JPH0972338A - Static pressure gas bearing device - Google Patents

Static pressure gas bearing device

Info

Publication number
JPH0972338A
JPH0972338A JP7223421A JP22342195A JPH0972338A JP H0972338 A JPH0972338 A JP H0972338A JP 7223421 A JP7223421 A JP 7223421A JP 22342195 A JP22342195 A JP 22342195A JP H0972338 A JPH0972338 A JP H0972338A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
housing
shaft member
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7223421A
Other languages
Japanese (ja)
Other versions
JP3572737B2 (en
Inventor
Hiroshi Aizawa
浩志 相沢
Atsushi Takahashi
淳 高橋
Katsuyoshi Kawasaki
勝義 川崎
Toshinori Sato
俊徳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP22342195A priority Critical patent/JP3572737B2/en
Publication of JPH0972338A publication Critical patent/JPH0972338A/en
Application granted granted Critical
Publication of JP3572737B2 publication Critical patent/JP3572737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0415Driving means; Parts thereof, e.g. turbine, shaft, bearings

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an axis member and the flange part thereof from being not brought into contact with a bearing member even when the axis member which is rotated in high speed is whirled in an axial direction, and simplify and facilitate assembly and regulation. SOLUTION: A porous bearing member 1 is formed in a cylindrical shape, gas injecting parts 2a to 2c are arranged on the inner circumferential surface and both end surfaces, an axis member 3 is covered with each bearing member 1 from both sides of a flange part 4 arranged on the axial direction center part of the axis member 3, and the bearing member 1 is arranged on both sides of the flange part 4. The bearing member 1 is elastically supported to the inner hole 5a of a housing 5, prescribed thrust bearing clearances 7a are formed respectively between the inner side end surface of each bearing member 1 and the end surface of the flange part 4, prescribed thrust direction clearances 7b are formed respectively between the outer side end surface of each bearing member 1 and the housing 5, and gas is injected from gas injecting parts 2a to 2c of the inner circumferential surface of each bearing member 1 and both end surfaces toward the axis member 3 and the housing 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば静電塗装等
用の軸部材を支持する静圧気体軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static pressure gas bearing device for supporting a shaft member for electrostatic coating or the like.

【0002】[0002]

【従来の技術】このように高速回転される軸部材を支持
する従来の静圧気体軸受装置としては、例えば図4に示
すようなものがある。この静圧気体軸受装置は、ラジア
ル軸受面及びスラスト軸受面を多孔質部材で構成して、
そのラジアル軸受面とスラスト軸受面とから圧縮供給さ
れた気体が噴出するようにし、このラジアル軸受面を有
する二つのラジアル軸受部材とスラスト軸受面を有する
一対のスラスト軸受部材とを互いに独立して配設したも
のである。
2. Description of the Related Art As a conventional static pressure gas bearing device for supporting such a shaft member rotated at a high speed, there is, for example, one shown in FIG. In this static pressure gas bearing device, the radial bearing surface and the thrust bearing surface are made of a porous member,
The gas compressed and supplied from the radial bearing surface and the thrust bearing surface is jetted out, and two radial bearing members having the radial bearing surface and a pair of thrust bearing members having the thrust bearing surface are arranged independently of each other. It was set up.

【0003】このうち、高速回転される軸部材Aのラジ
アル荷重を支持するラジアル軸受部材Bは、軸線方向に
長い円筒状に形成され、特に軸部材Aのモーメントを支
持するために、夫々多孔質部材Zが軸受ケースCに収納
された二つのラジアル軸受部材Bを軸線方向に所定間隔
離間してハウジングDの内孔に弾性支持する。この従来
例では、前記軸受ケースCとハウジングDとの間にゴム
製等の弾性部材からなるOリングEを介装して、当該ラ
ジアル軸受部材Bを弾性支持している。このようにラジ
アル軸受部材Bを弾性支持することにより、高速回転さ
れる軸部材Aのラジアル方向(径方向)への振れ回りが
後述するようにして吸収される。なお、円筒状のラジア
ル軸受部材Bの多孔質部材Zの両端面は、前記軸受ケー
スCやハウジングDによって閉塞され、ハウジングDに
形成された給気口Fから圧縮気体が供給されると、各ラ
ジアル軸受部材Bの内周面から圧縮気体が噴出して、当
該軸部材Aの外周面とラジアル軸受部材Bの内周面との
間に所定のラジアル軸受隙間Hを形成して当該軸部材A
をラジアル方向に非接触に支持する。ここで、高速回転
される軸部材Aがラジアル方向に振れ回ると、各ラジア
ル軸受隙間Hが一定になるように、前記弾性部材からな
るOリングEの変形を伴って前記軸受ケースCを含むラ
ジアル軸受部材Bがラジアル方向に移動して、当該軸部
材Aのラジアル方向への振れ回りが吸収される。
Of these, the radial bearing member B which supports the radial load of the shaft member A rotated at a high speed is formed in a cylindrical shape which is long in the axial direction, and in particular, in order to support the moment of the shaft member A, each is made of a porous material. The member Z elastically supports the two radial bearing members B housed in the bearing case C at predetermined intervals in the axial direction in the inner hole of the housing D. In this conventional example, an O-ring E made of an elastic member made of rubber or the like is interposed between the bearing case C and the housing D to elastically support the radial bearing member B. By elastically supporting the radial bearing member B in this manner, whirling of the shaft member A rotated at high speed in the radial direction (radial direction) is absorbed as described later. Both end surfaces of the porous member Z of the cylindrical radial bearing member B are closed by the bearing case C and the housing D, and when compressed gas is supplied from the air supply port F formed in the housing D, Compressed gas is ejected from the inner peripheral surface of the radial bearing member B to form a predetermined radial bearing gap H between the outer peripheral surface of the shaft member A and the inner peripheral surface of the radial bearing member B.
Is supported in the radial direction in a non-contact manner. Here, when the shaft member A rotated at a high speed swings in the radial direction, the radial ring including the bearing case C is accompanied by the deformation of the O-ring E made of the elastic member so that the radial bearing gaps H become constant. The bearing member B moves in the radial direction, and the whirling of the shaft member A in the radial direction is absorbed.

【0004】一方、高速回転される軸部材Aのスラスト
荷重を分担する一対のスラスト軸受部材Jは、方形断面
を有するリング状に形成されている。軸部材Aに一体に
形成されたフランジ部Kの両端面と各スラスト軸受部材
Jの一方の端面との間に、夫々所定のスラスト軸受隙間
Lが形成されるようにして、当該フランジ部Kの両側に
スラスト軸受部材Jが配設され、各スラスト軸受部材J
はハウジングDにリジッドに固定支持される。なお、前
記スラスト軸受部材Jのうち、前記軸部材Aのフランジ
部Kの端面に対向しない端面及び外周面はハウジングD
に密着されて閉塞される。ハウジングDに形成された給
気口Mから圧縮気体が供給されると、スラスト軸受部材
Jの前記一方の端面から圧縮気体が噴出されて、その気
体圧力が前記軸部材Aのフランジ部Kを非接触に支持す
る。
On the other hand, the pair of thrust bearing members J, which bear the thrust load of the shaft member A rotated at a high speed, are formed in a ring shape having a rectangular cross section. A predetermined thrust bearing gap L is formed between both end surfaces of the flange portion K integrally formed with the shaft member A and one end surface of each thrust bearing member J, so that the flange portion K of the flange portion K is formed. Thrust bearing members J are arranged on both sides, and each thrust bearing member J
Is rigidly supported by the housing D. In the thrust bearing member J, the end surface and the outer peripheral surface that do not face the end surface of the flange portion K of the shaft member A have a housing D.
Is closely attached to and closed. When the compressed gas is supplied from the air supply port M formed in the housing D, the compressed gas is ejected from the one end surface of the thrust bearing member J, and the gas pressure causes the flange portion K of the shaft member A not to flow. Support contact.

【0005】なお、噴出された圧縮気体は、ハウジング
Dに形成された排気口G及びハウジングDと軸部材Aと
の間の隙間から当該ハウジングDの外部に排気される。
The jetted compressed gas is exhausted to the outside of the housing D through the exhaust port G formed in the housing D and the gap between the housing D and the shaft member A.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の静圧気体軸受装置では、前記スラスト軸受部材及び
ラジアル軸受部材を正確に位置決めする必要があるが、
互いに独立した前記スラスト軸受部材Jとラジアル軸受
部材Bとを軸方向に正確に位置出しして組立てることが
非常に困難であり、またその調整には大変な手間と時
間,或いは熟練を要する。また、スラスト軸受について
は、各スラスト軸受部材Jが、ハウジングDにリジッド
に固定支持されているため、高速回転される軸部材Aの
振れ回りから前記フランジ部Kがスラスト方向(軸方
向)に振れてスラスト軸受部材Jに接触し、軸部材Aの
回転速度が低下するばかりでなく、軸受かじりという不
具合が発生することもあった。また、スラスト軸受部材
とラジアル軸受部材とを軸方向の両側に併設する関係か
ら、ラジアル負荷容量,ラジアル剛性及びモーメント剛
性が低い。また、ハウジングDの軸方向寸法が大きくな
ってしまうという問題もある。
However, in the conventional static pressure gas bearing device, it is necessary to accurately position the thrust bearing member and the radial bearing member.
It is very difficult to accurately position and assemble the thrust bearing member J and the radial bearing member B, which are independent of each other, in the axial direction, and the adjustment thereof requires a great deal of labor, time, and skill. Regarding the thrust bearing, since each thrust bearing member J is rigidly fixedly supported by the housing D, the flange portion K swings in the thrust direction (axial direction) from the whirling of the shaft member A that is rotated at high speed. The thrust bearing member J may come into contact with the thrust bearing member J to lower the rotation speed of the shaft member A, and a problem such as bearing galling may occur. Further, since the thrust bearing member and the radial bearing member are provided on both sides in the axial direction, the radial load capacity, the radial rigidity and the moment rigidity are low. There is also a problem that the axial dimension of the housing D becomes large.

【0007】本発明は、これらの諸問題に鑑みて開発さ
れたものであり、部品が少なくてコストが安価であり、
組立・調整が簡便であり、特にスラスト荷重を支持する
軸受部材と軸部材との接触を回避でき、更に従来に比し
てラジアル負荷容量,ラジアル剛性及びモーメント剛性
を大きくすることのできる静圧気体軸受装置を提供する
ことを目的とするものである。
The present invention was developed in view of these problems, has a small number of parts, and is inexpensive.
Hydrostatic gas that is easy to assemble and adjust, avoids contact between the bearing member that supports the thrust load and the shaft member, and can increase the radial load capacity, radial rigidity, and moment rigidity compared to conventional models. The purpose of the present invention is to provide a bearing device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の静圧気体軸受装置は、円筒状に形成された
軸受部材の内周面と両端面とに気体噴出部を設け、当該
軸受部材の内周面内に軸部材を挿通して当該軸部材の軸
方向中間部に一体に形成されたフランジ部の両側に軸受
部材を夫々配設し、各軸受部材はハウジングの内孔に弾
性支持され、各軸受部材の一方の端面と当該一方の端面
に対向する軸部材のフランジ部端面との間に夫々スラス
ト軸受隙間を形成し、各軸受部材の他方の端面と当該他
方の端面に対向するハウジングとの間に夫々スラスト方
向隙間を形成したことを特徴とするものである。
In order to achieve the above object, a static pressure gas bearing device of the present invention is provided with a gas ejection portion on the inner peripheral surface and both end surfaces of a cylindrical bearing member. The shaft member is inserted into the inner peripheral surface of the bearing member, and the bearing members are respectively arranged on both sides of the flange portion integrally formed at the axially intermediate portion of the shaft member. Elastically supported by each of the bearing members, a thrust bearing gap is formed between one end surface of each bearing member and the end surface of the flange portion of the shaft member facing the one end surface, and the other end surface of each bearing member and the other end surface thereof are formed. It is characterized in that a thrust direction gap is formed between the housing and the housing facing each other.

【0009】[0009]

【発明の実施の形態】本発明の静圧気体軸受装置では、
図1に示すように、例えば多孔質部材を用いて円筒状の
軸受部材1を形成することで、例えばその外周面から圧
縮気体が供給されると、その内周面と両端面とから当該
圧縮気体が噴出されるように当該内周面と両端面とに気
体噴出部2a〜2cを設ける。また、軸受部材1の外周
面は軸方向中央部の円周溝を除く箇所が目つぶし加工を
施されている。そして、軸部材3の軸方向中間部に両側
部より大径に一体に形成されたフランジ部4の両側から
当該軸部材3の外側に各軸受部材1を被せ、当該軸受部
材1の内周面内に軸部材3を挿通して当該フランジ部4
の両側に軸受部材1を夫々配設する。この状態で、軸部
材3を軸受部材1ごとハウジング5のハウジング本体5
cの内孔5a内に挿入し、各軸受部材1と当該ハウジン
グ5の内孔5aとの間に、ゴム製等の弾性部材からなる
Oリング等の弾性支持部材6を介装するなどにより当該
軸受部材1をハウジング5の内孔5aが弾性支持する。
また、図1では前記軸部材3のフランジ部4の端面に対
向しない両軸受部材1の外側端面にハウジング5のサイ
ドカバー5bを被せる。これにより、各軸受部材1の内
側端面(一方の端面)と当該一方の端面に対向する軸部
材3のフランジ部4の端面との間に夫々所定寸法のスラ
スト軸受隙間7aが形成され、そして各軸受部材1の外
側端面(他方の端面)と当該他方の端面に対向するハウ
ジング5(サイドカバー5b)との間に、夫々所定寸法
のスラスト方向隙間(ダンパー用隙間)7bが形成され
る。そして、ハウジング5に形成された給気口9から各
軸受部材1の外周面に圧縮気体が供給されて、前記各軸
受部材1の内周面及び両端面に設けられた気体噴出部2
a,2b,2cから圧縮気体が噴出し、そのうちの内周
面気体噴出部2aから噴出された気体圧力によって当該
軸受部材1の内周面と軸部材3の外周面との間に所定寸
法のラジアル軸受隙間8が形成され、当該軸部材3をラ
ジアル方向に支持すると共に、各軸受部材1の内側端面
の気体噴出部2bから噴出された圧縮気体の圧力がフラ
ンジ部4,即ち軸部材3をスラスト方向に支持する。ま
た、各軸受部材1自体は、当該軸受部材1の外側端面の
気体噴出部2cから噴出された圧縮気体の圧力により、
ハウジング5(サイドカバー5b)に非接触にスラスト
方向に支持されている。なお、排気はハウジング5に形
成された排気口10及び軸部材3とサイドカバー5bと
の間の隙間から行われる。従って、高速回転される軸部
材3のラジアル荷重及びモーメントは前記二つのラジア
ル軸受隙間8内の気体圧力で受けられ、軸部材3のスラ
スト荷重は前記フランジ部4側のスラスト軸受隙間7a
の気体圧力で受けられる。また、当該軸部材3のラジア
ル方向の振れ回りは、従来と同様に、前記ラジアル軸受
隙間8が一定になるように、Oリング等の弾性支持部材
6の変形を伴って、軸受部材1がラジアル方向に移動す
ることで吸収され、そのスラスト方向の振れは、前記フ
ランジ部4の両側のスラスト軸受隙間7aが一定になる
ように、前記Oリング等の弾性支持部材6の変形及び前
記ハウジング5(サイドカバー5b)と軸受部材1との
間のスラスト方向隙間7bの変化を伴って、軸受部材1
がスラスト方向に移動することで吸収される。特に当該
フランジ部4側のスラスト軸受隙間7a及びハウジング
5(サイドカバー5b)側のスラスト方向隙間7bの気
体圧力によって速やかに減衰され、当該フランジ部4及
び軸部材3を各軸受部材1に対して軸線方向の所定位置
に維持する。従って、軸部材3及びそのフランジ部4
が、ラジアル方向にもスラスト方向にも各軸受部材1に
接触することがない。また、各軸受部材1が、軸部材3
のラジアル荷重とスラスト荷重との両方を支持し、一つ
の軸受部材1でラジアル軸受隙間8とスラスト軸受隙間
7aとスラスト方向隙間7bとを同時に形成することが
でき、前述のようにスラスト方向への大きな振れを前記
フランジ部4側のスラスト軸受隙間7a及びハウジング
5(サイドカバー5b)側のスラスト方向隙間7bで吸
収することができるため、軸部材3に対する軸受部材1
の位置精度出しが容易となるから、そのための組立・調
整が簡便となる。また、各軸受部材1の軸線方向長さを
長くしたり、隣合う軸受部材1の間隔を広げたりするこ
とができるので、ラジアル負荷容量やモーメント剛性を
大きくすることができ、またハウジング5の軸方向寸法
を小さくすることも可能となる。即ち、同じ大きさの外
観を持つ従来の静圧気体軸受装置と較べると、従来より
大きなラジアル負荷容量を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the static pressure gas bearing device of the present invention,
As shown in FIG. 1, for example, by forming a cylindrical bearing member 1 using a porous member, for example, when compressed gas is supplied from the outer peripheral surface thereof, the compressed gas is compressed from the inner peripheral surface and both end surfaces thereof. Gas ejection portions 2a to 2c are provided on the inner peripheral surface and both end surfaces so that the gas is ejected. In addition, the outer peripheral surface of the bearing member 1 is subjected to a crushing process at a portion except the circumferential groove in the central portion in the axial direction. Then, each bearing member 1 is covered on the outer side of the shaft member 3 from both sides of the flange portion 4 integrally formed in the axially intermediate portion of the shaft member 3 so as to have a larger diameter than both side portions, and the inner peripheral surface of the bearing member 1 is covered. The shaft member 3 is inserted into the flange portion 4
The bearing members 1 are arranged on both sides of each. In this state, the shaft member 3 and the bearing member 1 together with the housing body 5 of the housing 5
By inserting the elastic support member 6 such as an O-ring made of an elastic member such as rubber between each bearing member 1 and the inner hole 5a of the housing 5, The inner hole 5a of the housing 5 elastically supports the bearing member 1.
In addition, in FIG. 1, the side covers 5b of the housing 5 are covered on the outer end surfaces of both bearing members 1 that do not face the end surface of the flange portion 4 of the shaft member 3. As a result, the thrust bearing gap 7a having a predetermined size is formed between the inner end surface (one end surface) of each bearing member 1 and the end surface of the flange portion 4 of the shaft member 3 facing the one end surface, and A thrust direction clearance (damper clearance) 7b having a predetermined size is formed between the outer end surface (the other end surface) of the bearing member 1 and the housing 5 (side cover 5b) facing the other end surface. Compressed gas is supplied to the outer peripheral surface of each bearing member 1 from the air supply port 9 formed in the housing 5, and the gas ejection portion 2 provided on the inner peripheral surface and both end surfaces of each bearing member 1 is supplied.
Compressed gas is ejected from a, 2b, and 2c, and the gas pressure ejected from the inner peripheral surface gas ejecting portion 2a of the compressed gas has a predetermined dimension between the inner peripheral surface of the bearing member 1 and the outer peripheral surface of the shaft member 3. A radial bearing gap 8 is formed to support the shaft member 3 in the radial direction, and the pressure of the compressed gas ejected from the gas ejection portion 2b on the inner end surface of each bearing member 1 causes the flange portion 4, that is, the shaft member 3 to move. Support in the thrust direction. In addition, each bearing member 1 itself, due to the pressure of the compressed gas ejected from the gas ejection portion 2c of the outer end surface of the bearing member 1,
It is supported in the thrust direction in a non-contact manner with the housing 5 (side cover 5b). The exhaust is performed through the exhaust port 10 formed in the housing 5, the gap between the shaft member 3 and the side cover 5b. Therefore, the radial load and moment of the shaft member 3 which is rotated at high speed are received by the gas pressure in the two radial bearing gaps 8, and the thrust load of the shaft member 3 is the thrust bearing gap 7a on the flange portion 4 side.
It can be received at gas pressure of. As for the whirling of the shaft member 3 in the radial direction, as in the conventional case, the bearing member 1 is radially deformed so that the elastic bearing member 6 such as an O-ring is deformed so that the radial bearing gap 8 becomes constant. Is absorbed by moving in the direction, and the vibration in the thrust direction is deformed and the elastic support member 6 such as the O-ring is deformed so that the thrust bearing gaps 7a on both sides of the flange portion 4 become constant. With the change in the thrust direction clearance 7b between the side cover 5b) and the bearing member 1, the bearing member 1
Is absorbed by moving in the thrust direction. In particular, the thrust bearing gap 7a on the side of the flange portion 4 and the thrust direction gap 7b on the side of the housing 5 (side cover 5b) are rapidly damped by the gas pressure, and the flange portion 4 and the shaft member 3 with respect to each bearing member 1. Maintain in place in the axial direction. Therefore, the shaft member 3 and its flange portion 4
However, there is no contact with each bearing member 1 in either the radial direction or the thrust direction. Further, each bearing member 1 is replaced by the shaft member 3
Both the radial load and the thrust load can be supported, and the radial bearing gap 8, the thrust bearing gap 7a, and the thrust direction gap 7b can be simultaneously formed by one bearing member 1. As described above, Since a large runout can be absorbed by the thrust bearing gap 7a on the flange portion 4 side and the thrust direction gap 7b on the housing 5 (side cover 5b) side, the bearing member 1 with respect to the shaft member 3 can be absorbed.
Since it is easy to obtain the position accuracy of, the assembly / adjustment for that becomes easy. Further, since the axial length of each bearing member 1 can be increased and the interval between the adjacent bearing members 1 can be increased, the radial load capacity and moment rigidity can be increased, and the shaft of the housing 5 can be increased. It is also possible to reduce the directional dimension. That is, as compared with the conventional static pressure gas bearing device having the same appearance, a larger radial load capacity than the conventional one can be obtained.

【0010】[0010]

【実施例】以下に、本発明の静圧気体軸受装置の一実施
例を図2を用いて説明する。この実施例は、前記図1に
示す静圧気体軸受装置を高速で回転される静電塗装用エ
アスピンドルに適用したものであり、基本的な軸受装置
の構成については同図1に示すものと同様であるため、
同様の構成部材については同等の符号を附してその詳細
な説明を省略する。ここで、図1の静圧気体軸受装置と
の最も大きな差異は、前記ハウジング5を形成する図示
の右側のサイドカバー5bと、軸受部材1を収納するハ
ウジング本体5cとの間に、軸部材3となるエアスピン
ドルを高速回転させるためのタービン機構11を介装し
たことであり、従って図1の右側サイドカバー5b側ス
ラスト方向隙間7bは、右側軸受部材1の外側端部の気
体噴出部2cと後述するハウジング5のタービン機構用
ハウジング14との間に形成されることになる。また、
エアスピンドルを構成する軸部材3は、中空構造とさ
れ、その内径面内に、回転されない塗料供給管30が挿
通され、当該軸部材3の左側サイドカバー5bからの突
出部には、供給される塗料を霧化するための塗装用治具
31が取付けられている。また、前記各軸受部材1への
圧縮気体の給気口9は、装置の後方,即ち図示の右方か
ら圧縮気体が供給できるように、前記右側サイドカバー
5bから各軸受部材1の外周面に連通されている。な
お、この右側サイドカバー5bには、タービン,即ち軸
部材3であるエアスピンドルの回転速度を、光や磁気を
利用して検出する回転速度センサ32が取付けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the static pressure gas bearing device of the present invention will be described below with reference to FIG. In this embodiment, the static pressure gas bearing device shown in FIG. 1 is applied to an electrostatic coating air spindle rotated at high speed, and the basic structure of the bearing device is shown in FIG. Is similar, so
Similar components are designated by the same reference numerals and detailed description thereof will be omitted. Here, the biggest difference from the hydrostatic gas bearing device of FIG. 1 is that the shaft member 3 is provided between the side cover 5b on the right side of the drawing that forms the housing 5 and the housing body 5c that houses the bearing member 1. The turbine mechanism 11 for rotating the air spindle at a high speed is interposed. Therefore, the thrust direction gap 7b on the right side cover 5b side in FIG. It will be formed between the housing 5 and the turbine mechanism housing 14, which will be described later. Also,
The shaft member 3 that constitutes the air spindle has a hollow structure, and the non-rotating paint supply pipe 30 is inserted into the inner diameter surface of the shaft member 3, and the shaft member 3 is supplied to the protruding portion from the left side cover 5b. A painting jig 31 for atomizing the paint is attached. Further, the compressed gas supply port 9 to each of the bearing members 1 is provided on the outer peripheral surface of each bearing member 1 from the right side cover 5b so that the compressed gas can be supplied from the rear of the device, that is, the right side in the drawing. It is in communication. A rotation speed sensor 32 that detects the rotation speed of the turbine, that is, the air spindle that is the shaft member 3 using light or magnetism is attached to the right side cover 5b.

【0011】前記タービン機構11としては、軸部材3
の後方端部,即ち図示の右側端部に、軸部材3を正回転
させるためのタービン用羽根12と、軸部材3を停止さ
せるための逆転用となるタービン逆転用羽根13とを、
当該軸部材3と一体に形成している。また、前記右側サ
イドカバー5bからタービン機構用ハウジング14を介
して前記タービン用羽根12まで圧縮気体を供給するタ
ービン用給気口15と、当該タービン用給気口15内の
圧縮気体を前記タービン用羽根12に向けて噴出するタ
ービン用ノズル16とが設けられ、更に同じく前記右側
サイドカバー5bからタービン機構用ハウジング14を
介して前記タービン逆転用羽根13まで圧縮気体を供給
するタービン逆転用給気口17と、当該タービン逆転用
給気口17内の圧縮気体を前記タービン逆転用羽根13
に向けて噴出するタービン逆転用ノズル18とが設けら
れている。
As the turbine mechanism 11, the shaft member 3 is used.
A turbine blade 12 for rotating the shaft member 3 in the forward direction, and a turbine reverse rotation blade 13 for stopping the shaft member 3 at the rear end, that is, the right end shown in the drawing.
It is formed integrally with the shaft member 3. Further, a turbine air supply port 15 for supplying compressed gas from the right side cover 5b to the turbine blades 12 via the turbine mechanism housing 14, and a compressed gas in the turbine air supply port 15 for the turbine. A turbine nozzle 16 for ejecting toward the blades 12 is provided, and similarly, a turbine reverse rotation supply port for supplying compressed gas from the right side cover 5b to the turbine reverse rotation blades 13 via a turbine mechanism housing 14 is also provided. 17 and the compressed gas in the turbine reversing air supply port 17 to the turbine reversing blades 13.
And a turbine reversing nozzle 18 for ejecting toward.

【0012】次に本実施例の静電塗装装置及び静圧気体
軸受装置の作用について説明する。まず、図2の左方に
配設される被塗装物をプラス電位又はゼロ電位に帯電
し、前記軸部材3とは一緒に回転しない塗料供給管30
を介して、装置の後方,即ち図示の右方から、例えばマ
イナス電位に帯電された塗料が供給されると、塗料は当
該塗料供給管30の先端,即ち図示の左方端部から、軸
部材3に一体化された塗装用治具31に導かれ、その遠
心力及び塗装用治具31の形状によって図示の左方向に
噴射される。すると、塗料と被塗装物との間の電磁力に
よって軽量に霧化された塗料が被塗装物に吸引され、塗
料は被塗装物に行き渡って付着し、ムラのない安定した
塗装が達成される。
Next, the operation of the electrostatic coating device and the static pressure gas bearing device of this embodiment will be described. First, a paint supply pipe 30 that charges the object to be coated arranged on the left side of FIG. 2 to a positive potential or zero potential and does not rotate together with the shaft member 3
When the paint charged to, for example, a negative potential is supplied from the rear of the apparatus, that is, the right side in the drawing through the device, the paint is supplied from the tip of the paint supply pipe 30, that is, the left end in the drawing, to the shaft member. 3 is guided to the coating jig 31 integrated with the nozzle 3 and is jetted in the left direction in the drawing due to the centrifugal force and the shape of the coating jig 31. Then, the lightly atomized paint is attracted to the object to be painted by the electromagnetic force between the paint and the object to be painted, and the paint spreads and adheres to the object to achieve a stable and uniform coating. .

【0013】ここで、静電塗装装置の軸部材3は、例え
ば塗料のバラツキなどによって大きく振れ回る可能性が
あるが、前述のように本実施例の静圧気体軸受装置で
は、軸部材3の振れ回りに対して大きな吸収力があり、
またそのスラスト成分に対して十分な減衰力があるた
め、従来のように軸受かじり等の問題が発生することは
ない。
Here, the shaft member 3 of the electrostatic coating device may swing around greatly due to, for example, variations in paint, but as described above, in the static pressure gas bearing device of this embodiment, the shaft member 3 of There is a great absorbing power for whirling,
Further, since there is a sufficient damping force for the thrust component, problems such as bearing galling do not occur unlike the conventional case.

【0014】次に、本発明の静圧気体軸受装置を前述の
ような静電塗装用エアスピンドルに適用した他の実施例
を図3を用いて説明する。この実施例の静電塗装用エア
スピンドルの基本的な軸受装置の構成については前記図
1及び図2に示すものと同様であり、図1及び図2に示
す構成部材と同様の構成部材については同等の符号を附
してその詳細な説明を省略する。
Next, another embodiment in which the static pressure gas bearing device of the present invention is applied to the electrostatic coating air spindle as described above will be described with reference to FIG. The structure of the basic bearing device of the air spindle for electrostatic coating of this embodiment is the same as that shown in FIGS. 1 and 2, and the same constituent members as those shown in FIGS. The same reference numerals are given and detailed description thereof is omitted.

【0015】ここで、図2の静電塗装用エアスピンドル
との最も大きな差異は、前記図2の実施例でハウジング
5の右部分に設けられたタービン機構11が、本実施例
ではハウジング5の軸方向中間部,即ち前記軸部材3の
フランジ部4に設けられていることであり、従って本実
施例のハウジング本体5cが前記図2のタービン機構用
ハウジング14を兼任する。このため、本実施例のフラ
ンジ部4は、前記図2のものに比して軸方向に少し長く
なっているが、フランジ部4の各端面4aは前記各軸受
部材1の内側端面の気体噴出部2bから噴出された圧縮
気体の圧力を受けて、両者の間に前記スラスト軸受隙間
7aを構成し、もって前記と同様にフランジ部4,即ち
軸部材3をスラスト方向に支持する。
Here, the biggest difference from the electrostatic coating air spindle of FIG. 2 is that the turbine mechanism 11 provided in the right portion of the housing 5 in the embodiment of FIG. It is provided on the intermediate portion in the axial direction, that is, on the flange portion 4 of the shaft member 3. Therefore, the housing body 5c of the present embodiment also serves as the turbine mechanism housing 14 of FIG. Therefore, the flange portion 4 of the present embodiment is slightly longer in the axial direction than that of FIG. 2, but each end surface 4a of the flange portion 4 has a gas jet from the inner end surface of each bearing member 1. Upon receiving the pressure of the compressed gas ejected from the portion 2b, the thrust bearing gap 7a is formed between the two, and thus the flange portion 4, that is, the shaft member 3 is supported in the thrust direction similarly to the above.

【0016】一方、前記タービン機構11としては、前
記軸部材3のフランジ部4の外周部にタービン用羽根1
2が設けられ、またフランジ部4の外周面にはタービン
用羽根12の軸方向両側に円周溝4cがそれぞれ形成さ
れている。タービン用羽根12の半径方向外方端を結ぶ
円の直径即ちタービン用羽根12の外径は軸受部材1の
内径面より大径であり、またタービン用羽根12を軸部
材3と一体に形成している。また、ハウジング5にはタ
ービン用羽根12に対して、図3bに示すように前記右
側サイドカバー5bから圧縮気体を供給するタービン用
給気口15と、当該タービン用給気口15内の圧縮気体
を前記タービン用羽根12に向けて噴出するタービン用
ノズル16とが設けられると共に、図3aに示すよう
に、同じく前記右側サイドカバー5bからタービン用羽
根12に圧縮気体を供給するタービン逆転用給気口17
と、当該タービン逆転用給気口17内の圧縮気体を前記
タービン用羽根12に向けて噴出するタービン逆転用ノ
ズル18とが設けられている。従って、前記図2に示す
実施例と異なり、本実施例では前記タービン用羽根12
が、前記タービン逆転用羽根13を兼任することにな
る。また、タービン用ノズル16とタービン逆転用ノズ
ル18とは軸部材3の軸新を含む平面に対して対称に傾
斜している。
On the other hand, as the turbine mechanism 11, the turbine blade 1 is provided on the outer peripheral portion of the flange portion 4 of the shaft member 3.
2 are provided, and circumferential grooves 4c are formed on the outer peripheral surface of the flange portion 4 on both axial sides of the turbine blade 12. The diameter of a circle connecting the radially outer ends of the turbine blades 12, that is, the outer diameter of the turbine blades 12 is larger than the inner diameter surface of the bearing member 1, and the turbine blades 12 are formed integrally with the shaft member 3. ing. In addition, as shown in FIG. 3B, the housing 5 includes a turbine air supply port 15 for supplying compressed gas from the right side cover 5b to the turbine blade 12, and a compressed gas in the turbine air supply port 15. And a turbine nozzle 16 for ejecting the gas toward the turbine blade 12, and as shown in FIG. 3a, the turbine reverse rotation air supply for supplying compressed gas from the right side cover 5b to the turbine blade 12 as well. Mouth 17
And a turbine reversing nozzle 18 for ejecting the compressed gas in the turbine reversing air supply port 17 toward the turbine blade 12. Therefore, unlike the embodiment shown in FIG. 2, the turbine blade 12 is used in this embodiment.
However, it also serves as the blade 13 for reversing the turbine. Further, the turbine nozzle 16 and the turbine reversing nozzle 18 are inclined symmetrically with respect to a plane including the axis of the shaft member 3.

【0017】従って、前記タービン用給気口15を介し
てタービン用ノズル16からタービン用羽根12に圧縮
気体を噴射すると、その圧力でタービン用羽根12が回
転され、もって軸部材3が高速回転される。また、前記
タービン用給気口15への圧縮気体の供給を停止して、
前記タービン逆転用給気口17を介してタービン逆転用
ノズル18からタービン用羽根12に圧縮気体を噴射す
ると、その圧力がタービン用羽根12を逆回転させる方
向に作用して、軸部材3の回転が減速される。
Therefore, when the compressed gas is injected from the turbine nozzle 16 to the turbine blades 12 through the turbine air supply port 15, the pressure causes the turbine blades 12 to rotate, thereby rotating the shaft member 3 at a high speed. It Further, the supply of the compressed gas to the turbine air supply port 15 is stopped,
When the compressed gas is injected from the turbine reversing nozzle 18 to the turbine blade 12 through the turbine reversing air supply port 17, the pressure acts in a direction to rotate the turbine blade 12 in the reverse direction, thereby rotating the shaft member 3. Is slowed down.

【0018】ここで、前記図2の静電塗装用エアスピン
ドルのように静圧気体軸受装置とタービン機構とを軸方
向に併設すると、前記フランジ部4とタービン用羽根1
2との間に軸受部材1があるので組立工程での規制か
ら、タービン用羽根12の外径を、前記軸受部材1の外
径より小さいものにしなければならない。タービン機構
11の軸トルクは、同等の噴射気体圧力に対してタービ
ン用羽根12の外径が大きいほど大きくなるから、この
ようにタービン用羽根12の外径が小さいと出力トルク
も小さくなってしまう。一方、図3に示す本実施例の静
電塗装用エアスピンドルでは、軸受部材1の内径より大
きい外径のタービン用羽根12を設定することができる
ので、同等の噴射気体圧力に対して当該タービン機構1
1の出力トルクを大きくすることができ、もってエアス
ピンドルの回転特性を安定することができるという利点
もある。また、タービン用羽根12が受けるトルクを軸
受方両側の軸受部材1がバランス良く受けることがで
き、回転精度が向上する。更に、二つの軸受部材1の間
隔が広くなるので外部モーメント負荷に対して強くな
る。また、タービン機構用ハウジング14を軸受用ハウ
ジング本体5cと一体にするなど、部品点数を低減して
コストを低廉化できると共に、エアスピンドル装置を軸
線方向に小さくすることも可能となる。
When the static pressure gas bearing device and the turbine mechanism are arranged side by side in the axial direction like the electrostatic coating air spindle of FIG. 2, the flange portion 4 and the turbine blade 1 are arranged.
Since the bearing member 1 is located between the bearing member 1 and the bearing member 2, the outer diameter of the turbine blade 12 must be smaller than the outer diameter of the bearing member 1 because of restrictions in the assembly process. The axial torque of the turbine mechanism 11 increases as the outer diameter of the turbine blades 12 increases with respect to the same injection gas pressure. Therefore, when the outer diameter of the turbine blades 12 is small, the output torque also decreases. . On the other hand, in the electrostatic coating air spindle of the present embodiment shown in FIG. 3, the turbine blades 12 having an outer diameter larger than the inner diameter of the bearing member 1 can be set, so that the turbine concerned has the same injection gas pressure. Mechanism 1
There is also an advantage that the output torque of No. 1 can be increased and the rotation characteristics of the air spindle can be stabilized. In addition, the torque received by the turbine blades 12 can be received by the bearing members 1 on both sides of the bearing in a well-balanced manner, and the rotational accuracy is improved. Furthermore, since the gap between the two bearing members 1 is widened, the bearing member 1 is strong against an external moment load. Further, the turbine mechanism housing 14 is integrated with the bearing housing main body 5c to reduce the number of parts to reduce the cost, and the air spindle device can be made smaller in the axial direction.

【0019】なお、前記軸受部材は、前述のような多孔
質絞り軸受だけでなく、オリフィス絞り軸受や自成絞り
軸受,表面絞り軸受等を使用することも可能である。ま
た、前記図3の実施例ではフランジ部4に設けられたタ
ービン用羽根12が逆転用羽根を兼任する場合について
説明したが、当該フランジ部4の外周部にタービン用羽
根12とタービン逆転用羽根とを併設し、タービン用羽
根に圧縮気体を噴射するタービン用ノズルと、タービン
逆転用羽根に圧縮気体を噴射するブレーキ用ノズルとを
夫々独立してハウジング5に設けてもよく、そのように
すればタービン逆転用羽根の形状を最適に設定すること
により軸部材3の停止トルクを大きくすることができ
る。
As the bearing member, not only the above-mentioned porous throttle bearing but also an orifice throttle bearing, a self-made throttle bearing, a surface throttle bearing and the like can be used. Further, in the embodiment of FIG. 3 described above, the case where the turbine blade 12 provided on the flange portion 4 also serves as the reversing blade is explained. However, the turbine blade 12 and the turbine reversing blade are provided on the outer peripheral portion of the flange portion 4. And a turbine nozzle for injecting compressed gas to the turbine blade and a brake nozzle for injecting compressed gas to the turbine reversing blade may be separately provided in the housing 5, respectively. For example, the stopping torque of the shaft member 3 can be increased by optimally setting the shape of the turbine reversing blade.

【0020】[0020]

【発明の効果】以上説明したように、本発明の静圧気体
軸受装置によれば、一つの軸受部材の周囲にラジアル軸
受隙間とスラスト軸受隙間とスラスト方向隙間とを形成
することができ、しかもスラスト軸受隙間は軸部材に一
体に形成されたフランジ部側に形成され、スラスト方向
隙間はハウジング側に形成されるから、スラスト軸受隙
間及びスラスト方向隙間内に噴出される圧縮気体の圧力
によって軸部材のスラスト方向の振れを速やかに減衰し
て吸収することができるから、軸部材及びフランジ部が
軸受部材に接触することがない。また、これに伴って軸
部材に対する軸受部材の位置精度が厳しくなくなるか
ら、装置の組立・調整が簡便で容易になる。また、ラジ
アル軸受部材とスラスト軸受部材との両方を併設する必
要がなくなるから、部品点数が少なく、組立が容易でコ
ストが安価である。更に、隣合う軸受部材を軸方向にあ
る程度離したり、軸受部材の軸方向寸法を長くできるか
ら、ラジアル負荷容量,ラジアル剛性及びモーメント剛
性を大きくできる。また、ハウジングの軸方向寸法を小
さくしたりすることができる。
As described above, according to the hydrostatic gas bearing device of the present invention, it is possible to form the radial bearing gap, the thrust bearing gap and the thrust direction gap around one bearing member. Since the thrust bearing gap is formed on the flange side integrally formed with the shaft member and the thrust direction gap is formed on the housing side, the pressure of the compressed gas ejected into the thrust bearing gap and the thrust direction gap causes the shaft member to move. Since the shake in the thrust direction can be quickly attenuated and absorbed, the shaft member and the flange portion do not contact the bearing member. Further, along with this, the positional accuracy of the bearing member with respect to the shaft member becomes less severe, so that the assembly and adjustment of the device are simple and easy. Further, since it is not necessary to provide both the radial bearing member and the thrust bearing member together, the number of parts is small, the assembly is easy and the cost is low. Further, since the adjacent bearing members can be separated from each other to some extent in the axial direction and the axial dimension of the bearing member can be lengthened, radial load capacity, radial rigidity and moment rigidity can be increased. Also, the axial dimension of the housing can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静圧気体軸受装置の構成図である。FIG. 1 is a configuration diagram of a static pressure gas bearing device of the present invention.

【図2】本発明の静圧気体軸受装置を静電塗装用エアス
ピンドルに使用した一実施例を示す構成図である。
FIG. 2 is a configuration diagram showing an embodiment in which the static pressure gas bearing device of the present invention is used in an air spindle for electrostatic coating.

【図3】本発明の静圧気体軸受装置を静電塗装用エアス
ピンドルに使用した他の実施例を示す構成図である。
FIG. 3 is a constitutional view showing another embodiment in which the static pressure gas bearing device of the present invention is used in an electrostatic coating air spindle.

【図4】従来の静圧気体軸受装置の構成図である。FIG. 4 is a configuration diagram of a conventional static pressure gas bearing device.

【符号の説明】[Explanation of symbols]

1は軸受部材 2a,2b,2cは気体噴出部 3は軸部材 4はフランジ部 5はハウジング 6は弾性支持部材 7aはスラスト軸受隙間 7bはスラスト方向隙間 8はラジアル軸受隙間 9は給気口 10は排気口 11はタービン機構 30は塗料供給管 31は静電塗装用治具 1 is a bearing member 2a, 2b, 2c is a gas ejection part 3 is a shaft member 4 is a flange part 5 is a housing 6 is an elastic support member 7a is a thrust bearing gap 7b is a thrust direction gap 8 is a radial bearing gap 9 is a supply port 10 Is an exhaust port 11 is a turbine mechanism 30 is a paint supply pipe 31 is an electrostatic coating jig

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 俊徳 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshinori Sato 1-5-50, Shinmei Kugenuma, Fujisawa-shi, Kanagawa NSK Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒状に形成された軸受部材の内周面と
両端面とに気体噴出部を設け、当該軸受部材の内周面内
に軸部材を挿通して当該軸部材の軸方向中間部に一体に
形成されたフランジ部の両側に軸受部材を夫々配設し、
各軸受部材はハウジングの内孔に弾性支持され、各軸受
部材の一方の端面と当該一方の端面に対向する軸部材の
フランジ部端面との間に夫々スラスト軸受隙間を形成
し、各軸受部材の他方の端面と当該他方の端面に対向す
るハウジングとの間に夫々スラスト方向隙間を形成した
ことを特徴とする静圧気体軸受装置。
1. A cylindrical member is provided with gas ejection portions on the inner peripheral surface and both end surfaces of the bearing member, and the shaft member is inserted into the inner peripheral surface of the bearing member to axially intermediate the shaft member. The bearing members are respectively arranged on both sides of the flange portion formed integrally with the section,
Each bearing member is elastically supported in the inner hole of the housing, and a thrust bearing gap is formed between one end surface of each bearing member and the flange portion end surface of the shaft member facing the one end surface. A hydrostatic gas bearing device, characterized in that a thrust direction gap is formed between the other end surface and the housing facing the other end surface.
JP22342195A 1995-06-26 1995-08-31 Hydrostatic gas bearing device Expired - Fee Related JP3572737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22342195A JP3572737B2 (en) 1995-06-26 1995-08-31 Hydrostatic gas bearing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15906495 1995-06-26
JP7-159064 1995-06-26
JP22342195A JP3572737B2 (en) 1995-06-26 1995-08-31 Hydrostatic gas bearing device

Publications (2)

Publication Number Publication Date
JPH0972338A true JPH0972338A (en) 1997-03-18
JP3572737B2 JP3572737B2 (en) 2004-10-06

Family

ID=26485980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22342195A Expired - Fee Related JP3572737B2 (en) 1995-06-26 1995-08-31 Hydrostatic gas bearing device

Country Status (1)

Country Link
JP (1) JP3572737B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153070A (en) * 2004-11-26 2006-06-15 Ckd Corp Air bearing cylinder and manifold cylinder
JP2008095931A (en) * 2006-10-16 2008-04-24 Shigetaka Yoshimoto Static pressure gas bearing mechanism, shaft rotation device using the same and spindle motor
JP2009036343A (en) * 2007-08-03 2009-02-19 Ntn Corp Turning device and ct scanner system
DE202008015714U1 (en) * 2008-11-27 2010-04-22 Ebm-Papst St. Georgen Gmbh & Co. Kg electric motor
JP2013050149A (en) * 2011-08-30 2013-03-14 Nsk Ltd Air spindle
JP2014194264A (en) * 2013-03-29 2014-10-09 Abb Kk Gas bearing spindle
WO2018079277A1 (en) * 2016-10-26 2018-05-03 Ntn株式会社 Air turbine driving spindle
KR20190035750A (en) 2016-08-04 2019-04-03 에누티에누 가부시기가이샤 Air turbine drive spindle
CN111623038A (en) * 2020-07-06 2020-09-04 德本恒嘉精机(昆山)有限公司 Ultrahigh-precision hydrostatic bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153070A (en) * 2004-11-26 2006-06-15 Ckd Corp Air bearing cylinder and manifold cylinder
JP4619756B2 (en) * 2004-11-26 2011-01-26 シーケーディ株式会社 Air bearing cylinder
JP2008095931A (en) * 2006-10-16 2008-04-24 Shigetaka Yoshimoto Static pressure gas bearing mechanism, shaft rotation device using the same and spindle motor
JP2009036343A (en) * 2007-08-03 2009-02-19 Ntn Corp Turning device and ct scanner system
DE202008015714U1 (en) * 2008-11-27 2010-04-22 Ebm-Papst St. Georgen Gmbh & Co. Kg electric motor
JP2013050149A (en) * 2011-08-30 2013-03-14 Nsk Ltd Air spindle
JP2014194264A (en) * 2013-03-29 2014-10-09 Abb Kk Gas bearing spindle
KR20190035750A (en) 2016-08-04 2019-04-03 에누티에누 가부시기가이샤 Air turbine drive spindle
DE112017003887T5 (en) 2016-08-04 2019-04-18 Ntn Corporation Drive spindle for compressed air turbine
US11033915B2 (en) 2016-08-04 2021-06-15 Ntn Corporation Air turbine drive spindle
WO2018079277A1 (en) * 2016-10-26 2018-05-03 Ntn株式会社 Air turbine driving spindle
CN111623038A (en) * 2020-07-06 2020-09-04 德本恒嘉精机(昆山)有限公司 Ultrahigh-precision hydrostatic bearing
CN111623038B (en) * 2020-07-06 2023-08-29 德本恒嘉精机(昆山)有限公司 Ultra-high precision hydrostatic bearing

Also Published As

Publication number Publication date
JP3572737B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
EP3191725B1 (en) Composite air bearing assembly
JPH0972338A (en) Static pressure gas bearing device
US4369924A (en) Rotary type electrostatic spray painting device
US4467968A (en) Rotary type electrostatic spray painting device
US5584435A (en) Bell atomizer with air/magnetic bearings
JP4655794B2 (en) Spindle device with air turbine
JP2008104903A (en) Coating device
JPH06134350A (en) Spray coating nozzle
US4361287A (en) Rotary type electrostatic spray painting device
JP2006077797A (en) Spindle device
JPH09294942A (en) Rotary atomizing electrostatic coating apparatus
JP2000135453A (en) Rotary atomizing coater
EP3754213A1 (en) Spindle device
JP2021011837A (en) Spindle device
EP3754214B1 (en) Spindle device
JP2590866Y2 (en) Hydrostatic gas bearing spindle
JP2021011836A (en) Spindle device
EP3754212B1 (en) Spindle device
JP2021011834A (en) Spindle device
JPS5938822B2 (en) electrostatic coating equipment
CN220496660U (en) Spraying atomizer
JPS6212420Y2 (en)
JP2021011835A (en) Spindle device
KR100367987B1 (en) Structure of air bearing spindle
JPS6346135Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees