JPH0977726A - Production of tranexamic acid - Google Patents

Production of tranexamic acid

Info

Publication number
JPH0977726A
JPH0977726A JP23297495A JP23297495A JPH0977726A JP H0977726 A JPH0977726 A JP H0977726A JP 23297495 A JP23297495 A JP 23297495A JP 23297495 A JP23297495 A JP 23297495A JP H0977726 A JPH0977726 A JP H0977726A
Authority
JP
Japan
Prior art keywords
trans
cyclohexanedimethanol
group
tranexamic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23297495A
Other languages
Japanese (ja)
Other versions
JP3763598B2 (en
Inventor
Takashi Watanabe
敬 渡辺
Jin Hasegawa
人 長谷川
Kuniro Ogasawara
國郎 小笠原
Isao Hiroya
功 廣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP23297495A priority Critical patent/JP3763598B2/en
Publication of JPH0977726A publication Critical patent/JPH0977726A/en
Application granted granted Critical
Publication of JP3763598B2 publication Critical patent/JP3763598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To readily obtain clinically important high-purity tranexamic acid having strong antiplasmin activity and important without performing operations to separate the compound from isomers produced when carrying out the reaction. SOLUTION: Either of hydroxyl groups in trans-1,4-cyclohexanedimethanol (preferably having >=95% diastereomeric purity) is converted into an azide to introduce the azido group thereinto. The other hydroxymethyl group is then oxidized to introduce carboxyl group and the azido group is further reduced into amino group. Thereby, tranexamic acid which is the objective compound is obtained. The formation of the azido group is preferably carried out by reacting the trans-1,4-cyclohexanedimethanol with a sulfonyl chloride such as methanesulfonyl chloride in an amount of preferably 0.5-1.5 equiv. based on the objective compound in the presence of a base such as triethylamine in a solvent such as dichloromethane, providing a monosulfonic ester and then reacting the resultant monosulfonic ester with sodium azide, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トラネキサム酸の
製造方法に関し、詳しくは、トランス−1,4−シクロ
ヘキサンジメタノールの一方の水酸基をアミノ化し、他
方のヒドロキシメチル基を酸化することを特徴とするト
ラネキサム酸の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing tranexamic acid, which is characterized in that one hydroxyl group of trans-1,4-cyclohexanedimethanol is aminated and the other hydroxymethyl group is oxidized. The present invention relates to a method for producing tranexamic acid.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】トラネ
キサム酸〔トランス−4−アミノメチルシクロヘキサン
カルボン酸〕は、強い抗プラスミン活性を有する臨床学
的に重要な化合物である。しかし、そのジアステレオマ
ー異性体であるシス−4−アミノメチルシクロヘキサン
カルボン酸は抗プラスミン試薬としての活性を示さない
ので、このシス異性体を含まないトラネキサム酸が要求
されている。
BACKGROUND OF THE INVENTION Tranexamic acid [trans-4-aminomethylcyclohexanecarboxylic acid] is a clinically important compound having a strong antiplasmin activity. However, since its diastereomeric cis-4-aminomethylcyclohexanecarboxylic acid does not exhibit activity as an antiplasmin reagent, tranexamic acid free of this cis isomer is required.

【0003】これまでのトラネキサム酸は、例えば、
(1) p−アセチルアミノメチル安息香酸をラネーニッケ
ルを用い高圧還元しシクロヘキサン誘導体を得て、これ
を加水分解して脱アセチル体とし、このシス−トランス
混合物を銅塩またはトシル塩として結晶性の差を利用し
て分離しイオン交換樹脂で処理する方法、(2) p−トリ
ニトリルをクロム酸を用い酸化し、p−シアノ安息香酸
を得て、これをラネ−コバルトを用いて中圧還元しp−
アミノメチル安息香酸を得、さらに氷酢酸中酸化白金を
用い常圧還元しさらに上記と同様にシス−トランスを分
離して得る方法などが提案されているが、いずれの場合
にもシクロヘキサン部分をベンゼン還の還元により構築
しているため、トランス−シスの混合物として得られ、
分離操作が必要な上、そのシス異性体の再利用は困難で
あった。
Conventional tranexamic acid is, for example,
(1) p-Acetylaminomethylbenzoic acid was reduced under high pressure using Raney nickel to obtain a cyclohexane derivative, which was hydrolyzed to a deacetylated product, and the cis-trans mixture was used as a copper salt or a tosyl salt to obtain a difference in crystallinity. (2) p-trinitrile is oxidized with chromic acid to obtain p-cyanobenzoic acid, which is reduced under moderate pressure with Raney-cobalt to give p-tribenzoic acid. −
A method has been proposed in which aminomethylbenzoic acid is obtained, and further, reduction is carried out under atmospheric pressure using platinum oxide in glacial acetic acid and further cis-trans is separated in the same manner as described above. It is obtained as a trans-cis mixture because it is constructed by the reduction of redox.
It was difficult to reuse the cis isomer in addition to the separation operation required.

【0004】従って、本発明の目的は、シス体とトラン
ス体との分離操作を要せずに、トラネキサム酸を高収率
且つ高純度で得ることができるトラネキサム酸の製造方
法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing tranexamic acid, which makes it possible to obtain tranexamic acid in a high yield and a high purity without requiring a separation operation of a cis form and a trans form. is there.

【0005】[0005]

【課題を解決するための手段】本発明者等は、ジアステ
レオマー的に純粋なトラネキサム酸を製造する方法を見
出すべく鋭意検討を重ねた結果、工業的に高純度のもの
が容易に得られるトランス−1,4−シクロヘキサンジ
メタノールを出発原料として用い、このトランス−1,
4−シクロヘキサンジメタノールの一方の水酸基をアミ
ノ化し、他方のヒドロキシメチル基を酸化してカルボキ
シル基を導入することで、上記目的を達成し得ることを
見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to find a method for producing diastereomerically pure tranexamic acid, and as a result, industrially high purity products can be easily obtained. Using trans-1,4-cyclohexanedimethanol as a starting material,
The inventors have found that the above object can be achieved by aminating one hydroxyl group of 4-cyclohexanedimethanol and oxidizing the other hydroxymethyl group to introduce a carboxyl group, and arrived at the present invention.

【0006】即ち、本発明は、トランス−1,4−シク
ロヘキサンジメタノールの一方の水酸基をアミノ化し、
他方のヒドロキシメチル基を酸化してカルボキシル基を
導入することを特徴とするトラネキサム酸の製造方法を
提供するものである。
That is, according to the present invention, one hydroxyl group of trans-1,4-cyclohexanedimethanol is aminated,
The present invention provides a method for producing tranexamic acid, which comprises oxidizing a hydroxymethyl group on the other side to introduce a carboxyl group.

【0007】[0007]

【発明の実施の形態】以下、本発明のトラネキサム酸の
製造方法について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing tranexamic acid of the present invention will be described in detail below.

【0008】本発明に使用されるトランス−1,4−シ
クロヘキサンジメタノールは、ジアステレオマー的に純
度が好ましくは90%以上、更に好ましくは95%以上
のものが使用される。ここで、上記トランス−1,4−
シクロヘキサンジメタノールの純度は最終製品のトラネ
キサム酸純度に大きく影響を与えるものであるため十分
純度の高いものであることが要求される。
The trans-1,4-cyclohexanedimethanol used in the present invention has a diastereomer purity of preferably 90% or more, more preferably 95% or more. Here, the transformer-1,4-
The purity of cyclohexanedimethanol has a great influence on the purity of tranexamic acid in the final product, and therefore it is required that the purity is sufficiently high.

【0009】また、1,4−シクロヘキサンジメタノー
ルの工業的な製法としては、例えば、1,4−シクロヘ
キサンジカルボン酸ジメチルエステルを銅クロム触媒の
存在下水素化した後蒸留して得る方法などがあるが、こ
の場合には約70%のトランス体と約30%のシス体と
の混合物として得られる。
As an industrial method for producing 1,4-cyclohexanedimethanol, for example, there is a method in which 1,4-cyclohexanedicarboxylic acid dimethyl ester is hydrogenated in the presence of a copper chromium catalyst and then distilled. However, in this case, it is obtained as a mixture of about 70% trans form and about 30% cis form.

【0010】この混合物から純粋なトランス体を得る方
法としては、(1) シス−トランス混合物をトリメチルシ
リル化してジグリセロールカラムでクロマト分離する方
法、(2) シス−トランス混合物をシクロデキストリン結
合型シリカゲルカラムを使用してクロマト分離する方
法、(3) シス−トランス混合物をジベンゾエートにして
結晶性の差を利用して選択的に結晶化してから再度加水
分解して得る方法、(4)シス−トランス混合物をアルカ
リ存在下で蒸留して得る方法、(5) リパーゼを用いてト
ランスエステル化したり、逆にそのエステル化合物をメ
タリノシス化することで分離精製する方法などが提案さ
れている。これらの方法により、高純度のトランス体を
得ることができる。また、ここで分離されたシス体であ
るシス−1,4−シクロヘキサンジメタノールは、アル
カリの存在下に加熱処理することで異性化して再利用す
ることが可能である。
As a method for obtaining a pure trans form from this mixture, (1) a cis-trans mixture is subjected to trimethylsilylation and chromatographed on a diglycerol column, (2) the cis-trans mixture is subjected to a cyclodextrin-bonded silica gel column. , (3) a cis-trans mixture is converted to dibenzoate, selectively crystallized by utilizing the difference in crystallinity and then hydrolyzed again, (4) cis-trans There have been proposed methods such as a method of obtaining a mixture by distillation in the presence of an alkali, (5) a method of transesterification using lipase, and a method of separating and purifying the ester compound by conversely converting it to metallinosis. A highly pure trans form can be obtained by these methods. Further, the cis-isomer, cis-1,4-cyclohexanedimethanol separated here, can be isomerized and reused by heat treatment in the presence of an alkali.

【0011】上記トランス1, 4−シクロヘキサンジメ
タノールの水酸基をアミノ化する方法は特に限定される
ものではないが、好ましくは、アジド化した後還元する
方法が操作も簡単であり好ましい。
The method for aminating the hydroxyl group of the above-mentioned trans 1,4-cyclohexanedimethanol is not particularly limited, but a method of azidation followed by reduction is preferable because the operation is simple.

【0012】上記トランス−1,4−シクロヘキサンジ
メタノールの一方の水酸基をアジド化する方法として
は、例えば、ジクロルメタンなどの溶媒中でトリエチル
アミンなどの塩基の存在下、メタンスルホン酸クロライ
ド、ベンゼンスルホン酸クロライド、p−トルエンスル
ホン酸クロライド(トシルクロライド)などのスルホン
酸クロライドと反応させてモノスルホン酸エステルと
し、次いでアジ化ナトリウム、アジ化リチウムなどと反
応させる方法があげられる。
As a method for azidating one hydroxyl group of the above trans-1,4-cyclohexanedimethanol, for example, methanesulfonic acid chloride, benzenesulfonic acid chloride in the presence of a base such as triethylamine in a solvent such as dichloromethane. , P-toluenesulfonic acid chloride (tosyl chloride) or the like to give a monosulfonic acid ester, which is then reacted with sodium azide, lithium azide or the like.

【0013】ここで、上記アジド化する方法に用いられ
る上記溶媒としては、例えば、ジクロルメタン、クロロ
ホルム、アセトニトリルなどの比較的低極性の溶媒を使
用することが好ましく、ジメチルホルムアミド、ジメチ
ルスルホキシドなどの高い極性の溶媒を使用した場合に
は脱水反応が優先し反応が進行し難い。
As the solvent used in the azidation method, it is preferable to use a solvent having a relatively low polarity such as dichloromethane, chloroform and acetonitrile, and a solvent having a high polarity such as dimethylformamide and dimethylsulfoxide. When the above solvent is used, the dehydration reaction has priority and the reaction is difficult to proceed.

【0014】また、上記スルホン酸クロライドをトラン
ス−1,4−シクロヘキサンジメタノールの反応させる
べき水酸基に対し過剰当量を使用した場合には、トラン
ス−1,4−シクロヘキサンジメタノールのモノスルホ
ン酸エステルの収率を向上させることができるが、副生
物であるトランス−1,4−シクロヘキサンジメタノー
ルジエステルも多く生成し、過少当量の使用ではトラン
ス−1,4−シクロヘキサンジメタノールモノエステル
の収率は低いが、副生物のトランス−1,4−シクロヘ
キサンジメタノールジエステルの生成も小さい。ここ
で、未反応のトランス−1,4−シクロヘキサンジメタ
ノールは再利用が可能である。このため、工業的に応用
を図るためには、上記スルホン酸クロライドは、上記ト
ランス−1,4−シクロヘキサンジメタノールに対し
て、好ましくは0.3〜1.7当量、更に好ましくは
0.5〜1.5当量で使用することにより、副生物が少
なく、収率も大きいので望ましい。
When the above sulfonic acid chloride is used in an excess equivalent amount with respect to the hydroxyl group to be reacted with trans-1,4-cyclohexanedimethanol, the monosulfonic acid ester of trans-1,4-cyclohexanedimethanol is used. Although the yield can be improved, a large amount of by-product trans-1,4-cyclohexanedimethanol diester is also generated, and the yield of trans-1,4-cyclohexanedimethanol monoester is low when an excessively small amount is used. However, the production of by-product trans-1,4-cyclohexanedimethanol diester is small. Here, unreacted trans-1,4-cyclohexanedimethanol can be reused. Therefore, for industrial application, the sulfonic acid chloride is preferably 0.3 to 1.7 equivalents, more preferably 0.5 equivalent to the trans-1,4-cyclohexanedimethanol. It is desirable to use it in an amount of up to 1.5 equivalents because it produces less by-products and a higher yield.

【0015】また、未反応のトランス−1,4−シクロ
ヘキサンジメタノール、モノトシル−トランス−1,4
−シクロヘキサンジメタノール等の上記モノエステルお
よび副生物ジトシル−トランス−1,4−シクロヘキサ
ンジメタノール等の上記ジエステルはカラムにより容易
に分離できるが、場合によってはこの状態で分離するこ
となく最終製品までの任意の段階で分離することも可能
である。
Unreacted trans-1,4-cyclohexanedimethanol, monotosyl-trans-1,4
The above monoester such as cyclohexanedimethanol and the above diester such as by-product ditosyl-trans-1,4-cyclohexanedimethanol can be easily separated by a column, but in some cases, the final product can be separated without separation in this state. It is also possible to separate at any stage.

【0016】次に、上記のアジド基をアミノ基に還元す
る方法は、任意の還元方法が用いられるが、白金炭素、
パラジウム炭素などの還元触媒を用いた接触水素還元法
が好ましい。
Next, as a method for reducing the azido group to an amino group, any reducing method can be used.
A catalytic hydrogen reduction method using a reduction catalyst such as palladium carbon is preferable.

【0017】また、上記トランス−1,4−シクロヘキ
サンジメタノールのヒドロキシメチル基を酸化してカル
ボキシル基を導入する方法としては、任意の酸化方法が
用いられるが、酸化クロム(IV)、過マンガン酸カリウ
ムなどの酸化剤を用いる方法が好ましい。
As a method of oxidizing the hydroxymethyl group of trans-1,4-cyclohexanedimethanol to introduce a carboxyl group, any oxidation method can be used, but chromium (IV) oxide, permanganate A method using an oxidizing agent such as potassium is preferable.

【0018】また、上記のアジド基をアミノ基に還元す
る工程は、上記カルボキシル基を形成させる前または形
成させた後の何れに行ってもよいが、形成させた後に行
う方が好ましい。即ち、一方の水酸基をアジド化して新
規中間体であるトランス−p−アジドメチルシクロヘキ
サンメタノールを製造した後、他方の水酸基を酸化して
カルボキシル基を導入し、次いで上記アジド基を還元し
てアミノ基を導入するという順に反応を行うのが好まし
い。
The step of reducing the azido group to an amino group may be carried out either before or after the formation of the carboxyl group, but is preferably carried out after the formation. That is, one hydroxyl group is azidated to produce a novel intermediate, trans-p-azidomethylcyclohexanemethanol, and then the other hydroxyl group is oxidized to introduce a carboxyl group, and then the azido group is reduced to give an amino group. It is preferable to carry out the reactions in the order of introducing.

【0019】[0019]

【実施例】次に、実施例によって本発明を説明するが、
本発明は下記の実施例によって制限を受けるものではな
い。
Next, the present invention will be described with reference to examples.
The invention is not limited by the examples below.

【0020】実施例1 モノトシル−トランス−1,4−シクロヘキサンジメタ
ノールの製造 トランス−1,4−シクロヘキサンジメタノール(純度
99%以上)216mgを塩化メチレン15ml溶解
し、p−トルエンスルホニルクロライド200mg、ト
リエチルアミン0.29mlおよび4−ジメチルアミノ
ピリジン9mgを加え、室温で24時間攪拌後、飽和食
塩水10mlを加えジエチルエーテル30mlで3回抽
出した。有機層を無水硫酸マグネシウムで乾燥し、減圧
下に溶媒を留去した。残渣をシリカゲルカラムクラマト
グラフィー30gに付し、酢酸エチル−ヘキサン(容量
比1:3)の流分よりジトシル−トランス−1,4−シ
クロヘキサンジメタノール64mg(9%)、酢酸エチ
ル−ヘキサン(容量比1:1)の流分よりモノトシル−
トランス−1,4−シクロヘキサンジメタノール209
mg(47%)、酢酸エチル−ヘキサン(4:1)流分
よりトランス−1,4−シクロヘキサンジメタノール9
4mg(44%)を得た。ここで、未反応の上記トラン
ス−1,4−シクロヘキサンジメタノールは、再利用し
て更に反応を繰り返した。従って、最終的に得られた上
記モノトシル−トランス−1,4−シクロヘキサンジメ
タノールの収率(原料のトランス−1,4−シクロヘキ
サンジメタノールに対する収率)は、84%であった。
Example 1 Preparation of monotosyl-trans-1,4-cyclohexanedimethanol 216 mg of trans-1,4-cyclohexanedimethanol (purity 99% or more) was dissolved in 15 ml of methylene chloride, and 200 mg of p-toluenesulfonyl chloride, triethylamine. 0.29 ml and 4-dimethylaminopyridine 9 mg were added, the mixture was stirred at room temperature for 24 hours, saturated saline 10 ml was added, and the mixture was extracted 3 times with diethyl ether 30 ml. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was applied to silica gel column chromatography 30 g, and from the fraction of ethyl acetate-hexane (volume ratio 1: 3), ditosyl-trans-1,4-cyclohexanedimethanol 64 mg (9%), ethyl acetate-hexane (volume ratio). 1: 1) stream monotosyl-
Trans-1,4-cyclohexanedimethanol 209
mg (47%), ethyl acetate-hexane (4: 1) stream-1,4-cyclohexanedimethanol 9
Obtained 4 mg (44%). Here, the unreacted trans-1,4-cyclohexanedimethanol was reused and the reaction was repeated. Therefore, the yield of the finally obtained monotosyl-trans-1,4-cyclohexanedimethanol (yield with respect to the raw material trans-1,4-cyclohexanedimethanol) was 84%.

【0021】次に、得られたジトシル−トランス−1,
4−シクロヘキサンジメタノール、モノトシル−トラン
ス−1,4−シクロヘキサンジメタノールおよび原料の
トランス−1,4−シクロヘキサンジメタノールの赤外
分光分析(IR)、 1H−NMR分析、13C−NMR分
析、低分解能質量スペクトル(MS)および高分解能質
量スペクトル(HRMS)などの測定値を示す。
Next, the obtained ditosyl-trans-1,
Infrared spectroscopic analysis (IR), 1 H-NMR analysis, 13 C-NMR analysis of 4-cyclohexanedimethanol, monotosyl-trans-1,4-cyclohexanedimethanol and raw material trans-1,4-cyclohexanedimethanol, Measurements such as low resolution mass spectrum (MS) and high resolution mass spectrum (HRMS) are shown.

【0022】(モノトシル−トランス−1,4−シクロ
ヘキサンジメタノール) IR(neat)ν:3380,1360,1174c
-1 1H−NMR(300MHz,CDC13 )δ:
0.82−1.02(m,4H),1.40(br s, 1
H),1.61(br s, 1H),1.67−1.88
(m,4H),2.00(br s, 1H),2.45
(s,3H),3.41(d,2H,J=5.9H
z),3.82(d,2H,J=6.6Hz),7.3
5(d,2H,J=8.8Hz),7.77(d,2
H,J=8.1Hz);13C−NMR(75MHz,C
DC13 )δ:21.60(q),28.39(t),
28.42(t),37.30(d),40.06
(d),68.09(t),75.24(t),12
7.75(d),129.76(d),132.86
(s),144.66(s);MS m/z:298
(M+ ),95(100%);HRMS Calcd
15224 S:298.1239(M+ ),Foun
d:298.1229;Anal.Calcd C15
224 S:C,60.38;H,7.43;S,10.
74.Found:C,60.23;H,7,36;S
10.80
(Monotosyl-trans-1,4-cyclohexanedimethanol) IR (neat) ν: 3380, 1360, 1174c
m -1; 1 H-NMR ( 300MHz, CDC1 3) δ:
0.82-1.02 (m, 4H), 1.40 (br s, 1
H), 1.61 (br s, 1H), 1.67-1.88
(M, 4H), 2.00 (br s, 1H), 2.45
(S, 3H), 3.41 (d, 2H, J = 5.9H
z), 3.82 (d, 2H, J = 6.6 Hz), 7.3
5 (d, 2H, J = 8.8 Hz), 7.77 (d, 2
H, J = 8.1 Hz); 13 C-NMR (75 MHz, C
DC1 3 ) δ: 21.60 (q), 28.39 (t),
28.42 (t), 37.30 (d), 40.06
(D), 68.09 (t), 75.24 (t), 12
7.75 (d), 129.76 (d), 132.86
(S), 144.66 (s); MS m / z: 298.
(M + ), 95 (100%); HRMS Calcd
C 15 H 22 O 4 S: 298.1239 (M + ), Foun
d: 298.1229; Anal. Calcd C 15 H
22 O 4 S: C, 60.38; H, 7.43; S, 10.
74. Found: C, 60.23; H, 7, 36; S
10.80

【0023】(ジトシル−トランス−1,4−シクロヘ
キサンジメタノール) mp162−163℃;IR(Nujol)ν:136
0,1163cm-1 1H−NMR(300MHz,C
DCl3 )δ:0.80−1.00(m,4H),1.
45−1.80(m,6H),2.45(s,6H),
3.79(d,4H,J=6.6Hz),7.34
(d,4H,J=8.1Hz),7.76(d,4H,
J=8.4Hz);13C−NMR(75MHz,CDC
3 )δ:21.70,28.09,37.01,7
4.86,127.84,129.84,133.0
1,144.72;MS m/z:452(M+ ),1
09(100%);HRMS Calcd C2228
6 2 :452.1328(M+ ),Found:45
2.1324
(Ditosyl-trans-1,4-cyclohexyl
Xanthimethanol) mp 162-163 ° C; IR (Nujol) ν: 136
0.1163 cm-1; 1H-NMR (300 MHz, C
DClThree) Δ: 0.80-1.00 (m, 4H), 1.
45-1.80 (m, 6H), 2.45 (s, 6H),
3.79 (d, 4H, J = 6.6Hz), 7.34
(D, 4H, J = 8.1 Hz), 7.76 (d, 4H,
J = 8.4 Hz);13C-NMR (75 MHz, CDC
lThree) Δ: 21.70, 28.09, 37.01, 7
4.86, 127.84, 129.84, 133.0
1, 144.72; MS m / z: 452 (M+), 1
09 (100%); HRMS Calcd Ctwenty twoH28O
6S2: 452.1328 (M+), Found: 45
2.1324

【0024】(トランス−1,4−シクロヘキサンジメ
タノール) mp62−64℃;IR(Nujol)ν:3388c
-1 1H−NMR(300MHz,CDCl3 )δ:
0.89−1.07(m,4H),1.35−1.55
(m,2H),1.62(br s,2H),1.74−
1.96(m,4H),3.46(d,4H,J=6.
2Hz);13C−NMR(75MHz,CDCl3
δ:28.96(t),40.66(d),68.62
(t);MSm/z:126(M+ −18),95(1
00%);HRMS CalcdC8 14O:126.
1045(M+ −18),Found:126.100
7;Anal.Calcd C8 162 :C,66.
63;H,11.18.Found:C,66.46;
H,11.13.
(Trans-1,4-cyclohexanedimethanol) mp 62-64 ° C .; IR (Nujol) ν: 3388c
m −1 ; 1 H-NMR (300 MHz, CDCl 3 ) δ:
0.89-1.07 (m, 4H), 1.35-1.55
(M, 2H), 1.62 (br s, 2H), 1.74-
1.96 (m, 4H), 3.46 (d, 4H, J = 6.
2 Hz); 13 C-NMR (75 MHz, CDCl 3 ).
δ: 28.96 (t), 40.66 (d), 68.62
(T); MS m / z: 126 (M + -18), 95 (1
00%); HRMS CalcdC 8 H 14 O: 126.
1045 (M + -18), Found: 126.100.
7; Anal. Calcd C 8 H 16 O 2: C, 66.
63; H, 11.18. Found: C, 66.46;
H, 11.13.

【0025】トランス−4−アジドメチルシクロヘキサ
ンメタノールの製造 モノトシル−トランス−1,4−シクロヘキサンジメタ
ノール320mgを5mlのN,N−ジメチルホルムア
ミドに溶解し、アジ化ナトリウム140mgを加え60
℃で7時間攪拌後、水10mlを加えジエチルエーテル
10mlで3回抽出した。有機層を無水硫酸マグネシウ
ムで乾燥し減圧下に溶媒を留去した。残渣をシリカゲル
カラムクロマトラフィー30gに付し、酢酸エチル−ヘ
キサン(容量比1:1)の流分より目的物168mg
(98%)を得た。
Preparation of trans-4-azidomethylcyclohexanemethanol 320 mg of monotosyl-trans-1,4-cyclohexanedimethanol was dissolved in 5 ml of N, N-dimethylformamide, and 140 mg of sodium azide was added to the mixture.
After stirring at C for 7 hours, 10 ml of water was added, and the mixture was extracted 3 times with 10 ml of diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was applied to 30 g of silica gel column chromatography, and 168 mg of the desired product was obtained from the fraction of ethyl acetate-hexane (volume ratio 1: 1).
(98%) was obtained.

【0026】次に、得られたトランス−4−アジドメチ
ルシクロヘキサンメタノールの赤外分光分析(IR)、
1H−NMR分析、13C−NMR分析、低分解能質量ス
ペクトル(MS)および高分解能質量スペクトル(HR
MS)などの測定値を示す。
Next, infrared spectroscopic analysis (IR) of the obtained trans-4-azidomethylcyclohexanemethanol,
1 H-NMR analysis, 13 C-NMR analysis, low resolution mass spectrum (MS) and high resolution mass spectrum (HR
MS) etc. are shown.

【0027】(トランス−4−アジドメチルシクロヘキ
サンメタノール) IR(neat)ν:3344,2092cm-1 1
−NMR(300MHz,CDC13 )δ:0.88−
1.10(m,4H),1.36−1.65(m,3
H),1.74−1.95(m,4H),3.14
(d,2H,J=7.0Hz),3.46(d,2H,
J=6.2Hz);13C−NMR(75MHz,CDC
3 )δ:28.70(t),29.83(t),3
8.06(d),40.09(d),57.73
(t),67.95(t);MS m/z:169(M
+ ),95(100%);HRMS Calcd C8
153 O:169.1215(M+ ),Found:
169.1192;Anal.CalcdC8 153
O:C,56.78;H,8.93;N,24.83.
Found:C,56.68;H,9.04;N,2
4.63.
(Trans-4-azidomethylcyclohexanemethanol) IR (neat) v: 3344,2092 cm -1 ; 1 H
-NMR (300 MHz, CDC1 3 ) δ: 0.88-
1.10 (m, 4H), 1.36-1.65 (m, 3
H), 1.74-1.95 (m, 4H), 3.14.
(D, 2H, J = 7.0 Hz), 3.46 (d, 2H,
J = 6.2 Hz); 13 C-NMR (75 MHz, CDC
1 3 ) δ: 28.70 (t), 29.83 (t), 3
8.06 (d), 40.09 (d), 57.73
(T), 67.95 (t); MS m / z: 169 (M
+ ), 95 (100%); HRMS Calcd C 8
H 15 N 3 O: 169.1215 (M + ), Found:
169.1192; Anal. CalcdC 8 H 15 N 3
O: C, 56.78; H, 8.93; N, 24.83.
Found: C, 56.68; H, 9.04; N, 2
4.63.

【0028】トランス−4−アジドメチルシクロヘキサ
ンカルボン酸の製造 酸化クロム(VI) 2.75gを水5mlに溶解し、これ
に氷冷下で50%硫酸7.0mlを滴下した。これを氷
冷下でトランス−4−アジドメチルシクロヘキサンメタ
ノール1.16gをアセトン10mlに溶解してなる溶
液に滴下し、室温で3時間攪拌後、イソプロパノール1
0mlを加えた。次いで、減圧下に溶媒を留去し、残渣
に水10mlを加えクロロホルム30mlで3回抽出し
た。更に、減圧下に溶媒を留去し、残渣にジエチルエー
テル30mlを加え、10%水酸化ナトリウム水溶液3
0mlで3回抽出した。水層を硫酸で酸性とした後、ク
ロロホルム50mlで3回抽出した。有機層を無水硫酸
マグネシウムで乾燥し、減圧下に溶媒を留去し、無色固
体の目的物109g(87%)を得た。ヘキサンより再
結晶し無色鱗状結晶を得た。
Production of trans-4-azidomethylcyclohexanecarboxylic acid 2.75 g of chromium (VI) oxide was dissolved in 5 ml of water, and 7.0 ml of 50% sulfuric acid was added dropwise thereto under ice cooling. This was added dropwise under ice cooling to a solution of 1.16 g of trans-4-azidomethylcyclohexanemethanol dissolved in 10 ml of acetone, and the mixture was stirred at room temperature for 3 hours, and then isopropanol 1 was added.
0 ml was added. Then, the solvent was distilled off under reduced pressure, 10 ml of water was added to the residue, and the mixture was extracted 3 times with 30 ml of chloroform. Further, the solvent was distilled off under reduced pressure, 30 ml of diethyl ether was added to the residue, and a 10% aqueous sodium hydroxide solution 3
Extract 3 times with 0 ml. The aqueous layer was acidified with sulfuric acid and then extracted three times with 50 ml of chloroform. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 109 g (87%) of the target compound as a colorless solid. Recrystallization from hexane gave colorless scale crystals.

【0029】次に、得られたトランス−4−アジドメチ
ルシクロヘキサンカルボン酸の融点、赤外分光分析(I
R)、 1H−NMR分析、13C−NMR分析、低分解能
質量スペクトル(MS)および高分解能質量スペクトル
(HRMS)の測定値を示す。
Next, the melting point and infrared spectroscopic analysis of the obtained trans-4-azidomethylcyclohexanecarboxylic acid (I
R), 1 H-NMR analysis, 13 C-NMR analysis, low resolution mass spectrum (MS) and high resolution mass spectrum (HRMS) are shown.

【0030】(トランス−4−アジドメチルシクロヘキ
サンカルボン酸) mp69−70℃;IR(Nujol)ν:2096,
1690cm-1 1H−NMR(300MHz,CDC
3 )δ:0.87−1.06(m,2H),1.29
−1.62(m,3H),1.74−1.88(m,2
H),1.94−2.07(m,2H),2.21(t
t,1H,J=3.5,12.1Hz),3.09
(d,2H,J=6.2Hz),11.37(br s, 1
H);13C−NMR(75MHz,CDCl3 )δ:2
8.15(t),29.51(t),37.35
(d),42.91(d),57.61(t),18
2.31(s);MS m/z:183(M+ ),81
(100%);HRMS Calcd C 8 133
2 :183.1008(M+ ),Found:183.
0986;Anal.Calcd C8 133 2
C,52.45;H,7.15;N,22.94、Fo
und:C,52.51;H,7.10;N,22.7
3.
(Trans-4-azidomethylcyclohexyl
Sancarboxylic acid) mp69-70 ° C; IR (Nujol) ν: 2096,
1690cm-1;1H-NMR (300 MHz, CDC
lThree) Δ: 0.87-1.06 (m, 2H), 1.29
-1.62 (m, 3H), 1.74-1.88 (m, 2)
H), 1.94-2.07 (m, 2H), 2.21 (t
t, 1H, J = 3.5, 12.1Hz), 3.09
(D, 2H, J = 6.2 Hz), 11.37 (br s, 1
H);13C-NMR (75 MHz, CDClThree) Δ: 2
8.15 (t), 29.51 (t), 37.35
(D), 42.91 (d), 57.61 (t), 18
2.31 (s); MS m / z: 183 (M+), 81
(100%); HRMS Calcd C 8H13NThreeO
2183.1008 (M+), Found: 183.
0986; Anal. Calcd C8H13NThreeO2:
C, 52.45; H, 7.15; N, 22.94, Fo
und: C, 52.51; H, 7.10; N, 22.7.
3.

【0031】トラネキサム酸・塩酸塩の製造 トランス−4−アジドメチルシクロヘキサンカルボン酸
190mgを1%塩酸30mlに溶解し、10%のパラ
ジウム炭素10mgを加え、水素気流下に室温で10時
間攪拌した。反応混合物をセライトを通してろ過し、溶
液を減圧下に留去し、無色固体としてトラネキサム酸の
塩酸塩178mg(89%)を得た。これを水−アセト
ン系より再結晶し無色針状結晶として純粋なトラネキサ
ム酸の塩酸塩141mg(70%)を得た。
Preparation of tranexamic acid / hydrochloric acid Trans-4-azidomethylcyclohexanecarboxylic acid (190 mg) was dissolved in 1% hydrochloric acid (30 ml), 10% palladium carbon (10 mg) was added, and the mixture was stirred at room temperature for 10 hours under a hydrogen stream. The reaction mixture was filtered through Celite, and the solution was evaporated under reduced pressure to obtain 178 mg (89%) of hydrochloride of tranexamic acid as a colorless solid. This was recrystallized from a water-acetone system to obtain 141 mg (70%) of pure tranexamic acid hydrochloride as colorless needle crystals.

【0032】次に、得られたトラネキサム酸・塩酸塩の
赤外分光分析(IR)、融点、 1H−NMR分析、13
−NMR分析、低分解能質量スペクトル(MS)および
高分解能質量スペクトル(HRMS)の測定値を示す。
分析値から極めて高純度なトラネキサム酸(塩酸塩)を
得ることができた。
Next, infrared spectroscopic analysis (IR) of the obtained tranexamic acid / hydrochloride, melting point, 1 H-NMR analysis, 13 C
-NMR measurements, low resolution mass spectra (MS) and high resolution mass spectra (HRMS) measurements are shown.
From the analytical values, it was possible to obtain extremely high-purity tranexamic acid (hydrochloride).

【0033】(トラネキサム酸・塩酸塩) mp236−239℃;IR(Nujol)ν:292
6,1707cm-1 1H−NMR(300MHz,D
2 O)δ:0.99−1.19(m,2H),1.31
−1.52(m,2H),1.59−1.76(m,1
H),1.79−1.94(m,2H),1.95−
2.11(m,2H),2.27−2.44(m,1
H),2.88(d,2H,J=7.3Hz);13C−
NMR(75MHz,D2 O)δ:27.92,28.
67,34.88,42.72,45.02,181.
03;MS m/z:157(M+ −36),36(1
00%);HRMS Calcd C8 15NO2 :1
57.1103(M+ −36),Found:157.
1131.
(Tranexamic acid / hydrochloride) mp 236-239 ° C .; IR (Nujol) ν: 292
6,1707 cm-1; 1H-NMR (300 MHz, D
2O) δ: 0.99-1.19 (m, 2H), 1.31
-1.52 (m, 2H), 1.59-1.76 (m, 1
H), 1.79-1.94 (m, 2H), 1.95-
2.11 (m, 2H), 2.27-2.44 (m, 1
H), 2.88 (d, 2H, J = 7.3 Hz);13C-
NMR (75 MHz, D2O) δ: 27.92, 28.
67, 34.88, 42.72, 45.02, 181.
03; MS m / z: 157 (M+-36), 36 (1
00%); HRMS Calcd C8HFifteenNO2: 1
57.1103 (M+-36), Found: 157.
1131.

【0034】実施例より、トランス−1,4−シクロヘ
キサンジメタノールの一方の水酸基をアミノ化し、他方
の水酸基を酸化してカルボン酸基を導入することにより
極めて純粋なトラネキサム酸(塩酸塩)が得られること
が明らかである。
From the examples, extremely pure tranexamic acid (hydrochloride) was obtained by aminating one hydroxyl group of trans-1,4-cyclohexanedimethanol and oxidizing the other hydroxyl group to introduce a carboxylic acid group. It is clear that

【0035】[0035]

【発明の効果】本発明の製造方法によれば、シス体とト
ランス体との分離操作を要せずに、トラネキサム酸を高
収率且つ高純度で得ることができる。
EFFECTS OF THE INVENTION According to the production method of the present invention, tranexamic acid can be obtained in a high yield and a high purity without the need to separate the cis form and the trans form.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トランス−1,4−シクロヘキサンジメ
タノールの一方の水酸基をアミノ化し、他方のヒドロキ
シメチル基を酸化してカルボキシル基を導入することを
特徴とするトラネキサム酸の製造方法。
1. A method for producing tranexamic acid, which comprises aminating one hydroxyl group of trans-1,4-cyclohexanedimethanol and oxidizing the other hydroxymethyl group to introduce a carboxyl group.
【請求項2】 上記アミノ化の方法が、上記水酸基をア
ジド化して還元してなることを特徴とする請求項1記載
のトラネキサム酸の製造方法。
2. The method for producing tranexamic acid according to claim 1, wherein the amination method comprises azidating and reducing the hydroxyl group.
【請求項3】 上記トランス−1,4−シクロヘキサン
ジメタノールの一方の水酸基をアジド化してアジド基を
導入した後、他方のヒドロキシメチル基を酸化してカル
ボキシル基を導入し、さらに上記アジド基を還元してア
ミノ基とする請求項1又は2記載のトラネキサム酸の製
造方法。
3. The azido group is introduced by aziding one hydroxyl group of the trans-1,4-cyclohexanedimethanol, and then the other hydroxymethyl group is oxidized to introduce a carboxyl group. The method for producing tranexamic acid according to claim 1 or 2, wherein the amino group is reduced.
JP23297495A 1995-09-11 1995-09-11 Method for producing tranexamic acid Expired - Fee Related JP3763598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23297495A JP3763598B2 (en) 1995-09-11 1995-09-11 Method for producing tranexamic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23297495A JP3763598B2 (en) 1995-09-11 1995-09-11 Method for producing tranexamic acid

Publications (2)

Publication Number Publication Date
JPH0977726A true JPH0977726A (en) 1997-03-25
JP3763598B2 JP3763598B2 (en) 2006-04-05

Family

ID=16947809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23297495A Expired - Fee Related JP3763598B2 (en) 1995-09-11 1995-09-11 Method for producing tranexamic acid

Country Status (1)

Country Link
JP (1) JP3763598B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307096C (en) * 2002-08-16 2007-03-28 日本碍子株式会社 Production method for zeolite shaped body and production method for zeolite layered composite
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
WO2011069915A1 (en) 2009-12-11 2011-06-16 Chanel Parfums Beaute Composition for external use and method for producing the same
US8022106B2 (en) 2004-03-04 2011-09-20 Ferring B.V. Tranexamic acid formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US8563288B2 (en) 2001-05-21 2013-10-22 Omrix Biopharmaceuticals Inc. Removal of plasmin or plasminogen from cryoprecipitate
US8957113B2 (en) 2004-03-04 2015-02-17 Ferring B.V. Tranexamic acid formulations
US8968777B2 (en) 2003-07-31 2015-03-03 Ferring B.V. Tranexamic acid formulations with reduced adverse effects

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563288B2 (en) 2001-05-21 2013-10-22 Omrix Biopharmaceuticals Inc. Removal of plasmin or plasminogen from cryoprecipitate
CN1307096C (en) * 2002-08-16 2007-03-28 日本碍子株式会社 Production method for zeolite shaped body and production method for zeolite layered composite
US8968777B2 (en) 2003-07-31 2015-03-03 Ferring B.V. Tranexamic acid formulations with reduced adverse effects
US8809394B2 (en) 2004-03-04 2014-08-19 Ferring B.V. Tranexamic acid formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US8022106B2 (en) 2004-03-04 2011-09-20 Ferring B.V. Tranexamic acid formulations
US8791160B2 (en) 2004-03-04 2014-07-29 Ferring B.V. Tranexamic acid formulations
US8957113B2 (en) 2004-03-04 2015-02-17 Ferring B.V. Tranexamic acid formulations
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
US9060939B2 (en) 2004-03-04 2015-06-23 Ferring B.V. Tranexamic acid formulations
US8647650B2 (en) 2009-12-11 2014-02-11 Chanel Parfums Beaute Composition for external use and method for producing the same
US8758785B2 (en) 2009-12-11 2014-06-24 Chanel Parfums Beaute Composition for external use and method for producing the same
WO2011069915A1 (en) 2009-12-11 2011-06-16 Chanel Parfums Beaute Composition for external use and method for producing the same

Also Published As

Publication number Publication date
JP3763598B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
US4425273A (en) Process for production of chenodeoxycholic acid
JP2023145671A (en) Preparation of 3-hydroxy-3,6-dimethylhexahydrobenzofuran-2-one and derivatives thereof
EP1078921B1 (en) Novel intermediates and processes for the preparation of optically active octanoic acid derivatives
JP3171931B2 (en) (R)-(-)-4-cyano-3-hydroxybutyric acid t-butyl ester and method for producing the same
JP3763598B2 (en) Method for producing tranexamic acid
CH627432A5 (en) Process for the preparation of vinylcyclopropanecarboxylates
KR0144684B1 (en) Mono esters of dicarboxylic acids and their prepartion and use
US5498799A (en) Process for producing optically active 2-norbornanone
JPH04217650A (en) Production of acid addition salt of delta-amino-levulinic acid
JPH04266879A (en) Production of optically active compound for synthesizing physiologically active substance and optically active intermediate compound
Liu et al. Selective reduction of N-protected-α-amino lactones to lactols with lithium tri-tert-butoxyaluminohydride
JP3050104B2 (en) Novel method for producing 1-butyne-3,4-diol
US6265209B1 (en) Intermediates and improved processes for the preparation of neplanocin A
JP2719723B2 (en) Aryl acetic acid monoesters and their production
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
EP0117252A1 (en) Amino-polyol derivatives
JPS6233136A (en) Optically active gamma-alkyl-alpha-acyloxycarboxylic ester and production thereof
JP3256259B2 (en) Method for producing sulfone derivative
JPH08301825A (en) 3'-substituted-(2-carboxycyclopropyl)glycine
JP2718546B2 (en) Stereoselective production of cyclopentenone derivatives
JPS626719B2 (en)
JP4706887B2 (en) Process for producing 2- (ω-alkoxycarbonylalkanoyl) -4-butanolide
JP4591778B2 (en) Process for producing α, β, γ-substituted cyclopentanone derivatives
JP3060915B2 (en) trans-3-hydroxy-4-phenylthiotetrahydrofuran and process for producing the same
JPS6254789B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050921

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100127

LAPS Cancellation because of no payment of annual fees