JPH0972736A - Range finder - Google Patents

Range finder

Info

Publication number
JPH0972736A
JPH0972736A JP22550695A JP22550695A JPH0972736A JP H0972736 A JPH0972736 A JP H0972736A JP 22550695 A JP22550695 A JP 22550695A JP 22550695 A JP22550695 A JP 22550695A JP H0972736 A JPH0972736 A JP H0972736A
Authority
JP
Japan
Prior art keywords
output
ccd
photoelectric conversion
conversion element
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22550695A
Other languages
Japanese (ja)
Inventor
Masamitsu Nishikawa
川 政 光 西
Masahito Nozawa
沢 雅 人 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22550695A priority Critical patent/JPH0972736A/en
Publication of JPH0972736A publication Critical patent/JPH0972736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the distance averaged over the entire moving part accurately by turning the optical output from a laser diode (LD) on/off at a period sufficiently shorter than one signal period of a storage type photoelectric conversion element, e.g. a charge coupled element (CCD). SOLUTION: A laser light emitted from a laser diode 2 passes through a lens 4 and is made to irradiate an object 6. The laser light reflected on an object 6 passes through a lens 8 and received by a CCD 10 where the laser light is converted into an electric signal. An electric output signal from the CCD 10 is introduced to a distance operating section 12 where the distance between a range finder and the object 6 is determined according to a triangulation system. The laser diode 2 is controlled by an LD control section 15 through an LD driver 16, based on an output signal from the CCD 10. Output laser light from the laser diode 2 is turned on/off, while keeping a constant peak value, at a period sufficiently shorter than one scanning period of shift pulse of the CCD 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ源から移動
する被測定物に対してレーザ光を照射し、その反射光を
受光し電気信号に変換する蓄積型光電変換素子の出力信
号に基づいて被測定物までの距離を求める距離計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on an output signal of a storage type photoelectric conversion element which irradiates a moving object to be measured with laser light, receives the reflected light, and converts the reflected light into an electric signal. The present invention relates to a range finder for obtaining a distance to an object to be measured.

【0002】[0002]

【従来の技術】レーザダイオード(以下、「LD」と称
する)を利用して被測定物までの距離を測定する距離計
は公知である。図5はそのような距離計の原理的構成を
示すものである。図5に示す距離計は、LDと電荷結合
素子(以下、「CCD」と称する)を用いた三角測量方
式の距離計であって、光源たるLD2から投射されたレ
ーザ光がレンズ4を通して被測定物6に照射される。被
測定物6で反射されたレーザ光がレンズ8を通してCC
D10で受光される。ここで、CCD10は蓄積型光電
変換素子として用いられているものである。CCD10
の出力電気信号は距離演算部12に導かれ、ここで被測
定物6までの距離、すなわち距離計と被測定物6との間
の距離を周知の三角測量方式に従って算出する。
2. Description of the Related Art A range finder for measuring a distance to an object to be measured using a laser diode (hereinafter referred to as "LD") is known. FIG. 5 shows the basic configuration of such a rangefinder. The rangefinder shown in FIG. 5 is a triangulation type rangefinder using an LD and a charge-coupled device (hereinafter, referred to as “CCD”). Laser light projected from the LD2, which is a light source, is measured through a lens 4. The object 6 is irradiated. The laser light reflected by the DUT 6 passes through the lens 8 and CC
The light is received at D10. Here, the CCD 10 is used as a storage type photoelectric conversion element. CCD10
Is output to the distance calculation unit 12, where the distance to the DUT 6, that is, the distance between the rangefinder and the DUT 6 is calculated according to a known triangulation method.

【0003】この距離計においては、被測定物6の表面
性状や反射率の変化に伴い、CCD10の出力レベルが
変わりうる。この出力レベルの変化は距離の測定精度に
大きな悪影響を与える。そこで、この悪影響を回避し、
CCD10の出力信号がほぼ一定の大きさになるように
するために、CCD10の出力信号を入力するLD制御
部14を設け、これによりLDドライバ16のゲインを
調節し、LD2の出力を加減する。
In this range finder, the output level of the CCD 10 can change as the surface properties and reflectance of the DUT 6 change. This change in output level has a great adverse effect on the accuracy of distance measurement. Therefore, avoid this adverse effect,
In order to make the output signal of the CCD 10 substantially constant, an LD control unit 14 for inputting the output signal of the CCD 10 is provided, whereby the gain of the LD driver 16 is adjusted and the output of the LD 2 is adjusted.

【0004】その場合、CCD10の電気出力をほぼ一
定にするのに具体的に次の3つの方式が存在する。 1)LD2の出力を連続レーザ光とし、その強度を、C
CD10の出力電気信号の大小に応じて増減する方式
(図6)。たとえば、図示のごとく電気信号が大きすぎ
るときは、それを適切な大きさにするようにLD2の出
力をレベルダウンする。
In that case, the following three methods exist in order to make the electric output of the CCD 10 substantially constant. 1) The output of LD2 is continuous laser light, and its intensity is C
A method of increasing or decreasing according to the magnitude of the output electric signal of the CD 10 (FIG. 6). For example, when the electric signal is too large as shown in the figure, the output of the LD2 is leveled down so that the electric signal has an appropriate value.

【0005】2)LD2の出力レーザ光をCCD10の
シフトパルスに同期して周期を定め、その1周期内にお
けるオンオフ比を加減して平均値的に一定出力のレーザ
光出力とする方式(図7)。たとえば、図示のごとく電
気信号が大きすぎるときは、それを適切な大きさにする
ようにLD2の個々のパルスのオンオフ比を小さくす
る。この場合、CCD10のシフトパルスの周期(信号
周期)とLD2の出力レーザ光パルスの繰返し周期は1
対1に対応している。
2) A method in which the output laser light of the LD 2 is synchronized with the shift pulse of the CCD 10 to determine a cycle, and the on / off ratio within one cycle is adjusted to obtain a laser light output with a constant average output (FIG. 7). ). For example, when the electric signal is too large as shown in the figure, the ON / OFF ratio of each pulse of the LD 2 is reduced so that the electric signal has an appropriate value. In this case, the shift pulse cycle (signal cycle) of the CCD 10 and the repetition cycle of the output laser light pulse of the LD 2 are 1
It corresponds to one-to-one.

【0006】3)LD2の出力を一定強度の連続レーザ
光とし、CCD10への光入力量を、シャッタ機能を利
用して光学的にオンオフ制御する方式。
3) A method in which the output of the LD 2 is a continuous laser beam having a constant intensity, and the amount of light input to the CCD 10 is optically turned on / off by using a shutter function.

【0007】まず、1)の方式であるが、この方式はレ
ーザ光の出力強度により波長ずれやスポット光量分布が
変化してしまい、それらが測定精度に影響を与える。次
に、2)の方式は、図7からも推察しうるように、被測
定物6が移動体であると、レーザ光が被測定物6のたと
えば前半部にしか照射されないため、被測定物6全体の
平均化された距離を測定することができない。
First of all, the method 1) is used. However, in this method, the wavelength shift and the spot light quantity distribution change depending on the output intensity of the laser light, which affects the measurement accuracy. Next, in the method of 2), as can be inferred from FIG. 7, when the DUT 6 is a moving body, the laser light is irradiated only to, for example, the front half of the DUT 6, so that the DUT is measured. 6 The averaged distance over 6 cannot be measured.

【0008】最後に、3)の方式であるが、これはCC
D10への入力照射光をどの段階で調節するかの相違は
あるものの、結局2)の方式と同様の問題に帰結する。
Finally, the method of 3), which is CC
Although there is a difference in which stage the input irradiation light to the D10 is adjusted, it eventually results in the same problem as the method of 2).

【0009】[0009]

【発明が解決しようとする課題】本発明は、被測定物が
移動する場合であっても、正確な距離測定を行ないうる
距離計を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a range finder capable of performing accurate distance measurement even when an object to be measured moves.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の距離計は、被測定物に対しほぼ一定強度のレ
ーザ光を照射するレーザ源と、被測定物からの反射レー
ザ光を受光し電気信号に変換する蓄積型光電変換素子
と、この蓄積型光電変換素子の出力電気信号の大きさが
ほぼ一定値となるようにレーザ源の出力レーザ光を蓄積
型光電変換素子の1信号周期より十分短い繰返し周期で
オンオフ制御する制御手段と、蓄積型光電変換素子の出
力電気信号に基づいて被測定物までの距離を算出する距
離演算手段とを備えたものである。
In order to achieve the above object, a rangefinder according to the present invention comprises a laser source for irradiating an object to be measured with a laser beam having a substantially constant intensity, and a reflected laser beam from the object to be measured. A storage-type photoelectric conversion element that receives light and converts it into an electric signal, and one signal of the storage-type photoelectric conversion element that outputs the laser light output from the laser source so that the magnitude of the output electric signal of the storage-type photoelectric conversion element becomes almost constant. A control means for performing on / off control in a repetition cycle sufficiently shorter than the cycle and a distance calculation means for calculating the distance to the object to be measured based on the output electric signal of the storage photoelectric conversion element are provided.

【0011】レーザ源の出力レーザ光強度をほぼ一定と
し、光電変換素子の1信号周期より十分短い繰返し周期
でオンオフ制御することにより、被測定物が移動体であ
ってもレーザ光がその全体に平均的に照射され、被測定
物の平均化された距離を求めることができる。
By making the output laser light intensity of the laser source substantially constant and performing on / off control at a repetition cycle that is sufficiently shorter than one signal cycle of the photoelectric conversion element, the laser light is entirely distributed even if the object to be measured is a moving body. It is possible to obtain the average distance of the object to be measured which is irradiated on average.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施形態1)図1および図2を用いて本発明の一実施
形態を説明する。図1に示す距離計は、LDと電荷結合
素子(以下、「CCD」と称する)を用いた三角測量方
式の距離計であることは図5のものと同様であり、光源
たるLD2から照射されたレーザ光がレンズ4を通して
被測定物6に照射され、被測定物6で反射されたレーザ
光がレンズ8を通してCCD10で受光され、ここで電
気信号に変換される。CCD10の出力電気信号は距離
演算部12に導かれ、ここで被測定物6までの距離、す
なわち距離計と被測定物6との間の距離が三角測量方式
に従って算出される。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIGS. The distance meter shown in FIG. 1 is the same as that of FIG. 5 in that it is a triangulation type distance meter using an LD and a charge-coupled device (hereinafter, referred to as “CCD”), and is illuminated by the light source LD2. The laser beam reflected by the DUT 6 is irradiated through the lens 4 to the DUT 6, and the laser beam reflected by the DUT 6 is received by the CCD 10 through the lens 8 and converted into an electric signal. The output electric signal of the CCD 10 is guided to the distance calculation unit 12, where the distance to the object 6 to be measured, that is, the distance between the rangefinder and the object 6 to be measured is calculated according to the triangulation method.

【0013】さて、図2に示すように、この実施形態1
の特徴はCCD10の出力信号を入力としてLD制御部
15によりLDドライバ16を介して行なわれるLD2
の制御態様にある。すなわち、LD2はその出力レーザ
光が一定ピーク値のもとにCCD10のシフトパルスの
周期すなわち1走査周期より十分短い周期でオンオフ制
御しているのが特徴である。図には、LD2の出力光の
繰返し周期がCCD10のシフトパルスのそれの1/6
に設定された(換言すれば、CCD10の1個のシフト
パルス周期内でLD2の6個の出力光パルスが繰返され
る)例が示されている。
Now, as shown in FIG. 2, this embodiment 1
The characteristic of the LD2 is that the LD control section 15 receives the output signal of the CCD 10 as an input and the LD2 is performed by the LD driver 16.
Control mode. That is, the LD 2 is characterized in that the output laser light is on / off controlled at a cycle sufficiently shorter than the cycle of the shift pulse of the CCD 10, that is, one scanning cycle, based on a constant peak value. In the figure, the repetition period of the output light of the LD 2 is ⅙ of that of the shift pulse of the CCD 10.
Is set (in other words, the six output light pulses of the LD2 are repeated within one shift pulse cycle of the CCD 10).

【0014】図2の場合、CCD10の出力電気信号レ
ベルはLD2の出力光パルスのオンオフ比の調整を通し
て行なわれ、たとえばLD2の出力光パルスが大きすぎ
る場合、そのオンオフ比を小さくすることにより適切な
レベルに調節される。 (実施形態2)図3は図2の実施形態と同様にCCD1
0の1走査周期より十分短い周期でLD2の出力レーザ
光をオンオフしているが、この実施形態の特徴は、CC
D10の走査周期とLD2のオンオフ周期の間で互いに
同期をとっていることにある。図2から認められるよう
に、前述の同期をとらなければCCD10の走査周期に
よってLD2の出力光量(図において、1周期内におけ
るオン部分の面積の加算値に相当)に差異を生じ、正確
な距離測定を不能にすることがある。この不都合は、図
3に示すように、CCD10の走査周期とLD2のオン
オフ周期の間で互いに同期をとることにより回避するこ
とができる。 (実施形態3)CCD10(あるいは他の蓄積型光電変
換素子)が図4のAに示すように、受光光量と電気信号
出力との間に非線形特性を持っている場合、この非線形
特性を補償すべくLD2の1信号周期内でLD2のオン
オフ制御を、受光光量に対し電気信号出力の大きい(図
において特性線が立っている)領域R1では相対的にオ
ンオフ比を小さく、受光光量に対し電気信号出力の小さ
い(特性線が寝ている)領域R3では相対的にオンオフ
比を大きく、両者の中間の領域R2では中間のオンオフ
比とするように重み付け制御とすることにより、被測定
物6が移動体である場合であっても移動部分の各反射光
の影響を平均化することができる。
In the case of FIG. 2, the output electric signal level of the CCD 10 is controlled by adjusting the on / off ratio of the output light pulse of the LD2. For example, when the output light pulse of the LD2 is too large, the on / off ratio of the output light pulse is appropriately reduced. Adjusted to the level. (Embodiment 2) FIG. 3 shows a CCD 1 similar to the embodiment of FIG.
The output laser light of the LD 2 is turned on and off at a cycle sufficiently shorter than one scan cycle of 0. The feature of this embodiment is that CC
The scanning cycle of D10 and the on / off cycle of LD2 are synchronized with each other. As can be seen from FIG. 2, if the above-mentioned synchronization is not taken, the output light amount of the LD 2 (corresponding to the added value of the ON portion area within one period in the figure) varies depending on the scanning period of the CCD 10, and the accurate distance is obtained. May disable measurements. This inconvenience can be avoided by synchronizing the scanning cycle of the CCD 10 and the ON / OFF cycle of the LD 2 with each other, as shown in FIG. (Embodiment 3) When the CCD 10 (or other storage type photoelectric conversion element) has a non-linear characteristic between the amount of received light and the electric signal output as shown in A of FIG. 4, this non-linear characteristic is compensated. Therefore, the ON / OFF control of the LD2 is performed within one signal cycle of the LD2, and the ON / OFF ratio is relatively small in the region R1 where the electric signal output is large with respect to the received light amount (the characteristic line stands in the figure), and the electric signal with respect to the received light amount The object 6 moves by performing weighting control so that the on / off ratio is relatively large in the region R3 where the output is small (the characteristic line is lying) and the on / off ratio is intermediate in the region R2 between the two. Even in the case of the body, it is possible to average the influence of each reflected light of the moving part.

【0015】[0015]

【発明の効果】本発明によれば、CCDのような蓄積型
光電変換素子の1信号周期より十分短い周期でLDの光
出力をオンオフ制御することにより、たとえ被測定物が
移動する場合であっても、その移動する全部分の平均化
された距離を的確に求めることができる。
According to the present invention, even if the object to be measured moves by controlling the optical output of the LD on and off at a cycle sufficiently shorter than one signal cycle of a storage type photoelectric conversion element such as a CCD. However, the averaged distances of all the moving parts can be accurately obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による距離計の機器配置を示す図。FIG. 1 is a diagram showing a device layout of a distance meter according to the present invention.

【図2】図1の距離計の第1の実施態様を示す信号波形
図。
FIG. 2 is a signal waveform diagram showing a first embodiment of the range finder of FIG.

【図3】図1の距離計の第2の実施態様を示す信号波形
図。
FIG. 3 is a signal waveform diagram showing a second embodiment of the range finder of FIG.

【図4】図1の距離計の第3の実施態様を示す信号波形
図。
4 is a signal waveform diagram showing a third embodiment of the distance meter of FIG.

【図5】公知の距離計の機器配置を示す図。FIG. 5 is a diagram showing a device layout of a known rangefinder.

【図6】図5の距離計の第1の具体例を示す信号波形
図。
FIG. 6 is a signal waveform diagram showing a first specific example of the distance meter of FIG.

【図7】図5の距離計の第2の具体例を示す信号波形
図。
FIG. 7 is a signal waveform diagram showing a second specific example of the distance meter of FIG.

【符号の説明】[Explanation of symbols]

2 レーザダイオード(LD) 4 レンズ 6 被測定物 8 レンズ 10 電荷結合素子(CCD) 12 距離演算部 15 レーザダイオード(LD)制御部 16 レーザダイオード(LD)ドライバ 2 Laser diode (LD) 4 Lens 6 Object to be measured 8 Lens 10 Charge coupled device (CCD) 12 Distance calculation unit 15 Laser diode (LD) control unit 16 Laser diode (LD) driver

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被測定物に対しほぼ一定強度のレーザ光を
照射するレーザ源と、前記被測定物からの反射レーザ光
を受光し電気信号に変換する蓄積型光電変換素子と、こ
の蓄積型光電変換素子の出力電気信号の大きさがほぼ一
定値となるように前記レーザ源の出力レーザ光を前記蓄
積型光電変換素子の1信号周期より十分短い繰返し周期
でオンオフ制御する制御手段と、前記蓄積型光電変換素
子の出力電気信号に基づいて前記被測定物までの距離を
算出する距離演算手段とを備えた距離計。
1. A laser source for irradiating an object to be measured with a laser beam having a substantially constant intensity, a storage type photoelectric conversion element for receiving reflected laser light from the object to be measured and converting it into an electric signal, and the storage type. Control means for on / off controlling the output laser light of the laser source at a repetition cycle sufficiently shorter than one signal cycle of the storage photoelectric conversion element so that the magnitude of the output electric signal of the photoelectric conversion element becomes a substantially constant value; A distance meter including a distance calculation unit that calculates a distance to the object to be measured based on an output electric signal of the storage photoelectric conversion element.
【請求項2】前記制御手段が、前記レーザ源の出力レー
ザ光が前記蓄積型光電変換素子の1信号周期に同期する
ように前記レーザ源を制御する請求項1記載の距離計。
2. The rangefinder according to claim 1, wherein the control means controls the laser source so that the output laser beam of the laser source is synchronized with one signal period of the storage photoelectric conversion element.
【請求項3】前記制御手段が、前記蓄積型光電変換素子
の1信号周期内における前記レーザ源の複数の出力レー
ザ光の個々のオンオフ比を、前記蓄積型光電変換素子の
受光光量に対する電気信号出力の非線形特性を補償する
ように重み付け制御する請求項1記載の距離計。
3. The control means sets an individual on / off ratio of a plurality of output laser beams of the laser source in one signal period of the storage type photoelectric conversion element to an electric signal with respect to a received light amount of the storage type photoelectric conversion element. The rangefinder according to claim 1, wherein weighting control is performed so as to compensate for the non-linear characteristic of the output.
JP22550695A 1995-09-01 1995-09-01 Range finder Pending JPH0972736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22550695A JPH0972736A (en) 1995-09-01 1995-09-01 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22550695A JPH0972736A (en) 1995-09-01 1995-09-01 Range finder

Publications (1)

Publication Number Publication Date
JPH0972736A true JPH0972736A (en) 1997-03-18

Family

ID=16830393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22550695A Pending JPH0972736A (en) 1995-09-01 1995-09-01 Range finder

Country Status (1)

Country Link
JP (1) JPH0972736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054373A (en) * 2008-08-28 2010-03-11 Nissan Motor Co Ltd Apparatus and method for extracting irradiation light
WO2013129387A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Range finding device and range finding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054373A (en) * 2008-08-28 2010-03-11 Nissan Motor Co Ltd Apparatus and method for extracting irradiation light
WO2013129387A1 (en) * 2012-03-01 2013-09-06 日産自動車株式会社 Range finding device and range finding method
JPWO2013129387A1 (en) * 2012-03-01 2015-07-30 日産自動車株式会社 Distance measuring device and distance measuring method

Similar Documents

Publication Publication Date Title
EP2787368B1 (en) Optical distance measuring apparatus
US8797552B2 (en) Apparatus for generating three-dimensional image of object
US7535555B2 (en) Distance measurement device and distance measurement method
US4473750A (en) Three-dimensional shape measuring device
KR20200103832A (en) LIDAR-based distance measurement using hierarchical power control
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
KR20030067661A (en) Method and device for measuring distances
US20080158043A1 (en) Radar device
US5933240A (en) Method and apparatus for determining the distance between a base and a specular surface by means of radiation reflected at the surface
CN111487639A (en) Laser ranging device and method
CN107765426A (en) Self-focusing laser scanning projection device based on symmetrical defocus double detector
CN109341566A (en) A kind of round-the-clock online two-dimensional contour shape detector of stand alone type
CA2398540A1 (en) Method for generating control output for a position control loop
Biernat et al. Powerful picosecond laser pulses enabling high-resolution pulsed laser radar
CA1295829C (en) Optical measuring device
Kaisto et al. Laser range-finding techniques in the sensing of 3-D objects
JP4165010B2 (en) Optical displacement measuring device and method for correcting the amount of projected light
JPH0972736A (en) Range finder
JPH1123419A (en) Apparatus for measuring characteristics of optical fiber
CN110196107B (en) Terahertz line width measuring device and method
JPH10332335A (en) Optical displacement gauge
JPH10267648A (en) Optical displacement gauge
JPH09318349A (en) Optical displacement measuring device
JP2534137B2 (en) Micro reflectance measurement device
JP2969466B2 (en) Monitor device for speckle length meter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606