JPH0982252A - X-ray tube for analysis - Google Patents

X-ray tube for analysis

Info

Publication number
JPH0982252A
JPH0982252A JP23032595A JP23032595A JPH0982252A JP H0982252 A JPH0982252 A JP H0982252A JP 23032595 A JP23032595 A JP 23032595A JP 23032595 A JP23032595 A JP 23032595A JP H0982252 A JPH0982252 A JP H0982252A
Authority
JP
Japan
Prior art keywords
anode target
ray
target
rays
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP23032595A
Other languages
Japanese (ja)
Inventor
Susumu Saito
晋 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23032595A priority Critical patent/JPH0982252A/en
Publication of JPH0982252A publication Critical patent/JPH0982252A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray tube for analysis, allowing the reduction of a distance between an X-ray emission window and anode target surface, and having the capability of supplying an X-ray of high output and purity. SOLUTION: An X-ray tube for analysis has a target support body 4 within a vacuum envelope 1, and an anode target 9 for generating an X-ray is secured to the target support body 4. Furthermore, a Wehnelt electrode 10 and a cathode filament 2 are arranged around the anode target 9. Also, the vacuum envelope 1 is provided with an X-ray emission window 6, so as to be faced to the anode target 9, and this anode target 9 is formed to trapezoidal rotor shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は分析用X線管に係
り、特にその高出力且つ高純度のX線を発生するための
陽極ターゲットの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical X-ray tube, and more particularly to improvement of an anode target for generating high-power and high-purity X-rays.

【0002】[0002]

【従来の技術】例えば蛍光X線分析に使用される蛍光分
析用X線管は、従来、図2に示すように構成され、図中
の符号1は一端部が略傘状の真空外囲器、2は陰極フィ
ラメント、3はウェネルト電極、4はタ−ゲット支持
体、5はX線発生用の陽極ターゲット、6はX線放射
窓、7は電子、8はX線である。通常、ウェネルト電極
3は陰極フィラメント2からの高熱に耐え得る金属材
料、例えば鉄(Fe)、ニッケル(Ni),ステンレス
(SUS)等が用いられる。真空外囲器1はSUS、ウ
ェネルト電極3はNiを用いたもので構成されている。
又、陽極ターゲット5はロジウム(Rh)、X線出力窓
6はベリリウム(Be)からなっている。
2. Description of the Related Art An X-ray tube for fluorescence analysis used in, for example, X-ray fluorescence analysis is conventionally constructed as shown in FIG. 2. Reference numeral 1 in the drawing is a vacuum envelope having one end substantially in the shape of an umbrella. 2 is a cathode filament, 3 is a Wehnelt electrode, 4 is a target support, 5 is an anode target for X-ray generation, 6 is an X-ray emission window, 7 is an electron, and 8 is an X-ray. In general, the Wehnelt electrode 3 is made of a metal material that can withstand high heat from the cathode filament 2, such as iron (Fe), nickel (Ni), and stainless steel (SUS). The vacuum envelope 1 is made of SUS, and the Wehnelt electrode 3 is made of Ni.
The anode target 5 is made of rhodium (Rh) and the X-ray output window 6 is made of beryllium (Be).

【0003】動作時には、陰極フィラメント2から発生
した電子7を陰極−陽極間に印加した電圧により加速
し、真空外囲器1及びウェネルト電極3により集束して
陽極ターゲット5に衝突させる。この陽極ターゲット5
から発生したX線8を、X線放射窓6から取出して被分
析物質に照射し、そこから発生するX線により物質の分
析を行なう。
In operation, the electrons 7 generated from the cathode filament 2 are accelerated by the voltage applied between the cathode and the anode, focused by the vacuum envelope 1 and the Wehnelt electrode 3, and collided with the anode target 5. This anode target 5
X-rays 8 generated from the X-rays are extracted from the X-ray emission window 6 and applied to the substance to be analyzed, and the substance is analyzed by the X-rays generated therefrom.

【0004】このような蛍光分析用X線管から放射する
X線の波長は、ターゲット材質と印加する高電圧により
決まり、蛍光分析を行なうためには、高出力且つ高純度
なターゲット材質の特性X線を必要とする。通常分析に
は、陽極ターゲット5から発生される特性X線のうち大
きく短波長側特性X線(K線)と長波長側特性X線(L
線)の2つが使用され、用途によって使い分けている。
The wavelength of the X-ray radiated from the X-ray tube for fluorescence analysis is determined by the target material and the high voltage applied, and in order to perform the fluorescence analysis, the characteristic X of the high-output and high-purity target material is used. Need a line. In the normal analysis, the characteristic X-rays generated from the anode target 5 are characterized by a large characteristic wave of the short wavelength side (K line) and a characteristic wave of the long wavelength side (L line).
Two of them are used, depending on the application.

【0005】高強度のX線を出力するためには、既述の
印加電圧及び電流の高入力が必要なほか、真空内よりX
線を取出すX線放射窓6でのX線吸収を極力なくすこ
と、又、陽極ターゲット5表面と被分析物質との距離を
短縮しX線の減衰を少なくすることが必要とされてい
る。そのため、X線放射窓6にはX線吸収率が低いBe
が板厚数十〜数百μmの薄板状で使用されている。これ
は、上述分析に使用する特性X線のうち特に長波長側X
線に有効となる。更に、被分析物質と陽極ターゲット5
との距離を短縮することについては、被分析物質とX線
放射窓6との距離は分析装置構造上ある程度決定される
ため、X線管内でのX線放射窓6を含む真空外囲器1と
陽極ターゲット5との距離の短縮にほかならなく、X線
管の使用最高電圧からの耐電圧構造及び電子を、陽極タ
ーゲット5表面に集束させるための電極構造によって決
定されている。この被分析物質と陽極ターゲット5表面
間の距離の短縮は、上記の分析に使用される特性X線の
うち、長短両波長側特性X線に有効であり、単純計算で
X線強度は距離の2乗に反比例の関係がある。高強度の
X線を出力するための入力電圧,電流の増大は、一番確
実且つ効果的なことではあるが、高圧発生装置を含む分
析装置の定格変更等を伴なうこともあり、同じ定格(最
高電圧,電流)のX線管での高出力化を目指すために
は、常に上記の後者2つがポイントとなる。
In order to output a high-intensity X-ray, a high input of the applied voltage and current as described above is required, and X
It is necessary to minimize X-ray absorption in the X-ray emission window 6 for extracting the rays and to shorten the distance between the surface of the anode target 5 and the substance to be analyzed to reduce X-ray attenuation. Therefore, Be having a low X-ray absorptivity is present in the X-ray radiation window 6.
Is used in the form of a thin plate having a plate thickness of several tens to several hundreds of μm. This is especially the long wavelength side X of the characteristic X-rays used for the above analysis.
Effective on the line. Furthermore, the analyte and the anode target 5
In order to shorten the distance between the X-ray emission window 6 and the substance to be analyzed, the distance between the X-ray emission window 6 and the substance to be analyzed is determined to some extent by the structure of the analyzer. It is determined by the shortening of the distance between the anode target 5 and the anode target 5 as well as the withstand voltage structure from the maximum operating voltage of the X-ray tube and the electrode structure for focusing electrons on the surface of the anode target 5. The shortening of the distance between the substance to be analyzed and the surface of the anode target 5 is effective for the long and short wavelength side characteristic X-rays among the characteristic X-rays used for the above-mentioned analysis, and the X-ray intensity is calculated by the simple calculation. There is an inverse relationship to the square. The increase of the input voltage and current for outputting high-intensity X-rays is the most reliable and effective, but it is also the same as the change of the rating of the analyzer including the high-voltage generator, etc. In order to achieve high output with a rated (maximum voltage, current) X-ray tube, the latter two points above are always important.

【0006】高純度のX線を供給するためには、陽極タ
ーゲット5からの主X線の純度を出来るだけ上げること
と、ターゲット材以外から発生される管球内外の他材質
からのX線を少なくすることが必要とされる。そのた
め、ターゲット材には、通常、高純度の単物質が使用さ
れている。そして、陽極ターゲット5も純度99.9%
以上のRhを使用し、ターゲット材質内に含まれる他物
質からのX線の発生を出来るだけ少ないものとしてい
る。又、陽極ターゲット5から発生されたX線8はX線
放射窓6から被分析物質に照射される。しかしながら、
同時に陽極ターゲット5から発生されたX線8によっ
て、ウェネルト電極3の上端部近傍や真空外囲器1の内
壁からもX線が励起され発生される。これら陽極ターゲ
ット5以外から発生されたX線は、ターゲット特性X線
に対し不純X線となり分析精度の低下につながる。図2
に示す構造で上記の不純X線とされるのは、Ni,Fe
などの特性X線である。
In order to supply high-purity X-rays, the purity of the main X-rays from the anode target 5 should be increased as much as possible, and X-rays from other materials inside and outside the tube generated from other than the target material should be used. It needs to be reduced. Therefore, a high-purity single substance is usually used as the target material. And the anode target 5 also has a purity of 99.9%.
By using the above Rh, the generation of X-rays from other substances contained in the target material is made as small as possible. Further, the X-ray 8 generated from the anode target 5 is applied to the substance to be analyzed through the X-ray emission window 6. However,
At the same time, the X-rays 8 generated from the anode target 5 also excite and generate X-rays from the vicinity of the upper end of the Wehnelt electrode 3 and the inner wall of the vacuum envelope 1. X-rays generated from other than the anode target 5 become impure X-rays with respect to the target characteristic X-rays, leading to a decrease in analysis accuracy. FIG.
The impure X-rays in the structure shown in FIG.
Is a characteristic X-ray.

【0007】[0007]

【発明が解決しようとする課題】近年、市場では超微量
物質の高精度分析の要求に伴なって、より高出力、高純
度のX線源が必要とされている。そのため高出力化に
は、上述にあるような方向での構造をとる必要があり、
X線放射窓6には数十μmという極薄のBe製の板が使
用され、長波長側特性X線の強度向上を図ってている。
しかしながら、短波長側特性X線の強度向上のためのX
線放射窓6と陽極ターゲット5表面との距離の短縮化に
ついては、下記要因から従来のような構造では線量向上
は困難であった。
In recent years, along with the demand for highly accurate analysis of ultratrace substances in the market, there is a need for an X-ray source of higher output and higher purity. Therefore, in order to increase the output, it is necessary to take a structure in the direction as described above,
The X-ray radiation window 6 is made of a very thin Be plate having a thickness of several tens of μm to improve the intensity of long-wavelength side characteristic X-rays.
However, X for improving the intensity of characteristic X-rays on the short wavelength side
Regarding the shortening of the distance between the line radiation window 6 and the surface of the anode target 5, it is difficult to improve the dose with the conventional structure due to the following factors.

【0008】先ず、分析用X線管の管球構造上、陽極タ
ーゲット5とX線放射窓6を含む真空外囲器1とが同電
位にすることが困難であるため、上記2者間で耐圧構造
をなす必要があり、距離が規定されてくること。又、被
分析物質からの蛍光X線を装置検出器側で効率良く受取
るため、及び円板状の陽極ターゲット5に電子を集束さ
せるために、X線放射窓6付近の真空外囲器1の内外壁
は、通常、略傘状あるいは階段状で構成される。それ故
に、管球内部での陽極ターゲット5周辺角部との距離が
近くなり、陽極ターゲット5表面とX線放射窓6との距
離を、上述耐電圧から設計される最短距離まで縮めるこ
とが困難なことである。通常、このような蛍光分析にお
いて、被分析物質からの蛍光X線を励起するのに必要な
X線エネルギーから、X線管の最大使用管電圧は60k
V〜75kVのものが採用されている。この場合、図2
のような従来構造では、X線放射窓6と陽極ターゲット
5表面間の距離は最短でも9mm程度という構成であっ
た。
First, because of the bulb structure of the X-ray tube for analysis, it is difficult to make the anode target 5 and the vacuum envelope 1 including the X-ray emission window 6 at the same potential. It is necessary to form a pressure resistant structure, and the distance is specified. Further, in order to efficiently receive the fluorescent X-rays from the substance to be analyzed on the device detector side and to focus the electrons on the disk-shaped anode target 5, the vacuum envelope 1 near the X-ray emission window 6 is provided. The inner and outer walls are usually formed in a substantially umbrella shape or a step shape. Therefore, the distance between the peripheral corners of the anode target 5 inside the tube becomes short, and it is difficult to reduce the distance between the surface of the anode target 5 and the X-ray emission window 6 to the shortest distance designed from the above withstand voltage. That's right. Usually, in such a fluorescence analysis, the maximum working tube voltage of the X-ray tube is 60 k from the X-ray energy required to excite the fluorescent X-rays from the analyte.
The voltage of V to 75 kV is adopted. In this case,
In such a conventional structure, the distance between the X-ray emission window 6 and the surface of the anode target 5 is about 9 mm at the shortest.

【0009】又、高純度のX線を供給するためには、上
述のように不純X線を減衰すべきであるが、高出力化に
伴なうX線放射窓6と陽極ターゲット5表面との距離の
短縮化を行なえば、電子集束の兼ね合いでウェネルト電
極3がX線照射軸側で陽極ターゲット5表面に近づく構
造をとる必要があり、ウェネルト電極3より発生される
不純X線は増大する。そのため、図2のような構造では
高出力化と高純度化は相反するものになるという問題が
あった。
In order to supply high-purity X-rays, the impure X-rays should be attenuated as described above, but the X-ray radiation window 6 and the surface of the anode target 5 associated with the increase in output power. If the distance is shortened, it is necessary to take a structure in which the Wehnelt electrode 3 approaches the surface of the anode target 5 on the X-ray irradiation axis side in consideration of electron focusing, and the impurity X-rays generated from the Wehnelt electrode 3 increase. . Therefore, in the structure as shown in FIG. 2, there is a problem that high output and high purity are in conflict with each other.

【0010】この発明は、上述のような問題点を解消
し、X線放射窓と陽極ターゲット表面間の距離の短縮化
が出来、高出力且つ高純度なX線を供給可能な分析用X
線管を提供することを目的とする。
The present invention solves the above-mentioned problems, shortens the distance between the X-ray emission window and the surface of the anode target, and is capable of supplying X-rays of high output and high purity.
The purpose is to provide a wire tube.

【0011】[0011]

【課題を解決するための手段】この発明は、真空外囲器
内にターゲット支持体が配設され、このターゲット支持
体にX線発生用の陽極ターゲットが固着され、この陽極
ターゲットのまわりにウェネルト電極及び陰極フィラメ
ントが張設され、更に真空外囲器に陽極ターゲットに対
向してX線放射窓が設けられてなる分析用X線管におい
て、陽極ターゲットは台形回転体状に形成されてなる分
析用X線管である。そして、ウェネルト電極の少なくと
も上端部に、厚さ5μm以上の陽極ターゲットと同じ材
料の被膜が形成されている。
According to the present invention, a target support is arranged in a vacuum envelope, an anode target for X-ray generation is fixed to the target support, and a Wehnelt target is provided around the target. An analysis X-ray tube in which an electrode and a cathode filament are stretched, and an X-ray emission window is provided in the vacuum envelope so as to face the anode target, and the analysis is performed by forming the anode target in the shape of a trapezoid. X-ray tube for use. A coating of the same material as the anode target having a thickness of 5 μm or more is formed on at least the upper end of the Wehnelt electrode.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、この発明
の一実施の形態を詳細に説明する。従来例(図2)と同
一箇所は同一符号を付すことにすると、この発明の分析
用X線管は図1に示すように構成されている。即ち、一
端部が略傘状の真空外囲器1内には、管軸上に円柱状の
タ−ゲット支持体4が配設され、この支持体タ−ゲット
4上には、台形回転体状のRh製陽極ターゲット9が固
着されている。そのまわりにはNi製のウェネルト電極
10が取囲むように配設され、その少なくとも上端部に
は厚さ5μm以上例えば約7μmのRh製被膜11で被
覆されている。つまり、この被膜11と陽極ターゲット
9とは同じ材料からなっている。このようなウェネルト
電極10のまわりには、陰極フィラメント2が配設され
ている。又、真空外囲器1の一端部には、陽極ターゲッ
ト9に対向して、Be製のX線放射窓6が気密封止され
ている。
An embodiment of the present invention will be described below in detail with reference to the drawings. If the same parts as those in the conventional example (FIG. 2) are designated by the same reference numerals, the analyzing X-ray tube of the present invention is constructed as shown in FIG. That is, a cylindrical target support 4 is disposed on the tube axis in a vacuum envelope 1 having one end of a substantially umbrella shape, and a trapezoidal rotary member is mounted on the support target 4. The anode target 9 made of Rh is fixed. A Wehnelt electrode 10 made of Ni is arranged around the electrode 10 so as to surround it, and at least an upper end portion thereof is covered with a Rh coating 11 having a thickness of 5 μm or more, for example, about 7 μm. That is, the coating 11 and the anode target 9 are made of the same material. A cathode filament 2 is arranged around such a Wehnelt electrode 10. An X-ray radiation window 6 made of Be is hermetically sealed at one end of the vacuum envelope 1 so as to face the anode target 9.

【0013】上記の場合、台形回転体状の陽極ターゲッ
ト9の上下底面及び高さは、陽極ターゲット9の電子衝
突面(焦点面)の大きさ及びその大きさの電子衝突面を
形成するために集束を行なう真空外囲器1の内壁テーパ
部1a角度から決定している。X線強度の向上のための
X線放射窓6と陽極ターゲット9表面との距離の短縮
は、上記のように真空外囲器1内壁と陽極ターゲット9
周辺部角部との耐電圧が決定点となる。そのため、その
間の電界強度を緩和する目的で、陽極ターゲット9は台
形回転体状に形成されており、従来構造以上に距離の短
縮を実現している。又、陽極ターゲット9の上部平面部
とテーパ部9a間の角部は、電界強度の緩和のため適度
のR取りをしてある。尚、理想構造としては、それぞれ
真空外囲器1のテーパ部1aと陽極ターゲット9のテー
パ部9aが平行になるのが望ましい。
In the above case, the upper and lower bottom surfaces and the height of the trapezoidal rotator-shaped anode target 9 form the size of the electron collision surface (focal plane) of the anode target 9 and an electron collision surface of that size. It is determined from the angle of the inner wall taper portion 1a of the vacuum envelope 1 for focusing. The shortening of the distance between the X-ray radiation window 6 and the surface of the anode target 9 for improving the X-ray intensity is performed by the inner wall of the vacuum envelope 1 and the anode target 9 as described above.
The withstand voltage with the peripheral corners is the deciding point. Therefore, the anode target 9 is formed in the shape of a trapezoidal rotating body for the purpose of relaxing the electric field strength therebetween, and the distance is shortened more than the conventional structure. Further, the corner portion between the upper flat surface portion of the anode target 9 and the tapered portion 9a is appropriately rounded to reduce the electric field strength. As an ideal structure, it is desirable that the taper portion 1a of the vacuum envelope 1 and the taper portion 9a of the anode target 9 are parallel to each other.

【0014】さて、X線放射窓6及び真空外囲器1と陽
極ターゲット9の距離を短縮した場合、陽極ターゲット
9の上部平面部内に電子衝突面(焦点面)をおさめるこ
とが、効率の良いX線放射源となることはX線放射窓9
との幾何学的ディメンジョンからも明かなことである。
そのため、ウェネルト電極10で陰極フィラメント2か
らの電子7を適当に集束させることが必要となる。この
適当な集束をさせるためのウェエネルト電極10のディ
メンジョンは、計算及び実験結果より、図示のようにX
線照射方向軸上で陽極ターゲット9表面位置に対し、ウ
ェネルト電極10上端部が同一線上かそれ以上X線放射
窓6側に配置されるのが望ましい。しかしながら、上記
問題点にあるように陽極ターゲット10から発生された
X線8によりウェネルト電極10からもX線が不純X線
として発生されるが、従来構造に比べ幾何学上では陽極
ターゲット9のテーパ部9aからも少なからずX線が発
生される分、不純X線は大きいものとなってしまう。こ
の発明では、その不純X線を減衰させるために、ウェネ
ルト電極10の上端部にRhの被膜11を約7μm形成
してある。それにより、下地であるウェネルト電極10
からのNi不純X線は吸収減衰される。又、被膜11か
らもX線は発生されるが陽極ターゲット9と同材質のた
め、不純X線とはならない。計算上、厚さ5μmの被膜
11にて下地からのNi不純X線の減衰率は約70%と
なる。この構造により最大定格使用管電圧75KVのX
線管にて、X線放射窓6と陽極ターゲット9表面間の距
離は8mm以下まで短縮可能となる。
Now, when the distance between the X-ray emission window 6 and the vacuum envelope 1 and the anode target 9 is shortened, it is efficient to keep the electron collision surface (focal plane) in the upper flat portion of the anode target 9. The source of X-ray radiation is the X-ray radiation window 9
It is also clear from the geometric dimension with.
Therefore, it is necessary to properly focus the electrons 7 from the cathode filament 2 on the Wehnelt electrode 10. The dimension of the Wehnelt electrode 10 for achieving this appropriate focusing is X as shown in the figure from the calculation and the experimental results.
It is desirable that the upper end of the Wehnelt electrode 10 is arranged on the same line or more on the X-ray emission window 6 side with respect to the surface position of the anode target 9 on the axis of the ray irradiation direction. However, as described above, the X-rays 8 generated from the anode target 10 also generate X-rays as impure X-rays from the Wehnelt electrode 10. However, compared with the conventional structure, the taper of the anode target 9 is geometrically different. A large amount of X-rays are generated from the portion 9a, so that the impure X-rays become large. In the present invention, in order to attenuate the impure X-rays, the Rh coating 11 of about 7 μm is formed on the upper end of the Wehnelt electrode 10. As a result, the underlying Wehnelt electrode 10
Ni impure X-rays from are absorbed and attenuated. Further, although X-rays are also generated from the coating film 11, they are not impure X-rays because they are made of the same material as the anode target 9. From the calculation, the attenuation rate of Ni-impurity X-rays from the underlayer is about 70% in the film 11 having a thickness of 5 μm. With this structure, the maximum rated tube voltage of 75 KV X
The distance between the X-ray radiation window 6 and the surface of the anode target 9 can be shortened to 8 mm or less by using a ray tube.

【0015】[0015]

【発明の効果】この発明によれば、台形回転体状の陽極
ターゲットにより、局部的な電界の集中が緩和されるの
で、X線放射窓と陽極ターゲット表面間の距離の短縮化
が出来る。又、ウェネルト電極に形成された陽極ターゲ
ットと同じ材料の被膜により、ウェネルト電極から発生
される不純X線が低減されるので、高出力且つ高純度の
X線を供給出来、分析精度の良い蛍光分析用X線管が実
現出来る。
According to the present invention, the trapezoidal rotor-shaped anode target reduces local concentration of electric field, so that the distance between the X-ray radiation window and the anode target surface can be shortened. Further, since the impure X-rays generated from the Wehnelt electrode are reduced by the coating of the same material as the anode target formed on the Wehnelt electrode, high-output and high-purity X-rays can be supplied, and fluorescence analysis with high analysis accuracy is possible. X-ray tube can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施の形態に係る分析用X線管を
示す断面図。
FIG. 1 is a sectional view showing an X-ray tube for analysis according to an embodiment of the present invention.

【図2】従来の分析用X線管を示す断面図。FIG. 2 is a sectional view showing a conventional X-ray tube for analysis.

【符号の説明】[Explanation of symbols]

1…真空外囲器、2…陰極フィラメント、4…ターゲッ
ト支持体、6…X線放射窓、7…電子、8…X線、9…
陽極ターゲット、10…ウェネルト電極、11…被膜。
DESCRIPTION OF SYMBOLS 1 ... Vacuum envelope, 2 ... Cathode filament, 4 ... Target support body, 6 ... X-ray radiation window, 7 ... Electron, 8 ... X-ray, 9 ...
Anode target, 10 ... Wehnelt electrode, 11 ... Coating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空外囲器内にターゲット支持体が配設さ
れ、このターゲット支持体にX線発生用の陽極ターゲッ
トが固着され、この陽極ターゲットのまわりにウェネル
ト電極及び陰極フィラメントが張設され、更に上記真空
外囲器に上記陽極ターゲットに対向してX線放射窓が設
けられてなる分析用X線管において、 上記陽極ターゲットは台形回転体状に形成されてなるこ
とを特徴とする分析用X線管。
1. A target support is provided in a vacuum envelope, an anode target for X-ray generation is fixed to the target support, and a Wehnelt electrode and a cathode filament are stretched around the anode target. In an X-ray tube for analysis, further comprising an X-ray emission window provided in the vacuum envelope so as to face the anode target, the anode target is formed in a trapezoidal rotating body. X-ray tube.
【請求項2】上記ウェネルト電極の少なくとも上端部
に、厚さ5μm以上の上記陽極ターゲットと同じ材料の
被膜が形成されている請求項1記載の分析用X線管。
2. The analytical X-ray tube according to claim 1, wherein a coating film made of the same material as the anode target having a thickness of 5 μm or more is formed on at least the upper end portion of the Wehnelt electrode.
JP23032595A 1995-09-07 1995-09-07 X-ray tube for analysis Abandoned JPH0982252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23032595A JPH0982252A (en) 1995-09-07 1995-09-07 X-ray tube for analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23032595A JPH0982252A (en) 1995-09-07 1995-09-07 X-ray tube for analysis

Publications (1)

Publication Number Publication Date
JPH0982252A true JPH0982252A (en) 1997-03-28

Family

ID=16906070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23032595A Abandoned JPH0982252A (en) 1995-09-07 1995-09-07 X-ray tube for analysis

Country Status (1)

Country Link
JP (1) JPH0982252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251635A1 (en) * 2002-11-06 2004-05-27 Feinfocus Röntgen-Systeme GmbH X-ray tube, in particular microfocus X-ray tube
DE102017216059A1 (en) * 2017-09-12 2019-03-14 Siemens Healthcare Gmbh Steh anode for an X-ray source and X-ray source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251635A1 (en) * 2002-11-06 2004-05-27 Feinfocus Röntgen-Systeme GmbH X-ray tube, in particular microfocus X-ray tube
US7050543B2 (en) 2002-11-06 2006-05-23 Feinfocus Röntgen-Systeme GmbH Microfocus X-ray tube
DE102017216059A1 (en) * 2017-09-12 2019-03-14 Siemens Healthcare Gmbh Steh anode for an X-ray source and X-ray source

Similar Documents

Publication Publication Date Title
US7526068B2 (en) X-ray source for materials analysis systems
US6005918A (en) X-ray tube window heat shield
US5052034A (en) X-ray generator
US7197116B2 (en) Wide scanning x-ray source
JPH0618119B2 (en) Micro focus X-ray tube
US6141400A (en) X-ray source which emits fluorescent X-rays
US4352196A (en) X-Ray tube for producing a flat wide-angle fan-shaped beam of X-rays
US4210813A (en) Ionizing radiation generator
JPH04229539A (en) Radioactive radiation source for monochromatic x-ray radiation
WO2013131628A1 (en) Compact x-ray sources for moderate loading with x-ray tube with carbon nanotube cathode
JP3069975B2 (en) Ionization gauge
TW201103062A (en) X-ray source comprising a field emission cathode
JP2002033063A (en) X-ray tube
CN110942967B (en) X-ray tube
JPH0982252A (en) X-ray tube for analysis
US4196367A (en) X-ray tube
CN111063596A (en) Transmission type microfocus X-ray tube
JP2000340149A (en) X-ray tube device
RU2303828C2 (en) X-ray tube
CN211182147U (en) Transmission type microfocus X-ray tube
US8867706B2 (en) Asymmetric x-ray tube
JP3147927B2 (en) X-ray generator
JP7370899B2 (en) x-ray tube
JP2002008572A (en) X-ray tube
JPH10269983A (en) Scanning proton microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20041025