polishing and flattening using the abrasive according to Item 1, 2, 3 or 4.
【請求項6】酸化珪素膜、少なくとも硼素あるいは燐あ
るいはフッ素を含む酸化珪素膜、のいずれかからなる第
一の膜を独立に研磨した場合の研磨速度が、有機珪素化
合物からなる第二の膜を独立に研磨した場合の研磨速度
の0.5 倍以上2倍以下になる請求項1,2,3、また
は4に記載の研磨剤。
6. A second film made of an organosilicon compound having a polishing rate when the first film made of a silicon oxide film, or a silicon oxide film containing at least boron, phosphorus or fluorine, is independently polished. The polishing agent according to claim 1, 2, 3, or 4, which has a polishing rate of not less than 0.5 times and not more than 2 times when independently polished.
【請求項7】請求項6に記載の研磨剤を用いて、酸化珪
素膜、少なくとも硼素あるいは燐をあるいはフッ素を含
む酸化珪素膜、のいずれかからなる第一の膜と、有機珪
素化合物からなる第二の膜を同時に研磨する研磨平坦化
方法。
7. The polishing agent according to claim 6 is used to form a silicon oxide film, a first film of at least one of a silicon oxide film containing boron, phosphorus, or fluorine, and an organic silicon compound. A polishing flattening method for simultaneously polishing the second film.
JP24129995A 1995-09-20 1995-09-20 Abrasive and polishing and flattening Pending JPH0982667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24129995A JPH0982667A (en) 1995-09-20 1995-09-20 Abrasive and polishing and flattening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24129995A JPH0982667A (en) 1995-09-20 1995-09-20 Abrasive and polishing and flattening

Publications (1)

Publication Number Publication Date
JPH0982667A true JPH0982667A (en) 1997-03-28

Family

ID=17072221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24129995A Pending JPH0982667A (en) 1995-09-20 1995-09-20 Abrasive and polishing and flattening

Country Status (1)

Country Link
JP (1) JPH0982667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874036A1 (en) * 1997-04-25 1998-10-28 Mitsui Mining & Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices.
JP2007129247A (en) * 1997-12-18 2007-05-24 Hitachi Chem Co Ltd Abrasive and slurry
JP2007129249A (en) * 1997-12-18 2007-05-24 Hitachi Chem Co Ltd Abrasive and slurry
US8673749B2 (en) 2011-12-26 2014-03-18 Denso Corporation Semiconductor device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874036A1 (en) * 1997-04-25 1998-10-28 Mitsui Mining & Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices.
US5951724A (en) * 1997-04-25 1999-09-14 Mitsui Mining And Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices
JP2007129247A (en) * 1997-12-18 2007-05-24 Hitachi Chem Co Ltd Abrasive and slurry
JP2007129249A (en) * 1997-12-18 2007-05-24 Hitachi Chem Co Ltd Abrasive and slurry
US8673749B2 (en) 2011-12-26 2014-03-18 Denso Corporation Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
EP1211717B1 (en) Method for chemical-mechanical polishing of a substrate
US6527819B2 (en) Polishing slurries for copper and associated materials
US6267909B1 (en) Planarization composition for removing metal films
US5836806A (en) Slurries for chemical mechanical polishing
EP1724317B1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
US5700383A (en) Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US20040065864A1 (en) Acidic polishing slurry for the chemical-mechanical polishing of SiO2 isolation layers
JP5290769B2 (en) CMP slurry and semiconductor wafer polishing method using the same
WO2003015981A2 (en) Improved chemical mechanical polishing compositions for metal and associated materials and method of using same
IL120912A (en) Fluoride additive containing aqueous chemical mechanical polishing slurry and method for use of same
US6676718B2 (en) Polishing of semiconductor substrates
US6838383B2 (en) Copper polish slurry for reduced interlayer dielectric erosion and method of using same
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
US6386950B1 (en) Process for mechanical chemical polishing of layer of aluminium or aluminium alloy conducting material
JP2000265161A (en) Slurry for cmp and cmp method
US6746314B2 (en) Nitride CMP slurry having selectivity to nitride
US11066575B2 (en) Chemical mechanical planarization for tungsten-containing substrates
KR20040060217A (en) CMP slurry for nitride
US20020170237A1 (en) Polishing slurry for the chemical-mechanical polishing of silica films
JP2008112970A (en) Polishing composition
JPH0982667A (en) Abrasive and polishing and flattening
Hegde et al. Study of surface charge effects on oxide and nitride planarization using alumina/ceria mixed abrasive slurries
US20080096385A1 (en) Slurry composition for forming tungsten pattern and method for manufacturing semiconductor device using the same
KR20020010910A (en) Magnetic polishing fluids
US6878631B2 (en) Abrasive used for planarization of semiconductor device and method of manufacturing semiconductor device using the abrasive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228