JPH0975323A - Probe device for mri system - Google Patents

Probe device for mri system

Info

Publication number
JPH0975323A
JPH0975323A JP7236784A JP23678495A JPH0975323A JP H0975323 A JPH0975323 A JP H0975323A JP 7236784 A JP7236784 A JP 7236784A JP 23678495 A JP23678495 A JP 23678495A JP H0975323 A JPH0975323 A JP H0975323A
Authority
JP
Japan
Prior art keywords
coil
former
size
subject
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7236784A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hamamura
良紀 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7236784A priority Critical patent/JPH0975323A/en
Publication of JPH0975323A publication Critical patent/JPH0975323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely neutralize mutual induction between coil elements, to change the entire coil shape correspondingly to an examinee size (the physique of a patient) and to make respective coil elements close to the surface of reagent as much as possible in spite of the examinee size even concerning a multi- element coil such as a QD coil or a phased array provided with volumed coils. SOLUTION: This probe device 30 has a flexible multi-element coil 32 provided with volumed coils equipped with plural coil elements for receiving MR signals from a patient P, neutralization circuit connected to the multi-element coil 32 so as to neutralize the mutual magnetic induction among the plural coil elements, former 31 which is arranged by winding the multi-element coil 32 around the patient P and can be exchanged correspondingly to the size of the patient P, and correction circuit embedded in the former 21 so as to correct the change amount of mutual induction caused by the size of former 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検体内の原子核
スピンの磁気共鳴現象を利用したMRI(磁気共鳴イメ
ージング)システムに用いるプローブ装置に係り、とく
に、被検体からのMR信号を受信する複数のコイル素子
の内、少なくとも1個のコイル素子がボリューム(volu
me)コイルである多素子コイルを備えたプローブ装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe device used in an MRI (magnetic resonance imaging) system utilizing the magnetic resonance phenomenon of nuclear spins in a subject, and more particularly to a plurality of probe devices for receiving MR signals from the subject. At least one of the coil elements in the volume (volu
me) A probe device having a multi-element coil which is a coil.

【0002】[0002]

【発明が解決しようする課題】MRIシステムでは、通
常、高周波磁場を被検体に送信するとともに、被検体か
らのMR信号を受信する必要があり、この機能を担うR
Fコイルを備えている。このRFコイルの一つに、QD
(直交)コイルやフェーズドアレイ(phasedarray)コ
イルなどにみられる如く、複数のコイル素子(ボリュー
ムコイル又はサーフェースコイルで成る)を使って1つ
のコイルアセンブリとして形成される多素子コイルが在
る。ここで、「ボリュームコイル」は立体的な内部空間
を有するコイルで、その空間に被検体を挿入させるコイ
ルであり、「サーフェースコイル」は平面的に形成され
るコイルで、被検体の体表又はその付近に設置するコイ
ルである。
In an MRI system, it is usually necessary to transmit a high-frequency magnetic field to a subject and receive MR signals from the subject.
It has an F coil. One of this RF coil, QD
There are multi-element coils that are formed as a single coil assembly using multiple coil elements (consisting of volume coils or surface coils), as found in (orthogonal) coils and phased array coils. Here, the “volume coil” is a coil having a three-dimensional internal space, and is a coil for inserting a subject into the space, and the “surface coil” is a coil formed in a plane and is a body surface of the subject. Or, it is a coil installed in the vicinity thereof.

【0003】この多素子コイルでは、コイル素子間に相
互誘導などの磁気的カップリングを生じさせないこと
が、良好なMR画像を得る上で極めて重要である。コイ
ル素子間の相互誘導をほとんど零の状態にするには、コ
イル素子の位置を機構的に移動させて相互誘導が無くな
る位置を決定したり、電気的に逆向きの相互誘導を生じ
させて相殺するなどの対策が採られている。
In this multi-element coil, it is extremely important not to cause magnetic coupling such as mutual induction between coil elements in order to obtain a good MR image. To make the mutual induction between coil elements almost zero, the positions of the coil elements are mechanically moved to determine the position where mutual induction disappears, or the opposite mutual electrical induction is generated to cancel the mutual induction. Measures such as doing are taken.

【0004】一方、多素子コイルにおいても、SNR
(S/N比)向上などの観点から、各コイル素子を被検
体に極力接近させて配置することが望ましく、被検体の
大きさに合わせて多素子コイルの形状(例えば径)を最
適化したいところである。しかし、単純に多素子コイル
の形状を変えてしまうと、コイル素子間の位置的条件が
変化し、相互誘導が相殺されなくなることが多い。つま
り、相互誘導が残ってしまい、再構成したMR画像の画
質低下を招くことになる。
On the other hand, even in a multi-element coil, the SNR
From the viewpoint of improving (S / N ratio) and the like, it is desirable to arrange each coil element as close to the subject as possible, and to optimize the shape (eg diameter) of the multi-element coil according to the size of the subject. By the way. However, if the shape of the multi-element coil is simply changed, the positional condition between the coil elements changes, and mutual induction often does not cancel out. In other words, mutual guidance remains, resulting in deterioration of the image quality of the reconstructed MR image.

【0005】ただ、相互誘導の相殺条件を変化させない
範囲での多素子コイルの被検体サイズに合わせた形状変
形は従来でも実施されている。この一例を、図10及び
図11、12に示す。図10は対向型のフェーズドアレ
イコイル100の例を示し、被検体の体格(サイズ)に
応じて、対向するコイル素子の間隔を例えばh1の範囲
で調整するものである。図11及び12は腹巻き型のフ
レキシブルなフェーズドアレイ又はリニアのコイル10
1の例を模式的に示し、図12(a)及び(b)に示す
如く、被検体のサイズに応じて巻き具合に拠りコイル素
子の対向間隔を調整できる(ただし、被検体Pの両側の
所定位置a,bに来るコイル素子位置A,Bは常に一定
である)。
However, the deformation of the shape of the multi-element coil according to the size of the object to be inspected has been carried out in the prior art within the range in which the condition for canceling out mutual induction is not changed. An example of this is shown in FIG. 10 and FIGS. FIG. 10 shows an example of the opposed phased array coil 100, in which the interval between opposed coil elements is adjusted within the range of h1, for example, according to the physique (size) of the subject. 11 and 12 show a flexible bellows type phased array or linear coil 10
As shown in FIGS. 12A and 12B, the facing distance of the coil elements can be adjusted according to the winding condition according to the size of the subject (provided that both sides of the subject P are The coil element positions A and B that come to the predetermined positions a and b are always constant).

【0006】しかしながら、上述のようにRFコイルの
形状を被検体サイズに応じて変えることができるのは、
表面(surface )コイルのアレイ又は1素子のみのボリ
ュームコイルに限られており、QDコイルや1個以上の
ボリューム(volume)コイルを含む多素子コイルではそ
のコイル配置の複雑さゆえに、相互誘導を相殺して良好
なSNRを保持した状態でコイル形状を被検体サイズに
応じて変えることは実現されていなかった。
However, it is possible to change the shape of the RF coil according to the size of the subject as described above.
It is limited to an array of surface coils or a volume coil with only one element, and in a multi-element coil including a QD coil or one or more volume coils, mutual induction is canceled out due to the complexity of the coil arrangement. Therefore, it has not been realized to change the coil shape according to the size of the subject while maintaining a good SNR.

【0007】このため、通常、ボリューム型コイルで形
成される多素子コイルの大きさ(開口径)は体格的に大
きい患者に合わせて極力大きく作られ、この大形のコイ
ルで小さい患者もイメージングするのが常であり、その
ような場合には、大きい患者はともなく、小さい患者に
対してはMR画像の画質が低下するという問題があっ
た。
Therefore, the size (aperture diameter) of the multi-element coil formed by the volume type coil is usually made as large as possible in accordance with a physically large patient, and this large coil also images a small patient. In such a case, there is a problem that the image quality of the MR image is deteriorated for the small patient and not for the large patient.

【0008】本発明は、上述した未解決の問題を解決す
べくなされたもので、QDコイルやフェーズドアレイな
どのボリューム型の多素子コイルであっても、コイル素
子間の相互誘導を確実に中和し、かつ被検体サイズ(患
者の体格)に応じて全体のコイル形状を変えることがで
き、被検体サイズの大小に関わらず、各コイル素子を極
力、被検体表面に接近させるようにすることを、その目
的とする。
The present invention has been made to solve the above-mentioned unsolved problem, and it is possible to ensure mutual induction between coil elements even in a volume type multi-element coil such as a QD coil or a phased array. The overall coil shape can be changed according to the size of the subject (physical size of the patient), and each coil element should be as close to the subject surface as possible regardless of the size of the subject. Is the purpose.

【0009】[0009]

【課題を解決するための手段】上記目的を達成させるた
め、請求請1記載の発明では、被検体からのMR信号を
受信する複数のコイル素子を有し且つこの内の少なくと
も1個のコイル素子がボリュームコイルであるフレキシ
ブルな多素子コイルと、前記被検体の周りに前記多素子
コイルを巻装して配置し且つこの被検体のサイズに応じ
て取換え可能なフォーマとを有する。
In order to achieve the above object, in the invention described in claim 1, there is provided a plurality of coil elements for receiving MR signals from the subject, and at least one of these coil elements is provided. Has a flexible multi-element coil, which is a volume coil, and a former in which the multi-element coil is wound around the subject and arranged, and which is replaceable according to the size of the subject.

【0010】また請求請2乃至5記載の発明では、被検
体からのMR信号を受信する複数のコイル素子を有し且
つこの内の少なくとも1個のコイル素子がボリュームコ
イルであるフレキシブルな多素子コイルと、この多素子
コイルに接続され且つ前記複数のコイル素子間の磁気的
な相互誘導を中和する中和回路と、前記被検体の周りに
前記多素子コイルを巻装して配置し且つこの被検体のサ
イズに応じて取換え可能なフォーマと、このフォーマの
内部に埋設され且つこのフォーマの大きさに起因した前
記相互誘導の変化量を補正する補正回路とを有する。
In the inventions according to claims 2 to 5, a flexible multi-element coil having a plurality of coil elements for receiving MR signals from the subject and at least one of the coil elements is a volume coil A neutralization circuit connected to the multi-element coil and neutralizing magnetic mutual induction between the plurality of coil elements; and the multi-element coil wound around the subject and arranged. The former includes a former that can be replaced according to the size of the subject, and a correction circuit that is embedded in the former and corrects the amount of change in the mutual induction due to the size of the former.

【0011】例えば、前記補正回路は前記フォーマの大
きさに応じて変わる前記相互誘導の変化量を相殺する量
を呈する回路であって、この補正回路は予め前記フォー
マに組み込まれている。また例えば、前記補正回路は、
コンデンサと、このコンデンサを介して閉ループを形成
するループコイルとで成る。また例えば、前記フォーマ
は、寝台に寝かせた前記被検体に上から被せることが可
能な略半円筒状を成している。
For example, the correction circuit is a circuit that presents an amount that cancels the change amount of the mutual induction that changes according to the size of the former, and the correction circuit is incorporated in the former in advance. Further, for example, the correction circuit is
It is composed of a capacitor and a loop coil that forms a closed loop through the capacitor. Further, for example, the former has a substantially semi-cylindrical shape that can be overlaid on the subject lying on a bed.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0013】(第1の実施の形態)第1の実施の形態を
図1〜図4に基づいて説明する。
(First Embodiment) A first embodiment will be described with reference to FIGS.

【0014】図1において、符号10は被検体としての
患者Pの例えば胴部に巻かれた、MRIシステムのプロ
ーブ装置としての多素子コイル(RFコイル)を示す。
この多素子コイル10は、例えば、サドル型、クロス楕
円型、バードケージ型などのボリュームコイルを複数の
コイル素子として形成してもよいしQDコイルであって
もよい。また図4には脊椎用多素子コイル10の一例を
示し、複数のコイル素子101 〜104 の内、1つのコ
イル素子101 がボリュームコイルで、他のコイル素子
102 〜104 はサーフェースコイルで形成されるもの
である。
In FIG. 1, reference numeral 10 indicates a multi-element coil (RF coil) as a probe device of the MRI system, which is wound around, for example, the body of a patient P as an object.
The multi-element coil 10 may be, for example, a saddle type, a cross ellipse type, a birdcage type volume coil, etc. formed as a plurality of coil elements, or may be a QD coil. In addition, FIG. 4 shows an example of the multi-element coil 10 for the spine. Among the plurality of coil elements 10 1 to 10 4 , one coil element 10 1 is a volume coil and the other coil elements 10 2 to 10 4 are servers. It is formed of a face coil.

【0015】多素子コイル10は例えばポリイミドのよ
うなフレキシブルな基板材料中に金属薄膜又はその積層
材で成る多素子のコイルパターンを埋め込んで、全体と
してもフレキシブルに形成されている。このため、図2
(a),(b)に示すように、患者Pの胴部の太さに関
係無く、体表に極力密着させて巻くことができ、胴部が
細い場合(同図(a))と太い場合(同図(b))とで
は、重複して巻装される長さが異なる。
The multi-element coil 10 is made flexible as a whole by embedding a multi-element coil pattern made of a metal thin film or a laminated material thereof in a flexible substrate material such as polyimide. Therefore, FIG.
As shown in (a) and (b), regardless of the thickness of the torso of the patient P, it can be wound so as to be in intimate contact with the body surface as much as possible, and it is thick when the torso is thin ((a) in the figure). In this case ((b) in the figure), the length of overlapping winding is different.

【0016】図3には、多素子コイル10が2つのコイ
ル素子(ボリュームコイル又はサーフェースコイルを代
表するコイル素子であって、その一方は少なくともボリ
ュームコイル)である場合の等価回路を示す。同図にお
いて、符号11、12が2つのコイル素子、符号13が
コイル素子11、12間の相互誘導による結合を等価的
に表わす仮想コイルである。両方のコイル素子11、1
2はトリマコンデンサ14から成る中和回路で互いに接
続されており、このトリマコンデンサ14が相互誘導の
仮想コイル13に並列に接続されている。
FIG. 3 shows an equivalent circuit in the case where the multi-element coil 10 is two coil elements (a coil element representing a volume coil or a surface coil, one of which is at least a volume coil). In the figure, reference numerals 11 and 12 are two coil elements, and reference numeral 13 is a virtual coil equivalently representing coupling between the coil elements 11 and 12 by mutual induction. Both coil elements 11, 1
Reference numeral 2 is a neutralization circuit composed of a trimmer capacitor 14, which are connected to each other, and the trimmer capacitor 14 is connected in parallel to a virtual coil 13 for mutual induction.

【0017】コイル素子11、12はMRIシステム本
体の信号処理回路20に接続され、受信されたMRI信
号が処理される。またトリマコンデンサ14にはMRI
システム本体の中和制御回路21から患者の太さ、すな
わち多素子コイル10の巻装数に応じたキャパシタ制御
信号が送られ、これによりトリマコンデンサ14のキャ
パシタが患者サイズに応じて自動調整されるようになっ
ている。この自動調整は例えば、特開平4−14114
6号、特開平6−285036号の公報で周知のものを
採用すればよい。
The coil elements 11 and 12 are connected to the signal processing circuit 20 of the main body of the MRI system to process the received MRI signal. Also, the trimmer capacitor 14 has an MRI.
The neutralization control circuit 21 of the system body sends a capacitor control signal according to the thickness of the patient, that is, the number of windings of the multi-element coil 10, whereby the capacitor of the trimmer capacitor 14 is automatically adjusted according to the patient size. It is like this. This automatic adjustment is performed by, for example, Japanese Patent Laid-Open No. 14114/1992.
No. 6 and Japanese Patent Application Laid-Open No. 6-285036 may be used.

【0018】信号処理回路20では例えば、多素子コイ
ル10がQDコイルの場合で、コイル素子12はコイル
素子11より90度だけ位相の遅れた信号を受信すると
すると、コイル素子11の位相を90度ずらしてから互
いの受信信号を加算する処理を含む受信処理が行われ
る。これにより、加算信号の強度は2倍になるが、多素
子コイル10の巻装数に応じてトリマコンデンサ14の
キャパシタが調整されることから、多素子コイル10の
巻装状態が変わって、コイル素子11、12間の幾何学
的位置関係が被検体毎に変化しても、コイル素子11、
12間の相互誘導が殆ど零に保持される。この結果、コ
イル素子11、12の受信雑音には相関が無く、加算し
たときの信号強度は21/2 倍にしかならないので、SN
Rは21/2倍に改善され、QDコイルとしての初期の役
目を果たすことになる。
In the signal processing circuit 20, for example, when the multi-element coil 10 is a QD coil and the coil element 12 receives a signal whose phase is delayed by 90 degrees from the coil element 11, the phase of the coil element 11 is 90 degrees. A reception process including a process of adding the reception signals of each other after shifting is performed. As a result, although the strength of the added signal is doubled, the winding state of the multi-element coil 10 is changed because the capacitor of the trimmer capacitor 14 is adjusted according to the number of windings of the multi-element coil 10. Even if the geometrical positional relationship between the elements 11 and 12 changes for each subject, the coil elements 11,
The mutual induction between 12 is kept at almost zero. As a result, the received noises of the coil elements 11 and 12 have no correlation, and the signal strength when added is only 2 1/2 times.
The R is improved by 2 1/2 times, and it will serve the initial role as a QD coil.

【0019】このようなコイル素子間の相互誘導を殆ど
零に保持することに拠る利点は、多素子コイル10がサ
ドル型、クロス楕円型、バードケージ型などのボリュー
ムコイルをコイル素子として含む場合でも同様に得ら
れ、MRIシステム本体側で再構成されたMR画像の画
質劣化を防止することができる。
The advantage of keeping the mutual induction between the coil elements at almost zero is that the multi-element coil 10 includes a volume coil of a saddle type, a cross ellipse type, a birdcage type or the like as the coil element. Similarly, it is possible to prevent deterioration of the image quality of the MR image reconstructed on the MRI system main body side.

【0020】(第2の実施の形態)第2の実施の形態を
図5〜図9に基づいて説明する。
(Second Embodiment) A second embodiment will be described with reference to FIGS.

【0021】図5には、被検体Pに装着されたMRIシ
ステムのプローブ装置30の外観を示す。このプローブ
装置30は、患者Pに直接、被着させたフォーマ31
と、このフォーマ31の表面に巻装するフレキシブルな
ボリューム型の多素子コイル(RFコイル)32と、フ
ォーマ31の内部に予め埋設された相互誘導の補正回路
33(図6参照)とを備える。
FIG. 5 shows an external view of the probe device 30 of the MRI system mounted on the subject P. The probe device 30 includes a former 31 directly attached to the patient P.
And a flexible volume type multi-element coil (RF coil) 32 wound around the surface of the former 31, and a mutual induction correction circuit 33 (see FIG. 6) embedded in the former 31 in advance.

【0022】多素子コイル32は、例えば、サドル型、
クロス楕円型、バードケージ型などのボリュームコイル
をコイル素子として1個以上含むコイルであってもよい
しQDコイルであってもよい。多素子コイル30は例え
ばポリイミドのようなフレキシブルな基板材料中に金属
薄膜又はその積層材で成る複数のコイルパターンを埋め
込んで、全体あるいはその一部がフレキシブルに形成さ
れている。図7には、多素子コイル32が2つのコイル
素子32a,32b(ボリュームコイル又はサーフェー
スコイルを代表するコイル素子であって、その一方は少
なくともボリュームコイル)である場合の概念図を示
す。両方のコイル素子32a,32bはコンデンサ34
から成る中和回路で互いに接続されている。この中和用
のコンデンサ34は、多素子コイル32が患者Pの体軸
方向に直交する径方向に基準径を成して患者Pに被着さ
れたとき、2つのコイル素子32a,32b間の磁気的
相互誘導をほぼ零の状態に中和できる値に予め設定され
ている。コイル素子32a,32bは図示しないMRI
システム本体の信号処理回路に接続され、受信されたM
RI信号が処理される。
The multi-element coil 32 is, for example, a saddle type coil,
It may be a coil including one or more volume coils such as a cross ellipse type or a birdcage type volume coil, or may be a QD coil. The multi-element coil 30 is entirely or partially formed by embedding a plurality of coil patterns made of a metal thin film or a laminated material thereof in a flexible substrate material such as polyimide. FIG. 7 shows a conceptual diagram when the multi-element coil 32 is two coil elements 32a, 32b (a coil element representing a volume coil or a surface coil, one of which is at least a volume coil). Both coil elements 32a and 32b are capacitors 34
Are connected to each other by a neutralization circuit consisting of. The neutralizing capacitor 34 is provided between the two coil elements 32a and 32b when the multi-element coil 32 is attached to the patient P with a reference diameter in a radial direction orthogonal to the body axis direction of the patient P. It is preset to a value that can neutralize magnetic mutual induction to a state of almost zero. The coil elements 32a and 32b are not shown in the MRI.
M received by connecting to the signal processing circuit of the system body
The RI signal is processed.

【0023】フォーマ31は、非磁性の合成樹脂で図6
に示す如く所定肉厚を有する略半円筒状に固体形成さ
れ、寝台上に寝かされた患者Pに上から被せることがで
きる形状に成っている。このフォーマ31は患者Pのサ
イズ(体格)を考慮して、径が異なる例えば「大」、
「中」、「小」のものが予め用意されており、患者Pに
最もフィットするものが診断のときに選択される。
The former 31 is made of non-magnetic synthetic resin.
As shown in (3), the solid body is formed in a substantially semi-cylindrical shape having a predetermined wall thickness so that the patient P lying on the bed can be covered from above. This former 31 has a different diameter in consideration of the size (physique) of the patient P, for example, “large”,
The "medium" and "small" ones are prepared in advance, and the one that best fits the patient P is selected at the time of diagnosis.

【0024】フォーマ31の内部には、前記補正回路3
3が図6に示す如く埋設されている。この補正回路33
は図7に示す如く、コンデンサ35と、このコンデンサ
35を介して閉ループを成すループコイル36とで成
り、電源は有して又は接続されていない。補正回路33
は前記中和回路(コンデンサ34)の中和機能を補完す
るものである。つまり補正回路33は、フォーマ31の
径が変わると、フォーマ31の外周に巻き付ける多素子
コイル32のコイル素子32a,32bの幾何学的位置
関係も変わり、中和条件も変わってしまうので、コイル
素子間の磁気的相互誘導が零にはならずに残ってしまう
ことから、この残った相互誘導を零にするように補正す
る機能を有する。補正回路33のコンデンサ35とルー
プコイル36の回路定数は、フォーマ31毎に、その径
に対応した相互誘導の零からの変化量を相殺できる値に
予め設定してある。
Inside the former 31, the correction circuit 3 is provided.
3 is buried as shown in FIG. This correction circuit 33
As shown in FIG. 7, is composed of a capacitor 35 and a loop coil 36 that forms a closed loop via the capacitor 35, and has or does not have a power source. Correction circuit 33
Is to complement the neutralizing function of the neutralizing circuit (condenser 34). That is, in the correction circuit 33, when the diameter of the former 31 changes, the geometrical positional relationship of the coil elements 32a and 32b of the multi-element coil 32 wound around the outer periphery of the former 31 also changes, and the neutralization condition also changes. Since the magnetic mutual induction between them does not become zero and remains, it has a function of correcting so that the remaining mutual induction becomes zero. The circuit constants of the capacitor 35 and the loop coil 36 of the correction circuit 33 are preset for each former 31 to a value that can cancel out the change amount from zero of the mutual induction corresponding to the diameter thereof.

【0025】診断の際、最初に図8(a)に示すよう
に、寝台B上にフレキシブルな多素子コイル32を載
せ、その上に患者Pを寝かせる。そして同図(a),
(b)に示すように、患者Pにフォーマ31を上から被
せる。フォーマ31は被検体Pのサイズ(体格)に応じ
て極力、体表にフィットする大きさのものが選択され
る。
At the time of diagnosis, first, as shown in FIG. 8A, a flexible multi-element coil 32 is placed on a bed B, and a patient P is laid on it. And the same figure (a),
As shown in (b), the patient P is covered with the former 31 from above. The former 31 is selected to have a size that fits the body surface as much as possible according to the size (physique) of the subject P.

【0026】次いで、患者Pの下側になっている多素子
コイル32をフォーマ31の外周に巻き付ける。この巻
き付けは患者Pのサイズを意識せずに行うことができ、
図8(c)及び図9に示すように、単純にフォーマ31
上に多素子コイル32を残さずに巻き付ければよい。
Next, the multi-element coil 32 located below the patient P is wound around the outer circumference of the former 31. This winding can be performed without being aware of the size of the patient P,
As shown in FIG. 8C and FIG.
It may be wound without leaving the multi-element coil 32 on the top.

【0027】この結果、多素子コイル32のコイル素子
32a,32bと補正回路33とが図7に示すように近
接して固定配置される。MR信号の受信時には、選択し
たフォーマ31の径が基準値とは異なる場合、多素子コ
イル32の径も基準値からずれて、中和回路(コンデン
サ34)では中和しきれなくなり、図7のようにコイル
素子32a,32b間に相互誘導に係る磁力線Mが発生
する。補正回路33の回路定数はこの相互誘導を検知す
るように適宜に選択されているため、補正回路33のL
C回路は磁力線Mを検知して共振し、磁力線Mを相殺す
る方向の磁力線M´が発生する。これにより中和回路
(コンデンサ34)で中和しきれないで残っていたコイ
ル素子32a,32b間の相互誘導が相殺され、コンデ
ンサ34のキャパシタがみかけ上、その機能を適切に発
揮したと等価な状態となり、相互誘導の殆ど零の状態が
保持される。
As a result, the coil elements 32a and 32b of the multi-element coil 32 and the correction circuit 33 are fixedly arranged close to each other as shown in FIG. At the time of receiving the MR signal, if the diameter of the selected former 31 is different from the reference value, the diameter of the multi-element coil 32 also deviates from the reference value, and the neutralization circuit (capacitor 34) cannot completely neutralize it. Thus, the magnetic force lines M relating to mutual induction are generated between the coil elements 32a and 32b. Since the circuit constant of the correction circuit 33 is appropriately selected so as to detect this mutual induction, L of the correction circuit 33 is set.
The C circuit detects the magnetic force line M and resonates to generate a magnetic force line M ′ in a direction of canceling the magnetic force line M. As a result, the mutual induction between the coil elements 32a and 32b, which has not been completely neutralized by the neutralization circuit (capacitor 34), is canceled out, and the capacitor of the capacitor 34 is apparently equivalent to exhibiting its function properly. And the almost zero state of mutual induction is maintained.

【0028】患者Pの体格上のサイズ(胴周りのサイズ
など)が異なる場合でも、多素子コイル32を変えず、
フォーマ31だけを適切なサイズのものを選択し、上述
したように被検体に被着させればよい。これにより、患
者Pの体格が変わっても多素子コイル32を実質的に体
表にフィットさせて配置できる。また、フォーマ31の
サイズ(径)が基準値でない場合、多素子コイル32の
巻き付けの径も変わり、相互誘導の中和も崩れるが、予
めフォーマ31にそのフォーマ固有の回路定数を持たせ
て補正回路33を組み込んであるから、補正回路33が
相互誘導中和の崩れを補正し、常にほぼ完全に中和状態
が保持される。
Even when the physical size of the patient P is different (size around the waist, etc.), the multi-element coil 32 is not changed,
Only the former 31 having an appropriate size may be selected and attached to the subject as described above. As a result, even if the physique of the patient P changes, the multi-element coil 32 can be arranged so as to substantially fit the body surface. Further, when the size (diameter) of the former 31 is not the reference value, the winding diameter of the multi-element coil 32 also changes and the neutralization of mutual induction is destroyed, but it is corrected by previously giving the former 31 a circuit constant unique to the former. Since the circuit 33 is incorporated, the correction circuit 33 corrects the collapse of the mutual induction neutralization, and the neutralization state is always maintained almost completely.

【0029】このため、検査者は患者Pの体格上のサイ
ズに応じてフォーマ31を使い分けるだけでよく、中和
回路の回路定数などは無調整のまま、多素子コイル32
の大きさ(径)を患者P毎に変えることができる。しか
もコイル素子間の相互誘導を常にほぼ零の状態に保持で
きるから、最適条件で撮影でき、SNRが良好で、高画
質を維持できる。
Therefore, the examiner only needs to use the former 31 properly according to the physical size of the patient P, and the multi-element coil 32 is left unadjusted while the circuit constants of the neutralization circuit are not adjusted.
The size (diameter) of can be changed for each patient P. In addition, since mutual induction between coil elements can be maintained at a state of almost zero at all times, photographing can be performed under optimum conditions, SNR is good, and high image quality can be maintained.

【0030】また、フォーマ31のサイズを適切に選択
すれば、患者Pに直接RFコイルを巻き付ける場合に比
べて、患者の負担も軽減できる。また、従来ではRFコ
イルに収容しきれなかった大きな体格の患者もフォーマ
31を介して多素子コイルを巻くことで撮影可能になる
から、撮影できる患者の体格上の幅が広がるという利点
もある。
Further, if the size of the former 31 is appropriately selected, the burden on the patient can be reduced as compared with the case where the RF coil is wound directly on the patient P. In addition, since a patient having a large physique, which cannot be accommodated in the RF coil in the past, can be photographed by winding the multi-element coil through the former 31, there is an advantage that the width of the physique of the patient that can be photographed is widened.

【0031】さらに、本実施の態様に係る補正回路33
はフォーマ31内部に組み込まれるだけで、この回路3
3とほかの回路とを繋ぐリード線は不要である。このた
め、フォーマ31とその外部とがリード線で繋がるよう
なことがなく、患者へのフォーマ31の被着やその取り
外しが容易であるという優れた利点もある。
Further, the correction circuit 33 according to the present embodiment.
Is incorporated into the former 31 and the circuit 3
The lead wire connecting 3 and other circuits is unnecessary. For this reason, the former 31 and the outside thereof are not connected by a lead wire, and there is also an excellent advantage that the former 31 can be easily attached to and removed from the patient.

【0032】なお、上述した実施の態様ではコイル素子
が2個の場合を例示したが、勿論3個以上の場合も同様
である。3個以上のコイル素子から成り、且つ1個以上
のボリューム型コイルを含む多素子コイルの場合、その
コイル素子の数、位置に応じた適宜な1個以上の適宜な
数の補正回路をフォーマにその周方向に沿って埋設して
おけばよい。
In the above-described embodiment, the case where the number of coil elements is two is illustrated, but the same applies to the case where the number of coil elements is three or more. In the case of a multi-element coil composed of three or more coil elements and including one or more volume type coils, a corrector of an appropriate number of one or more depending on the number and position of the coil elements is used as a former. It may be buried along the circumferential direction.

【0033】またフォーマの形状も必ずしも略半円筒状
に限定されることなく、診断部位に応じた任意の形状で
あってよい。
The shape of the former is not necessarily limited to the substantially semi-cylindrical shape, and may be any shape according to the diagnosis site.

【0034】[0034]

【発明の効果】以上説明したように、請求請1記載のM
RIシステムのプローブ装置は、複数のコイル素子を有
し且つこの内の少なくとも1個のコイル素子がボリュー
ムコイルであるフレキシブルな多素子コイルと、被検体
の周りに多素子コイルを巻装して配置しかつこの被検体
のサイズに応じて取換え可能なフォーマとを有するの
で、フォーマのサイズを適宜に選択することで実質的に
多素子コイルの径などの大きさを被検体のサイズに応じ
て調整することができる。
As described above, M of claim 1 is described.
A probe device of an RI system includes a flexible multi-element coil having a plurality of coil elements, and at least one of the coil elements is a volume coil, and the multi-element coil is wound around the subject and arranged. In addition, since it has a former that can be replaced according to the size of the subject, by appropriately selecting the size of the former, the size such as the diameter of the multi-element coil can be substantially changed according to the size of the subject. Can be adjusted.

【0035】また請求請2乃至5記載のMRIシステム
のプローブ装置は、複数のコイル素子を有し且つこの内
の少なくとも1個のコイル素子がボリュームコイルであ
るフレキシブルな多素子コイルと、この多素子コイルに
接続され且つコイル素子間の磁気的な相互誘導を中和す
る中和回路と、被検体の周りに多素子コイルを巻装して
配置し且つこの被検体のサイズに応じて取換え可能なフ
ォーマと、このフォーマの内部に埋設され且つフォーマ
の大きさに起因した相互誘導の変化量を補正する補正回
路とを有するので、フォーマのサイズを適切に選択する
ことでボリューム型コイルを含む多素子コイルの径など
のサイズを被検体サイズに応じて簡単に調整でき、この
調整に因ってくずれた相互誘導の中和状態はフォーマ内
の補正回路に拠って適宜補正できる。このため、従来は
無理とされていたボリューム型コイルを含む多素子コイ
ルの径(サイズ)を被検体サイズに応じて調整できると
同時に、被検体のサイズに無関係に相互誘導を常にほぼ
零の状態に保持でき、高いSNRに拠って、高画質のM
R画像を再構成できる。また、補正回路をコンデンサと
閉ループを形成するループコイルとで形成することで、
そのLC共振を利用した相互誘導の補正ができ、フォー
マからリード線が出ない分フォーマを扱い易くなり、検
査者の操作上の負担が軽いという効果もある。
The probe device of the MRI system according to claims 2 to 5 has a flexible multi-element coil having a plurality of coil elements, and at least one of the coil elements is a volume coil, and the multi-element coil. A neutralization circuit that is connected to the coil and neutralizes the magnetic mutual induction between coil elements, and a multi-element coil is wound around the subject and can be replaced according to the size of the subject. And a correction circuit that is embedded inside the former and corrects the amount of change in mutual induction due to the size of the former. Therefore, by appropriately selecting the size of the former, it is possible to include a volume type coil. Sizes such as the element coil diameter can be easily adjusted according to the size of the subject, and the neutralization state of mutual induction that has collapsed due to this adjustment depends on the correction circuit in the former. It can be appropriately corrected. Therefore, the diameter (size) of the multi-element coil including the volume type coil, which has been impossible in the past, can be adjusted according to the size of the subject, and at the same time, the mutual induction is always zero regardless of the size of the subject. And high image quality due to high SNR
The R image can be reconstructed. In addition, by forming the correction circuit with a capacitor and a loop coil that forms a closed loop,
Mutual induction using the LC resonance can be corrected, the former is easy to handle because the lead wire does not come out from the former, and the operator's operational burden is light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の態様に係るプローブ装置
の外観図。
FIG. 1 is an external view of a probe device according to a first embodiment of the present invention.

【図2】(a),(b)はそれぞれ患者の胴部サイズに
応じた多素子コイルの巻き付け状態を示す説明図。
2 (a) and 2 (b) are explanatory views showing a winding state of a multi-element coil according to a patient's torso size.

【図3】多素子コイルの一例を示す回路図。FIG. 3 is a circuit diagram showing an example of a multi-element coil.

【図4】多素子コイルの変形態様を示す説明図。FIG. 4 is an explanatory diagram showing a modification of a multi-element coil.

【図5】本発明の第2の実施の態様に係るプローブ装置
の外観図。
FIG. 5 is an external view of a probe device according to a second embodiment of the present invention.

【図6】フォーマの一例を示す外観図。FIG. 6 is an external view showing an example of a former.

【図7】多素子コイルと補正回路の一例を示す説明図。FIG. 7 is an explanatory diagram showing an example of a multi-element coil and a correction circuit.

【図8】(a)〜(b)はそれぞれフォーマの被着及び
多素子コイルの巻き付けを示す説明図。
8A and 8B are explanatory views showing the attachment of a former and the winding of a multi-element coil, respectively.

【図9】フォーマの被着及び多素子コイルの巻き付けを
示す概略断面図。
FIG. 9 is a schematic cross-sectional view showing deposition of a former and winding of a multi-element coil.

【図10】従来の対向型のフェーズドアレイコイルの一
例を示す図。
FIG. 10 is a diagram showing an example of a conventional opposed phased array coil.

【図11】従来の腹巻き型のコイルの一例を示す図。FIG. 11 is a diagram showing an example of a conventional belly-wound coil.

【図12】(a),(b)はそれぞれ図10のコイルの
被検体サイズに応じた巻き付け状態を示す図。
12 (a) and 12 (b) are diagrams showing a winding state according to the object size of the coil of FIG.

【符号の説明】[Explanation of symbols]

10 多素子コイル(プローブ装置) 11,12 コイル素子 30 プローブ装置 31 フォーマ 32 多素子コイル 32a,32b コイル素子 33 補正回路 34 中和回路(コンデンサ) 35 コンデンサ 36 ループコイル P 患者(被検体) 10 multi-element coil (probe apparatus) 11, 12 coil element 30 probe apparatus 31 former 32 multi-element coil 32a, 32b coil element 33 correction circuit 34 neutralization circuit (capacitor) 35 capacitor 36 loop coil P patient (subject)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月13日[Submission date] December 13, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の態様に係るプローブ装置
の外観図。
FIG. 1 is an external view of a probe device according to a first embodiment of the present invention.

【図2】(a),(b)はそれぞれ患者の胴部サイズに
応じた多素子コイルの巻き付け状態を示す説明図。
2 (a) and 2 (b) are explanatory views showing a winding state of a multi-element coil according to a patient's torso size.

【図3】多素子コイルの一例を示す回路図。FIG. 3 is a circuit diagram showing an example of a multi-element coil.

【図4】多素子コイルの変形態様を示す説明図。FIG. 4 is an explanatory diagram showing a modification of a multi-element coil.

【図5】本発明の第2の実施の態様に係るプローブ装置
の外観図。
FIG. 5 is an external view of a probe device according to a second embodiment of the present invention.

【図6】フォーマの一例を示す外観図。FIG. 6 is an external view showing an example of a former.

【図7】多素子コイルと補正回路の一例を示す説明図。FIG. 7 is an explanatory diagram showing an example of a multi-element coil and a correction circuit.

【図8】(a)〜(c)はそれぞれフォーマの被着及び
多素子コイルの巻き付けを示す説明図。
8A to 8C are explanatory views showing the attachment of the former and the winding of the multi-element coil, respectively.

【図9】フォーマの被着及び多素子コイルの巻き付けを
示す概略断面図。
FIG. 9 is a schematic cross-sectional view showing deposition of a former and winding of a multi-element coil.

【図10】従来の対向型のフェーズドアレイコイルの一
例を示す図。
FIG. 10 is a diagram showing an example of a conventional opposed phased array coil.

【図11】従来の腹巻き型のコイルの一例を示す図。FIG. 11 is a diagram showing an example of a conventional belly-wound coil.

【図12】(a),(b)はそれぞれ図10のコイルの
被検体サイズに応じた巻き付け状態を示す図。
12 (a) and 12 (b) are diagrams showing a winding state according to the object size of the coil of FIG.

【符号の説明】 10 多素子コイル(プローブ装置) 11,12 コイル素子 30 プローブ装置 31 フォーマ 32 多素子コイル 32a,32b コイル素子 33 補正回路 34 中和回路(コンデンサ) 35 コンデンサ 36 ループコイル P 患者(被検体)[Explanation of Codes] 10 multi-element coil (probe device) 11, 12 coil device 30 probe device 31 former 32 multi-element coil 32a, 32b coil device 33 correction circuit 34 neutralization circuit (capacitor) 35 capacitor 36 loop coil P patient ( Subject)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被検体からのMR信号を受信する複数の
コイル素子を有し且つこの内の少なくとも1個のコイル
素子がボリュームコイルであるフレキシブルな多素子コ
イルと、前記被検体の周りに前記多素子コイルを巻装し
て配置し且つこの被検体のサイズに応じて取換え可能な
フォーマとを有することを特徴とするMRIシステムの
プローブ装置。
1. A flexible multi-element coil having a plurality of coil elements for receiving MR signals from a subject, at least one of which is a volume coil, and the flexible multi-element coil around the subject. A probe device for an MRI system, comprising: a multi-element coil wound around the coil; and a former that can be replaced according to the size of the subject.
【請求項2】 被検体からのMR信号を受信する複数の
コイル素子を有し且つこの内の少なくとも1個のコイル
素子がボリュームコイルであるフレキシブルな多素子コ
イルと、この多素子コイルに接続され且つ前記複数のコ
イル素子間の磁気的な相互誘導を中和する中和回路と、
前記被検体の周りに前記多素子コイルを巻装して配置し
且つこの被検体のサイズに応じて取換え可能なフォーマ
と、このフォーマの内部に埋設され且つこのフォーマの
大きさに起因した前記相互誘導の変化量を補正する補正
回路とを有することを特徴とするMRIシステムのプロ
ーブ装置。
2. A flexible multi-element coil having a plurality of coil elements for receiving MR signals from a subject, at least one of which is a volume coil, and a flexible multi-element coil connected to the multi-element coil. And a neutralization circuit that neutralizes magnetic mutual induction between the plurality of coil elements,
A former, which is arranged by winding the multi-element coil around the subject and is replaceable according to the size of the subject, and which is embedded inside the former and is caused by the size of the former. A probe device for an MRI system, comprising: a correction circuit that corrects a change amount of mutual induction.
【請求項3】 前記補正回路は前記フォーマの大きさに
応じて変わる前記相互誘導の変化量を相殺する量を呈す
る回路であって、この補正回路は予め前記フォーマに組
み込まれている請求請2記載のMRIシステムのプロー
ブ装置。
3. The correction circuit is a circuit that presents an amount that cancels the change amount of the mutual induction that changes according to the size of the former, and the correction circuit is incorporated in the former in advance. A probe device of the described MRI system.
【請求項4】 前記補正回路は、コンデンサと、このコ
ンデンサを介して閉ループを形成するループコイルとで
成る請求請3記載のMRIシステムのプローブ装置。
4. The probe device for an MRI system according to claim 3, wherein the correction circuit includes a capacitor and a loop coil that forms a closed loop via the capacitor.
【請求項5】 前記フォーマは、寝台に寝かせた前記被
検体に上から被せることが可能な略半円筒状を成してい
る請求請2乃至4のいずれか1項に記載のMRIシステ
ムのプローブ装置。
5. The probe of the MRI system according to claim 2, wherein the former has a substantially semi-cylindrical shape capable of covering the subject lying on a bed from above. apparatus.
JP7236784A 1995-09-14 1995-09-14 Probe device for mri system Pending JPH0975323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236784A JPH0975323A (en) 1995-09-14 1995-09-14 Probe device for mri system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236784A JPH0975323A (en) 1995-09-14 1995-09-14 Probe device for mri system

Publications (1)

Publication Number Publication Date
JPH0975323A true JPH0975323A (en) 1997-03-25

Family

ID=17005749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236784A Pending JPH0975323A (en) 1995-09-14 1995-09-14 Probe device for mri system

Country Status (1)

Country Link
JP (1) JPH0975323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070277A (en) * 1999-09-03 2001-03-21 Ge Yokogawa Medical Systems Ltd Rf coil, magnetic resonance signal mesureming instrument and magnetic resonance image instrument
JP2001245867A (en) * 2000-03-03 2001-09-11 Hitachi Medical Corp Rf coil for magnetic resonance imaging apparatus
WO2005124380A3 (en) * 2004-06-17 2006-03-30 Koninkl Philips Electronics Nv Flexible and wearable radio frequency coil garments for magnetic resonance imaging
WO2006121949A1 (en) * 2005-05-06 2006-11-16 Regents Of The University Of Minnesota Wirelessly coupled magnetic resonance coil
JP2015213780A (en) * 2015-07-13 2015-12-03 株式会社東芝 Coil pad and planar coil device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070277A (en) * 1999-09-03 2001-03-21 Ge Yokogawa Medical Systems Ltd Rf coil, magnetic resonance signal mesureming instrument and magnetic resonance image instrument
JP2001245867A (en) * 2000-03-03 2001-09-11 Hitachi Medical Corp Rf coil for magnetic resonance imaging apparatus
JP4545870B2 (en) * 2000-03-03 2010-09-15 株式会社日立メディコ Receiver coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus
WO2005124380A3 (en) * 2004-06-17 2006-03-30 Koninkl Philips Electronics Nv Flexible and wearable radio frequency coil garments for magnetic resonance imaging
WO2006121949A1 (en) * 2005-05-06 2006-11-16 Regents Of The University Of Minnesota Wirelessly coupled magnetic resonance coil
US9568572B2 (en) 2005-05-06 2017-02-14 Regents Of The University Of Minnesota Bandage or garment combined with a wirelessly coupled magnetic resonance coil
JP2015213780A (en) * 2015-07-13 2015-12-03 株式会社東芝 Coil pad and planar coil device

Similar Documents

Publication Publication Date Title
US5304933A (en) Surgical local gradient coil
JP4097738B2 (en) MR apparatus provided with cylindrical coil system and surface coil system
EP0598013B1 (en) Anatomically conformal quadrature mri surface coil
EP0274773B1 (en) Magnetic resonance imaging apparatus comprising a quadrature coil system
EP0759560A1 (en) A magnetic resonance imaging method and apparatus
JPH09117428A (en) Magnetic resonance image pickup device and coil mechanism
WO2014208501A1 (en) Magnetic resonance imaging device and rf coil assembly
JPH09117433A (en) Electromagnetic resonance image pickup method and image pickup device
JPH06121779A (en) Magnetic resonance imaging device
JP2001112738A (en) Rf transmitting coil for magnetic resonance apparatus
JPH11342122A (en) Magnetic resonance imaging coil
US4831330A (en) Probe for magnetic resonance imaging system
JP2007512071A (en) Magnetic resonance coil element with built-in electronic module
JP2009540949A (en) Magnetic resonance receiver coil array integrated with scanner bore wall
JPH08238230A (en) Equipment and method for magnetic resonance
JPH0975323A (en) Probe device for mri system
US8674799B2 (en) Transformer assembly for a magnetic resonance imaging system
JPH0213432A (en) Magnetic resonator using non-coupled rf coil
JP2001128956A (en) Magnetic resonance image device
JPH10509370A (en) MR device for measuring nuclear magnetization distribution using surface coil array
JP2708661B2 (en) Gradient magnetic field generator
JP3370715B2 (en) RF probe
US5329232A (en) Magnetic resonance methods and apparatus
JP2003052661A (en) Rf coil and its manufacturing method
JPH0947444A (en) Rf probe for magnetic resonance device