JPH0980207A - Optical lens for ultraviolet irradiation device - Google Patents

Optical lens for ultraviolet irradiation device

Info

Publication number
JPH0980207A
JPH0980207A JP7255774A JP25577495A JPH0980207A JP H0980207 A JPH0980207 A JP H0980207A JP 7255774 A JP7255774 A JP 7255774A JP 25577495 A JP25577495 A JP 25577495A JP H0980207 A JPH0980207 A JP H0980207A
Authority
JP
Japan
Prior art keywords
plano
lens
optical
ultraviolet
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7255774A
Other languages
Japanese (ja)
Other versions
JP3238617B2 (en
Inventor
Hiroyuki Kameda
洋幸 亀田
Osamu Mizuno
修 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP25577495A priority Critical patent/JP3238617B2/en
Publication of JPH0980207A publication Critical patent/JPH0980207A/en
Application granted granted Critical
Publication of JP3238617B2 publication Critical patent/JP3238617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the optical lens for the ultraviolet irradiation device which does not decrease in the degree of ultraviolet irradiation on the surface of an irradiated body even when the body is irradiated with ultraviolet rays for a long time by forming a dielectric film between optical glass and an adhesive. SOLUTION: A 1st thin layer (dielectric film) 41 and a 2nd thin layer 42 are formed on the cemented surfaces of a plano-convex lens 10 and a plano-concave lens 30. The plano-convex lens 10 and plano-concave lens 30 are cemented together with an ultraviolet curing adhesive 20 across the thin layers 41 and 42. The thin layers 41 and 42 are formed by vapor-depositing silicon oxide (SiO2 ) on the cemented surfaces of the plano-convex lens (optical glass) 10 and plano-concave lens 30. Thus, the dielectric films 41 and 42 are formed between the lenses 10 and 30 and ultraviolet curing adhesive 20, so the lenses 10 and 30 and ultraviolet curing adhesive 20 never come into direct contact with each other and the border surfaces between the adhesive 20 and lenses 10 and 30 are not colored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】マイクロマシン、パワートラ
ンジスタなどの製造工程において採用される露光工程
に、露光装置が使用される。本発明は、露光装置等の紫
外線照射装置の光学系を構成する紫外線照射装置用光学
レンズに関するものである。
BACKGROUND OF THE INVENTION An exposure apparatus is used in an exposure process adopted in a manufacturing process of micromachines, power transistors and the like. The present invention relates to an optical lens for an ultraviolet irradiation device that constitutes an optical system of an ultraviolet irradiation device such as an exposure device.

【0002】[0002]

【従来の技術】半導体素子や液晶画面、インクジェット
方式のプリンタヘッド、一枚の基板の上に多種多数の電
気素子を製作して1つのモジュールにするマルチチップ
モジュール等、ミクロンサイズの加工が必要である様々
な電気部品の製作工程において露光工程が用いられる。
この露光工程において使用する露光装置の一つとして、
投影露光装置が採用される。上記投影露光装置は、所定
のマスクパターンが記されているマスクの上方から露光
波長光を照射し、投影レンズを介して所定の縮小率でマ
スクパターンをワーク上に塗布されているフォトレジス
トに転写するものである。
2. Description of the Related Art Micron-sized processing is required for semiconductor devices, liquid crystal screens, ink jet printer heads, multichip modules in which a large number of various electric devices are manufactured on a single substrate to form a single module. An exposure process is used in a process of manufacturing a variety of electric components.
As one of the exposure devices used in this exposure process,
A projection exposure apparatus is adopted. The projection exposure apparatus irradiates light having an exposure wavelength from above a mask on which a predetermined mask pattern is written, and transfers the mask pattern to a photoresist coated on a work at a predetermined reduction rate through a projection lens. To do.

【0003】マスクパターンのワーク上のフォトレジス
トへの転写は、波長がフォトレジストの感光波長である
光(以下、露光波長光という)によって、マスクパター
ンをワーク上に結像させることにより実現される。その
ため、上記投影レンズには、露光波長光に対して上記結
像関係を成立させる機能が要求される。この要求を満た
すよう露光波長光に対する色収差補正を施した投影レン
ズは、通常、複数の光学ガラス(レンズ等)を光学用接
着剤によって接合した構成であるものが多い。これは、
以下の(1),(2)の理由により、光学設計の自由度
が高くなり、より高性能なレンズが得られるためであ
る。 (1)複数の異なる種類の光学ガラス(レンズ等)を適
宜選択して重ね合わせることにより、所望の波長に対す
る色収差補正が可能であること。 (2)接合に光学用接着剤を使用することにより、接合
面を極めて高い精度で加工することなく接合面における
屈折率の高い空気層の形成を防止し、その結果、接合面
で光がある入射角以上で全反射するという不具合が発生
しないこと。すなわち、光学ガラスがレンズの場合、空
気層の存在による上記全反射を防止するために、レンズ
の曲率がある範囲に制限されるということがなくなるこ
と。
The transfer of the mask pattern to the photoresist on the work is realized by forming an image of the mask pattern on the work with light whose wavelength is the photosensitive wavelength of the photoresist (hereinafter referred to as exposure wavelength light). . Therefore, the projection lens is required to have a function of establishing the image formation relationship with the exposure wavelength light. A projection lens that has been subjected to chromatic aberration correction for exposure wavelength light so as to satisfy this requirement usually has a structure in which a plurality of optical glasses (lenses or the like) are bonded by an optical adhesive. this is,
Because of the following reasons (1) and (2), the degree of freedom in optical design is increased and a higher performance lens can be obtained. (1) It is possible to correct chromatic aberration for a desired wavelength by appropriately selecting and stacking a plurality of different types of optical glass (lenses, etc.). (2) By using an optical adhesive for joining, formation of an air layer having a high refractive index on the joining surface is prevented without processing the joining surface with extremely high precision, and as a result, light is present on the joining surface. The problem of total reflection above the angle of incidence must not occur. That is, when the optical glass is a lens, the curvature of the lens is not limited to a certain range in order to prevent the total reflection due to the presence of the air layer.

【0004】従来の投影レンズとして使用される光学レ
ンズの製作方法の例を図5に示す。ここに示す光学レン
ズは、平凸レンズ1枚と平凹レンズ1枚とを接合させた
構成である。平凸レンズは、例えば、硝材がBK7WD
であり、直径35.8mm、最頂部における厚みが8.
5mm、凸部の曲率半径が30.20mmである。一
方、平凹レンズは、硝材がFL6であり、直径36m
m、最底部における厚みが2.5mm、凹部の曲率半径
が18.54mmである。
An example of a method of manufacturing an optical lens used as a conventional projection lens is shown in FIG. The optical lens shown here has a configuration in which one plano-convex lens and one plano-concave lens are cemented together. For the plano-convex lens, for example, the glass material is BK7WD
And the diameter is 35.8 mm and the thickness at the top is 8.
5 mm, the radius of curvature of the convex portion is 30.20 mm. On the other hand, the plano-concave lens has a glass material of FL6 and a diameter of 36 m.
m, the thickness at the bottom is 2.5 mm, and the radius of curvature of the recess is 18.54 mm.

【0005】以下、製作手順を説明する。 (1)同図(a)に示すように、平凹レンズ30の接合
面(平面側)が上方となるよう平凹レンズ30を設置
し、接合面に光学用接着剤として紫外線硬化性接着剤2
0を塗布する。 (2)同図(b)に示すように、平凹レンズ30の上方
から平凸レンズ10を重ね合わせ、平凸レンズ10自体
の荷重により紫外線硬化性接着剤20が接合面全体に行
き渡るまで待機する。紫外線硬化性接着剤20に気泡や
異物の混入が観察される場合は、平凸レンズ10および
平凹レンズ30をすり合わせることにより、気泡や異物
を排除する。 (3)同図(c)に示すように、紫外線硬化性接着剤2
0が接合面全体に行き渡った後、重り等を用いて平凸レ
ンズ10の上方より荷重を加えて、紫外線硬化性接着剤
20の形成層の厚さdを所定の値に調整する。例えば、
2Kgの荷重を10分間加え、厚さdを5μm以下にす
る。
The manufacturing procedure will be described below. (1) As shown in FIG. 1A, the plano-concave lens 30 is installed so that the cemented surface (planar side) of the plano-concave lens 30 faces upward, and the ultraviolet curable adhesive 2 is used as an optical adhesive on the cemented surface.
Apply 0. (2) As shown in FIG. 2B, the plano-convex lens 10 is superposed from above the plano-concave lens 30, and the load of the plano-convex lens 10 itself waits until the ultraviolet curable adhesive 20 reaches the entire bonding surface. When bubbles or foreign matter is observed mixed in the ultraviolet curable adhesive 20, the plano-convex lens 10 and the plano-concave lens 30 are rubbed together to eliminate the bubbles or foreign matter. (3) As shown in FIG. 3C, the ultraviolet curable adhesive 2
After 0 has spread over the entire bonding surface, a load is applied from above the plano-convex lens 10 using a weight or the like to adjust the thickness d of the formation layer of the ultraviolet curable adhesive 20 to a predetermined value. For example,
A load of 2 kg is applied for 10 minutes to make the thickness d 5 μm or less.

【0006】形成層を5μm以下としたのは、以下の理
由による。接着にて形成される光学レンズの要求される
厚みの公差が±50μm以下であるのに対し、接着前の
光学ガラス(レンズ)それぞれ厚みの公差は、通常±2
0μmである。よって、(±50μm)−(±20μ
m)×2=(±10μm)の範囲内に形成層の厚さdを
調整すればよいことになる。しかしながら、例えば、形
成層のある位置での厚さd1 =9μm,別の位置での厚
さd2 =3μmといったように、形成層の厚さdのバラ
ツキが5μmを越えると、所定の光に対し収差が発生し
てしまう。組上がった光学レンズの平行度を5μm以内
に制御するのは困難であるので、形成層の厚さdを5μ
m以内として上記収差の発生を防止している。その後、
平凸レンズ10および平凹レンズ30の光軸が一致する
ように両者の位置合わせを行う。
The reason why the forming layer is set to 5 μm or less is as follows. The required thickness tolerance of the optical lens formed by bonding is ± 50 μm or less, while the thickness tolerance of each optical glass (lens) before bonding is usually ± 2.
0 μm. Therefore, (± 50 μm)-(± 20 μm
The thickness d of the forming layer should be adjusted within the range of (m) × 2 = (± 10 μm). However, when the variation in the thickness d of the forming layer exceeds 5 μm, for example, the thickness d 1 = 9 μm at a certain position of the forming layer and the thickness d 2 = 3 μm at another position, a predetermined light is emitted. However, aberration will occur. Since it is difficult to control the parallelism of the assembled optical lens within 5 μm, the thickness d of the forming layer is set to 5 μm.
Within m, the above-mentioned aberration is prevented from occurring. afterwards,
The plano-convex lens 10 and the plano-concave lens 30 are aligned so that their optical axes coincide with each other.

【0007】(4)同図(d)に示すように、形成層の
厚さdを調整後、平凸レンズ10の上方より紫外線を照
射する。例えば、波長が360nm〜370nmであっ
て、平凸レンズ10の表面における照度が0.1mW/
cm2 である紫外線を、まず仮硬化として30秒間照射
する。そして、平凸レンズ10および平凹レンズ30の
光軸が一致しているかどうか確認する。光軸がずれてい
る場合は、両者を剥離させ、紫外線硬化性接着剤を除去
し、再び上記(1)〜(4)の手順を繰り返す。光軸調
整が終了後、本硬化として、上記条件で紫外線を180
秒間照射する。以上により、光学レンズが得られる。
(4) As shown in FIG. 3D, after adjusting the thickness d of the forming layer, ultraviolet rays are irradiated from above the plano-convex lens 10. For example, the wavelength is 360 nm to 370 nm, and the illuminance on the surface of the plano-convex lens 10 is 0.1 mW /
First, ultraviolet rays of cm 2 are irradiated for 30 seconds as temporary curing. Then, it is confirmed whether the optical axes of the plano-convex lens 10 and the plano-concave lens 30 match. When the optical axes are deviated from each other, the both are peeled off, the ultraviolet curable adhesive is removed, and the steps (1) to (4) are repeated again. After the optical axis adjustment is completed, as the main curing, the ultraviolet rays are 180
Irradiate for 2 seconds. An optical lens is obtained by the above.

【0008】[0008]

【発明が解決しようとする課題】上記のように製作され
た光学レンズを紫外線照射装置の光学系に組み込み、紫
外線を照射すると、照射時間の経過につれて被照射物表
面での紫外線照度が低下してゆくという問題点が生じ
た。照度劣化後の光学レンズを調査したところ、光学レ
ンズを構成する複数の光学ガラス(レンズ等)を接合す
る光学用接着剤と光学ガラス(レンズ等)との界面が着
色されており、この界面にて紫外線が吸収され、紫外線
照度が低下することが判明した。
When the optical lens manufactured as described above is incorporated into the optical system of an ultraviolet irradiator and irradiated with ultraviolet rays, the illuminance of ultraviolet rays on the surface of the object to be irradiated decreases as the irradiation time elapses. The problem of going forward arose. When the optical lens after illuminance deterioration was investigated, the interface between the optical glass (lens etc.) and the optical adhesive that joins the multiple optical glasses (lens etc.) that make up the optical lens was colored. It was found that UV rays were absorbed by the UV rays and the illuminance of the UV rays decreased.

【0009】本発明は上記した従来技術の問題点を解決
するためになされたものであって、本発明の目的は、紫
外線を長時間照射する場合においても被照射物表面での
紫外線照度が低下しない紫外線照射装置用光学レンズを
提供することである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and the object of the present invention is to reduce the ultraviolet illuminance on the surface of an object to be irradiated even when it is irradiated with ultraviolet light for a long time. Another object is to provide an optical lens for a UV irradiation device.

【0010】[0010]

【課題を解決するための手段】上記課題は本発明を次の
ように解決したものである。紫外線照射装置用光学レン
ズを構成する複数の光学ガラス(レンズ等)の硝材は、
所定の波長の紫外線透過性は高く耐紫外線性も良好であ
る。また、複数の光学ガラス(レンズ等)を接合する光
学用接着剤である紫外線硬化性接着剤も、同様の特性を
有する。よって、光学ガラス(レンズ等)と光学用接着
剤との界面の着色という特性変化は、紫外線が紫外線照
射装置用光学レンズを通過することにより発生する、光
学ガラス(レンズ等)と紫外線硬化性接着剤との化学反
応に起因するものと考えられる。
The above-mentioned object is to solve the present invention as follows. The glass materials of the optical glasses (lenses etc.) that make up the optical lens for the ultraviolet irradiation device are
It has a high UV transparency at a predetermined wavelength and a good UV resistance. An ultraviolet curable adhesive, which is an optical adhesive that bonds a plurality of optical glasses (lenses and the like), also has similar characteristics. Therefore, the characteristic change of coloring of the interface between the optical glass (lens etc.) and the optical adhesive occurs when ultraviolet rays pass through the optical lens for the ultraviolet irradiation device. It is considered to be caused by the chemical reaction with the agent.

【0011】本発明の請求項1の発明は、光学ガラス
(レンズ等)と紫外線硬化性接着剤との間に誘電体膜を
形成したので、光学ガラス(レンズ等)と光学用接着剤
である紫外線硬化性接着剤とが直接接触することなく、
複数の光学ガラス(レンズ等)を接合することが可能と
なり、紫外線を長時間照射する場合においても被照射物
表面での紫外線照度が低下しない紫外線照射装置用光学
レンズを得ることができる。
Since the dielectric film is formed between the optical glass (lens or the like) and the ultraviolet curable adhesive, the invention of claim 1 of the present invention is the optical glass (lens or the like) and the optical adhesive. Without direct contact with UV curable adhesive,
It becomes possible to bond a plurality of optical glasses (lenses or the like), and it is possible to obtain an optical lens for an ultraviolet irradiation device in which the ultraviolet illuminance on the surface of the object to be irradiated does not decrease even when the ultraviolet irradiation is performed for a long time.

【0012】本発明の請求項2、請求項3の発明は、誘
電体膜を紫外線透過率の高い酸化シリコン膜、フッ化マ
グネシウム膜としたので、誘電体膜による紫外線光量の
減少を抑制することができる。
In the second and third aspects of the present invention, since the dielectric film is a silicon oxide film or a magnesium fluoride film having a high ultraviolet transmittance, it is possible to suppress a decrease in the amount of ultraviolet light due to the dielectric film. You can

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施例である光
学レンズの構成の一例を示す断面図である。ここに示す
光学レンズは、平凸レンズ1枚と平凹レンズ1枚とを接
合させた構成である。平凸レンズ10は、例えば、硝材
がBK7WDであり、直径35.8mm、最頂部におけ
る厚みが8.5mm、凸部の曲率が30.20mmであ
る。一方、平凹レンズ30は、硝材がFL6であり、直
径36mm、最底部における厚みが2.5mm、凹部の
曲率が18.54mmである。すなわち、この例におい
ては、平凸レンズ10および平凹レンズ30の接合面上
に、酸化シリコン(SiO2 )が蒸着されてなる第1の
薄層41および第2の薄層42を形成し、該薄層41お
よび42を介して、平凸レンズ10および平凹レンズ3
0が紫外線硬化性接着剤20によって接合することによ
り、光学レンズを構成する。
1 is a sectional view showing an example of the structure of an optical lens that is an embodiment of the present invention. The optical lens shown here has a configuration in which one plano-convex lens and one plano-concave lens are cemented together. For the plano-convex lens 10, for example, the glass material is BK7WD, the diameter is 35.8 mm, the thickness at the top is 8.5 mm, and the curvature of the convex is 30.20 mm. On the other hand, in the plano-concave lens 30, the glass material is FL6, the diameter is 36 mm, the thickness at the bottom is 2.5 mm, and the curvature of the recess is 18.54 mm. That is, in this example, the first thin layer 41 and the second thin layer 42 formed by vapor deposition of silicon oxide (SiO 2 ) are formed on the cemented surface of the plano-convex lens 10 and the plano-concave lens 30, and the thin layers are formed. Plano-convex lens 10 and plano-concave lens 3 via layers 41 and 42
An optical lens is formed by bonding 0 with the ultraviolet curable adhesive 20.

【0014】以下、製作手順を説明する。 (1)平凸レンズ10および平凹レンズ30の接合面に
酸化シリコン(SiO2)を膜厚70nmで蒸着するこ
とにより、第1の薄層41および第2の薄層42を形成
する。上記第1の薄層41および第2の薄層42は、例
えば、平凸レンズ10ならびに平凹レンズ30の温度3
00℃、真空槽内圧力2.7×10-3Pa、蒸着速度
7.0Å/sの条件で蒸着形成される。その際、蒸着中
にArイオンを加速して蒸着されている基板(平凸レン
ズ10または平凹レンズ30)に照射し、密度の高い蒸
着膜を得る。
The manufacturing procedure will be described below. (1) The first thin layer 41 and the second thin layer 42 are formed by vapor-depositing silicon oxide (SiO 2 ) with a film thickness of 70 nm on the cemented surface of the plano-convex lens 10 and the plano-concave lens 30. The first thin layer 41 and the second thin layer 42 are formed, for example, at the temperature 3 of the plano-convex lens 10 and the plano-concave lens 30.
Vapor deposition is performed under the conditions of 00 ° C., vacuum chamber pressure of 2.7 × 10 −3 Pa, and vapor deposition rate of 7.0 Å / s. At this time, Ar ions are accelerated during the vapor deposition to irradiate the vapor-deposited substrate (plano-convex lens 10 or plano-concave lens 30) to obtain a vapor-deposited film with high density.

【0015】(2) 上記第1の薄層41および第2の
薄層42の形成終了後は、従来の技術で示した製作手順
(1)〜(4)を継承する。すなわち、本実施例におい
ても、紫外線硬化性接着剤20の形成層の厚さdを5μ
mとし、紫外線の照射条件は、波長が360nm〜37
0nm、平凸レンズ1の表面における照度が0.1mW
/cm2 、仮硬化時照射時間30秒、本硬化時照射時間
180秒とした。以上により、光学レンズが得られる。
(2) After the formation of the first thin layer 41 and the second thin layer 42, the manufacturing procedures (1) to (4) shown in the prior art are succeeded. That is, also in this embodiment, the thickness d of the formation layer of the ultraviolet curable adhesive 20 is 5 μm.
m, and the ultraviolet irradiation condition is that the wavelength is 360 nm to 37 nm.
0 nm, the illuminance on the surface of plano-convex lens 1 is 0.1 mW
/ Cm 2 , irradiation time during temporary curing was 30 seconds, and irradiation time during main curing was 180 seconds. An optical lens is obtained by the above.

【0016】上記実施例において、第1の薄層41およ
び第2の薄層42をフッ化マグネシウム(MgF2 )と
した場合の形成条件は、例えば以下の通りである。すな
わち、平凸レンズ10ならびに平凹レンズ30の温度3
00℃、真空槽内圧力1.2×10-3Pa、蒸着速度
5.0Å/sの条件で蒸着し、膜厚72nmのフッ化マ
グネシウム層を得る。
In the above embodiment, the formation conditions when the first thin layer 41 and the second thin layer 42 are magnesium fluoride (MgF 2 ) are as follows, for example. That is, the temperature of the plano-convex lens 10 and the plano-concave lens 30 is 3
Vapor deposition is performed under the conditions of 00 ° C., vacuum chamber pressure 1.2 × 10 −3 Pa, and vapor deposition rate 5.0 Å / s to obtain a magnesium fluoride layer having a film thickness of 72 nm.

【0017】本発明の効果を確認するために、上記実施
例に基づき誘電体膜を酸化シリコン膜とした第1の光学
サンプルと、上記実施例に基づき誘電体膜をフッ化マグ
ネシウム膜とした第2の光学サンプルと、従来技術に基
づく、即ち、光学ガラス(レンズ)と紫外線硬化性接着
剤との間に誘電体膜を介在させない第3の光学サンプル
の紫外線透過率の経時的変化を測定した。図2に各サン
プルの構成を示す。同図(a)が第1、第2のサンプ
ル、同図(b)が第3のサンプルであり、図1と同等の
構成要素には同じ符号が付されている。各サンプルは、
各々、50mm×50mm×厚さ2mmのBK7WDガ
ラスおよびFL6ガラスを上記実施例および従来の技術
にもとづいて張り合わせたものである。図3に、該各サ
ンプルの紫外線透過率の経時的変化を示す。ここで対象
とした紫外線の波長は、露光波長の一つである365n
m(i線)とした。同図において縦軸は波長365nm
光の透過率であり、横軸は紫外線照射時間を示す。
In order to confirm the effect of the present invention, a first optical sample in which the dielectric film is a silicon oxide film based on the above-mentioned embodiment and a first optical sample in which the dielectric film is a magnesium fluoride film based on the above-mentioned embodiment are used. The change with time of the ultraviolet transmittance of the optical sample of No. 2 and the third optical sample based on the prior art, that is, without interposing the dielectric film between the optical glass (lens) and the ultraviolet curable adhesive, was measured. . FIG. 2 shows the structure of each sample. The figure (a) is the 1st and 2nd sample, the figure (b) is the 3rd sample, and the same code | symbol is attached | subjected to the component equivalent to FIG. Each sample is
BK7WD glass and FL6 glass each having a size of 50 mm × 50 mm × thickness of 2 mm are laminated based on the above-mentioned examples and the conventional technique. FIG. 3 shows the change with time of the ultraviolet transmittance of each sample. The wavelength of the ultraviolet rays targeted here is 365n, which is one of the exposure wavelengths.
m (i line). In the figure, the vertical axis shows the wavelength of 365 nm.
It is the light transmittance, and the horizontal axis represents the ultraviolet irradiation time.

【0018】両者に紫外線を投射する紫外線光源はウシ
オ電機株式会社製の紫外線照射装置UIS−5011H
G97である。両者に投射される紫外線の分光分布を図
4に示す。同図において、縦軸は相対分光強度、横軸は
波長である。ここで、投射される紫外線のうち、波長3
40nm以下の成分はフィルタ等によりカットされてい
る。これは、波長340nm以下の紫外線によって、貼
り合わせる光学ガラス(レンズ)が着色してしまい、ま
た紫外線硬化性接着剤自体も特性が劣化してしまうから
である。
An ultraviolet light source for projecting ultraviolet light to both is an ultraviolet irradiation device UIS-5011H manufactured by Ushio Inc.
It is G97. FIG. 4 shows the spectral distribution of ultraviolet rays projected on both. In the figure, the vertical axis represents relative spectral intensity and the horizontal axis represents wavelength. Here, among the projected ultraviolet rays, the wavelength 3
The component of 40 nm or less is cut by a filter or the like. This is because the optical glass (lens) to be bonded is colored by ultraviolet rays having a wavelength of 340 nm or less, and the characteristics of the ultraviolet curable adhesive itself are deteriorated.

【0019】図3から明らかなように、従来技術に基づ
く第3の光学サンプルにおいては、照射時間が500時
間経過した後着色が観測され、透過率は指数関数的に低
下している。一方、本発明に係る第1の光学サンプル
(酸化シリコン膜使用)においては、照射時間が100
0時間経過後も着色が観測されず、透過率の低下も2%
以内となっている。さらに2000時間経過後も透過率
の低下は5%以内であり、例えば、露光装置の投影レン
ズとしても十分実用可能であるという評価が得られた。
また、本発明に係る第2の光学サンプル(フッ化マグネ
シウム膜使用)においては、照射時間が1400時間経
過後も着色が観測されず、透過率の低下も4%以内とな
っており、第3の光学サンプルと比較して良好な結果が
得られた。
As is apparent from FIG. 3, in the third optical sample based on the prior art, coloring was observed after the irradiation time of 500 hours, and the transmittance decreased exponentially. On the other hand, in the first optical sample (using a silicon oxide film) according to the present invention, the irradiation time is 100
No coloring was observed even after 0 hour, and the decrease in transmittance was 2%.
It is within. Furthermore, the decrease in transmittance was within 5% even after 2000 hours, and it was evaluated that it can be sufficiently used as a projection lens for an exposure apparatus, for example.
In the second optical sample (using a magnesium fluoride film) according to the present invention, no coloring was observed even after the irradiation time of 1400 hours, and the decrease in transmittance was within 4%. Good results were obtained in comparison with the optical sample of.

【0020】[0020]

【発明の効果】以上説明したとおり、本発明は、光学ガ
ラス(レンズ等)と紫外線硬化性接着剤との間に酸化シ
リコン膜を形成したので、光学ガラス(レンズ等)と光
学用接着剤である紫外線硬化性接着剤とが直接接触する
ことなく、複数の光学ガラス(レンズ等)を接合するこ
とが可能となり、紫外線を長時間照射する場合において
も被照射物表面での紫外線照度が低下しない紫外線照射
装置用光学レンズを得ることができる。
As described above, according to the present invention, since the silicon oxide film is formed between the optical glass (lens or the like) and the ultraviolet curable adhesive, the optical glass (lens or the like) and the optical adhesive are used. It is possible to bond multiple optical glasses (lenses, etc.) without direct contact with a certain UV curable adhesive, and the UV illuminance on the surface of the irradiated object does not decrease even when UV irradiation is performed for a long time. An optical lens for an ultraviolet irradiation device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である光学レンズの構成の一例
を示す図である。
FIG. 1 is a diagram showing an example of a configuration of an optical lens that is an embodiment of the present invention.

【図2】本発明ならびに従来技術に基づき製作されたサ
ンプルを示す図である。
FIG. 2 is a diagram showing a sample manufactured according to the present invention and the prior art.

【図3】本発明ならびに従来技術に基づき製作されたサ
ンプルの紫外線透過率の経時的変化を示す図である。
FIG. 3 is a graph showing changes with time in ultraviolet transmittance of samples manufactured according to the present invention and the prior art.

【図4】紫外線光源から放射される紫外線の分光分布を
示す図である。
FIG. 4 is a diagram showing a spectral distribution of ultraviolet rays emitted from an ultraviolet light source.

【図5】従来の投影レンズとして使用される光学レンズ
の製作方法の例を示す図である。
FIG. 5 is a diagram showing an example of a method of manufacturing an optical lens used as a conventional projection lens.

【符号の説明】[Explanation of symbols]

10 平凸レンズ d 形成層の厚さ 20 紫外線硬化性接着剤 30 平凹レンズ 41 第1の薄層 42 第2の薄層 10 Plano-Convex Lens d Thickness of Formation Layer 20 UV-Curable Adhesive 30 Plano-Concave Lens 41 First Thin Layer 42 Second Thin Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の光学ガラスを紫外線硬化性接着剤に
よって接合することにより構成される紫外線照射装置用
光学レンズであって、 各光学ガラスと紫外線硬化性接着剤の間に誘電体膜を形
成したことを特徴とする紫外線照射装置用光学レンズ。
1. An optical lens for an ultraviolet irradiation device, comprising a plurality of optical glasses bonded together by an ultraviolet curable adhesive, wherein a dielectric film is formed between each optical glass and the ultraviolet curable adhesive. An optical lens for an ultraviolet irradiation device, which is characterized in that
【請求項2】前記誘電体膜が酸化シリコン膜であること
を特徴とする紫外線照射装置用光学レンズ。
2. An optical lens for an ultraviolet irradiation device, wherein the dielectric film is a silicon oxide film.
【請求項3】前記誘電体膜がフッ化マグネシウム膜であ
ることを特徴とする紫外線照射装置用光学レンズ。
3. An optical lens for an ultraviolet irradiation device, wherein the dielectric film is a magnesium fluoride film.
JP25577495A 1995-09-08 1995-09-08 Optical lens for ultraviolet irradiation device Expired - Fee Related JP3238617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25577495A JP3238617B2 (en) 1995-09-08 1995-09-08 Optical lens for ultraviolet irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25577495A JP3238617B2 (en) 1995-09-08 1995-09-08 Optical lens for ultraviolet irradiation device

Publications (2)

Publication Number Publication Date
JPH0980207A true JPH0980207A (en) 1997-03-28
JP3238617B2 JP3238617B2 (en) 2001-12-17

Family

ID=17283446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25577495A Expired - Fee Related JP3238617B2 (en) 1995-09-08 1995-09-08 Optical lens for ultraviolet irradiation device

Country Status (1)

Country Link
JP (1) JP3238617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895113A2 (en) * 1997-08-01 1999-02-03 Carl Zeiss Optical mount with UV curable adhesive and protective coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0895113A2 (en) * 1997-08-01 1999-02-03 Carl Zeiss Optical mount with UV curable adhesive and protective coating
EP0895113A3 (en) * 1997-08-01 1999-12-15 Carl Zeiss Optical mount with UV curable adhesive and protective coating

Also Published As

Publication number Publication date
JP3238617B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US6618200B2 (en) System and method for providing a substrate having micro-lenses
US7477452B2 (en) Micro lens array, optical member and method of producing micro lens array
JP2920164B2 (en) Reflective overcoat for replica gratings
JP4207599B2 (en) Manufacturing method of liquid crystal panel
TWI294973B (en) A method of manufacturing a microlens subustrate, an opposed substrate for a liquid crystal panel, a liquid crystal panel and a projection type display apparatus
TW200405060A (en) Microlens array substrate and fabrication method thereof, and projection-type liquid crystal display device using same
US20070046863A1 (en) Microlens substrate, a liquid crystal panel and a projection type display apparatus
KR20050060020A (en) A method for manufacturing a lens substrate with straight light control portions, a lens substrate with straight light control portions, a transmission screen and a rear projector
US7345821B2 (en) Microlens substrate, a method for manufacturing the microlens substrate, a liquid crystal panel, and a projection type display apparatus
JP3835319B2 (en) Manufacturing method of substrate with recess for microlens, substrate with recess for microlens, microlens substrate, counter substrate for liquid crystal panel, liquid crystal panel, and projection display device
US8025822B2 (en) Method of manufacturing a microlens substrate, an opposed substrate for a liquid crystal panel, a liquid crystal panel and a projection type display apparatus
JP2004302113A (en) Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
WO2013015406A1 (en) Optical device, imaging device, and manufacturing method for imaging
KR20110003576A (en) Fabrication of thin pellicle beam splitters
JP2005121915A (en) Method for manufacturing base plate with recessed part for microlens, base plate with recessed part for microlens, microlens base plate, counter base plate for liquid crystal panel, liquid crystal panel and projection type display device
JPH0980207A (en) Optical lens for ultraviolet irradiation device
US7682761B2 (en) Method of fabricating a grayscale mask using a wafer bonding process
CN108292102A (en) Method for manufacturing diaphragm assembly
WO2022166041A1 (en) Off-axis focusing lens and manufacturing method therefor
JP5078229B2 (en) Optical element, liquid crystal device, and liquid crystal projector
JP2004069790A (en) Method for manufacturing substrate with recessing part, substrate with recessing part, substrate with recessing part for micro lens, micro lens substrate, counter substrate for liquid crystal panel, liquid crystal panel, and projection display device
JP2005128351A (en) Method for manufacturing lens base plate with light shielding part, lens base plate with light shielding part, transmission type screen and rear type projector
JPH09184917A (en) Optical parts and their production
JP2008181083A (en) Grayscale mask using smart cut (r) wafer bonding process and method for fabricating the same
JPH10142590A (en) Production of optical substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees