JPH0971420A - Electrically conductive transparent oxide material - Google Patents

Electrically conductive transparent oxide material

Info

Publication number
JPH0971420A
JPH0971420A JP22643995A JP22643995A JPH0971420A JP H0971420 A JPH0971420 A JP H0971420A JP 22643995 A JP22643995 A JP 22643995A JP 22643995 A JP22643995 A JP 22643995A JP H0971420 A JPH0971420 A JP H0971420A
Authority
JP
Japan
Prior art keywords
oxide
crystal structure
type crystal
pyrochlore
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22643995A
Other languages
Japanese (ja)
Other versions
JP3379745B2 (en
Inventor
Keiji Sato
敬二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP22643995A priority Critical patent/JP3379745B2/en
Publication of JPH0971420A publication Critical patent/JPH0971420A/en
Application granted granted Critical
Publication of JP3379745B2 publication Critical patent/JP3379745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly conductive oxide material composed of a double oxide expressed by a specific formula and having pyrochlore-type crystal structure. SOLUTION: High-purity CdO powder and Sb2 O3 powder having an average particle diameter of <=1μm are mixed with each other at a molar ratio of 2/1 in wet state with a ball mill, etc., and the mixture is dried, calcined at about 500-1,000C, crushed, kneaded with a binder such as PVA, formed and baked in air at about 700-1,400 deg.C to obtain a double oxide having a pyrochlore-type crystal structure and expressed by M2-x Sb2 O7 [M is Cd or Zn; -0.2<=x<=0.2] such as Cd2 SbO7 . The double oxide is doped with 0.01-20atom% of one or more elements selected from the group III metal elements such as In, Ga, Y, Al, La, Nd, Sm, Eu, Gd or Yb to obtain the objective electrically conductive transparent oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、優れた可視光透過
性を有しながら、一方で良好な電気伝導性を兼ね備えた
複酸化物材料に関するものであり、この様な材料は、液
晶デバイス(LCD)や太陽電池等の透明電極、あるい
は帯電防止膜、電磁遮蔽膜、防曇ガラスおよび熱線反射
ガラス等に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double oxide material having excellent visible light transmission property and good electrical conductivity, and such a material is a liquid crystal device ( It is applied to transparent electrodes such as LCDs and solar cells, antistatic films, electromagnetic shielding films, anti-fog glass and heat ray reflective glass.

【0002】[0002]

【従来技術とその解決しようとする課題】現在、透明導
電材料は、液晶デバイス(LCD)や太陽電池等の透明
電極、あるいは電磁遮蔽膜、帯電防止膜、防曇ガラス、
熱線反射ガラス等に利用されており、中でも酸化インジ
ウム系および酸化スズ系材料は比較的導電率が高く、ま
たある程度の可視光透過性を有していることから、前記
応用に対し広く用いられている。
2. Description of the Related Art At present, transparent conductive materials include transparent electrodes for liquid crystal devices (LCD) and solar cells, electromagnetic shielding films, antistatic films, anti-fog glass,
It is used for heat ray reflective glass, etc. Among them, indium oxide-based and tin oxide-based materials have relatively high electrical conductivity and also have visible light transmission to some extent, so they are widely used for the above applications. There is.

【0003】これらの材料は、上記の応用を行うにあた
り、スパッタリング法やイオンプレーティング法などの
物理的成膜方法、あるいはゾル−ゲル法やスプレーパイ
ロリシス法などの化学的成膜方法により成膜され、使用
されている。
In applying the above-mentioned materials, these materials are formed by a physical film forming method such as a sputtering method or an ion plating method, or a chemical film forming method such as a sol-gel method or a spray pyrolysis method. Has been used.

【0004】ここで、近年、市場が大幅に拡大しつつあ
る液晶デバイス(LCD)や太陽電池用の透明電極に対
しては、電気伝導度が十分高いこととエッチングによる
パターニング性が比較的容易なことから、酸化インジウ
ムにスズを数mol%添加した、ITO(Indium
−Tin−Oxide)が主に用いられている。
Here, for transparent electrodes for liquid crystal devices (LCDs) and solar cells, the market of which is expanding significantly in recent years, the electrical conductivity is sufficiently high and the patterning property by etching is relatively easy. Therefore, ITO (Indium) obtained by adding tin of several mol% to indium oxide is used.
-Tin-Oxide) is mainly used.

【0005】しかし、ITOは、従来の他の材料と比較
して、導電性に優位性がある反面、透明性については、
材料本来の本質的特性から、可視光透過性が高くなく、
特に可視光の短波長域での吸収が多く、成膜後の薄膜は
やや青みがかって見えるという欠点がある。また、IT
Oの基礎吸収端は370nm付近にあり、このため、紫
外域の明るい光をほとんど透過せず、太陽電池等の電極
材料への応用の場合、エネルギー効率的に不利である。
However, while ITO is superior in conductivity to other conventional materials, it is not transparent.
Visible light transmission is not high due to the intrinsic characteristics of the material,
In particular, it has a drawback that it absorbs a large amount of visible light in a short wavelength range, and a thin film after film formation looks a little bluish. Also, IT
Since the basic absorption edge of O is around 370 nm, it hardly transmits bright light in the ultraviolet region, and is disadvantageous in terms of energy efficiency when applied to an electrode material such as a solar cell.

【0006】一方、ITOの主構成成分である酸化イン
ジウムは資源性に乏しく、現在のところかなり高価であ
るため、成膜コストの高いことも問題である。その他、
酸化インジウムは難焼結性であるため、代表的な成膜方
法であるスパッタリング法における高密度ターゲット製
造が容易ではない。
On the other hand, indium oxide, which is the main constituent of ITO, has a poor resource property and is quite expensive at present, so that the film forming cost is also a problem. Other,
Since indium oxide is difficult to sinter, it is not easy to manufacture a high-density target by a sputtering method which is a typical film forming method.

【0007】[0007]

【課題を解決するための具体的手段】上記の問題点に鑑
み、本発明者は鋭意検討の結果、一般式:M2-x Sb2
7[M=CdまたはZn、−0.2≦x≦0.2]で
表されるパイロクロア型結晶構造を有する複酸化物で、
これにランタノイド系元素を含むIII 族金属元素である
In、Ga、Al、Y、La、Nd、Sm、Eu、G
d、Ybから選ばれる少なくとも一種をドープすること
により、新規な組成の透明導電性酸化物材料を見出し本
発明に到達した。
In view of the above problems, the present inventor has made diligent studies and, as a result, found that the general formula: M 2-x Sb 2
O 7 [M = Cd or Zn, -0.2 ≦ x ≦ 0.2] is a complex oxide having a pyrochlore type crystal structure,
In, Ga, Al, Y, La, Nd, Sm, Eu, and G, which are Group III metal elements containing lanthanoid elements
The present invention has been accomplished by finding a transparent conductive oxide material having a novel composition by doping at least one selected from d and Yb.

【0008】すなわち、本発明は、Cd2-x Sb2 7
[−0.2≦x≦0.2]またはZn2-x Sb2
7 [−0.2≦x≦0.2]で表されるパイロクロア型
結晶構造を有する複酸化物であることを特徴とする透明
導電性酸化物材料で、CdサイトまたはZnサイトに、
ランタノイド系元素を含むIII 族金属元素であるIn、
Ga、Al、Y、La、Nd、Sm、Eu、Gd、Yb
から選ばれる少なくとも一種を0.01〜20原子%の
割合でドープしたパイロクロア型結晶構造を有する複酸
化物で、還元雰囲気アニールにより酸素空孔を生成さ
せ、それによりキャリア電子を注入したパイロクロア型
結晶構造を有する複酸化物であることを特徴とする透明
導電性酸化物材料を提供するものである。
That is, the present invention is directed to Cd 2-x Sb 2 O 7
[−0.2 ≦ x ≦ 0.2] or Zn 2−x Sb 2 O
7 A transparent conductive oxide material characterized by being a multiple oxide having a pyrochlore type crystal structure represented by [-0.2 ≦ x ≦ 0.2], and having a Cd site or a Zn site,
In, which is a group III metal element including a lanthanoid element,
Ga, Al, Y, La, Nd, Sm, Eu, Gd, Yb
A composite oxide having a pyrochlore type crystal structure doped with at least one selected from the group of 0.01 to 20 atomic%, and oxygen vacancies are generated by annealing in a reducing atmosphere, thereby injecting carrier electrons into the pyrochlore type crystal. It is intended to provide a transparent conductive oxide material, which is a double oxide having a structure.

【0009】本発明において、CdまたはZnとSbと
のモル比が、2−x:2[−0.2≦x≦0.2]であ
ることが重要である。上記構成元素によるパイロクロア
型結晶構造を有する複酸化物は、バンドギャップがIT
Oに比べて広く、基礎吸収端が紫外寄りに存在する。こ
のため、ITOと比較して可視光の短波長域での吸収が
少なく、紫外付近まで優れた透過性が期待できる。ま
た、パイロクロア型結晶構造は、立方晶系であり、結晶
の対称性が高く、そのため多結晶状態でキャリア電子の
移動に対する結晶配向の寄与が少なく、粒界の抵抗が低
いことから、高い電気伝導度が期待できる。しかし、上
記組成の割合をはずれると、焼成後に高い電気伝導度を
示すパイロクロア相以外の第2相が生成してしまい、電
気伝導度が低下してしまう恐れがある。
In the present invention, it is important that the molar ratio of Cd or Zn to Sb is 2-x: 2 [-0.2≤x≤0.2]. The composite oxide having a pyrochlore type crystal structure of the above constituent elements has a band gap IT
It is wider than O and has a basic absorption edge near the ultraviolet. Therefore, compared with ITO, the absorption of visible light in the short wavelength region is small, and excellent transmissivity up to near ultraviolet can be expected. In addition, the pyrochlore type crystal structure is a cubic system and has a high crystal symmetry, so that in the polycrystalline state, the contribution of the crystal orientation to the movement of carrier electrons is small, and the resistance of the grain boundary is low, so that the high electric conductivity is obtained. You can expect a degree. However, if the composition ratio is out of the above range, a second phase other than the pyrochlore phase exhibiting high electric conductivity may be generated after firing, and the electric conductivity may be reduced.

【0010】次に、相対密度80%以上の高密度で、か
つ均一な組成をもつ本発明の複酸化物を得るためには、
平均粒径1μm以下、純度99.9%以上の原料酸化物
を用い、ボールミル等で混合し、乾燥成形後、500〜
1000℃で仮焼し、さらに700〜1400℃の温度
範囲で大気中で焼結処理する。混合は、湿式ボールミル
が望ましく、また、焼結温度の範囲をはずれると、パイ
ロクロア相が十分生成しないか、もしくはパイロクロア
相以外の第2相が生成するため好ましくない。
Next, in order to obtain a double oxide of the present invention having a high density of 80% or more in relative density and a uniform composition,
After using a raw material oxide having an average particle size of 1 μm or less and a purity of 99.9% or more, mixing by a ball mill or the like, and drying and molding,
It is calcined at 1000 ° C., and is further sintered in the temperature range of 700 to 1400 ° C. in the atmosphere. Mixing is preferably performed with a wet ball mill, and when the temperature is out of the sintering temperature range, the pyrochlore phase is not sufficiently formed, or the second phase other than the pyrochlore phase is generated, which is not preferable.

【0011】また、上記の組成のCd2+またはZn2+
イトにランタノイド系元素を含むIII 族金属元素をドー
プすることによって、高原子価元素の置換による電荷補
償から生じるキャリア電子注入も可能である。本発明で
使用されるランタノイド系元素を含むIII 族金属元素と
は、In、Ga、Al、Y、La、Nd、Sm、Eu、
Gd、Ybであり、これらの中から選ばれる少なくとも
1種の添加元素をドープすることによって、キャリア注
入電子が可能であり、さらに電気伝導度が向上した材料
が得られる。
Further, by doping the Cd 2+ or Zn 2+ site of the above composition with a group III metal element containing a lanthanoid element, carrier electron injection resulting from charge compensation by substitution of a high valence element is also possible. is there. Group III metal elements including lanthanoid elements used in the present invention include In, Ga, Al, Y, La, Nd, Sm, Eu,
Gd, Yb, and by doping at least one additive element selected from these, a material capable of carrier injection electrons and having improved electric conductivity can be obtained.

【0012】この場合、添加元素のドープ量は、In、
Ga、Al、Y、La、Nd、Sm、Eu、Gd、Yb
金属またはこれらの酸化物から選ばれる少なくとも1種
の添加元素を0.01〜20原子%の割合でドープする
ことが望ましい。この範囲を超えると添加元素は固溶限
を超え、これによりパイロクロア相以外の第2相が生成
して電気伝導度の低下を招く恐れがある。このため添加
元素のドープ量は上記の範囲で行うことが望ましい。
In this case, the doping amount of the additional element is In,
Ga, Al, Y, La, Nd, Sm, Eu, Gd, Yb
It is desirable to dope at least one additive element selected from metals or their oxides in a proportion of 0.01 to 20 atomic%. If the content exceeds this range, the additive element exceeds the solid solubility limit, and as a result, a second phase other than the pyrochlore phase is generated, which may lead to a decrease in electrical conductivity. Therefore, it is desirable that the doping amount of the additional element is within the above range.

【0013】さらに、上記組成の複酸化物を還元アニー
ルすることにより酸素空孔を生成させ、それによる電荷
補償から生じるキャリア注入も可能である。上記組成の
複酸化物を大気焼成後、還元雰囲気で300℃〜120
0℃の温度範囲で1〜60時間アニールするのが適当で
ある。このときの酸素分圧は、10-3〜10-21 atm
であり、窒素中もしくは窒素と水素の混合ガス中での処
理によって行われる。
Further, it is also possible to inject carriers resulting from charge compensation by generating oxygen vacancies by reducing and annealing the complex oxide having the above composition. After baking the composite oxide having the above composition in the air, it is heated in a reducing atmosphere at 300 ° C.
It is suitable to anneal in the temperature range of 0 ° C. for 1 to 60 hours. The oxygen partial pressure at this time is 10 −3 to 10 −21 atm.
And is performed by treatment in nitrogen or a mixed gas of nitrogen and hydrogen.

【0014】一方、本発明の複酸化物の主な構成元素
は、SbおよびCdまたはZnであり、ITOの主構成
元素である高価なInと比較して、SbやCdまたはZ
nは非常に安価である。したがって、本発明の複酸化物
材料はITOと比較して安価に製造可能である。さら
に、酸化アンチモンは、酸化カドミウムまたは酸化亜鉛
との反応性に富み、このため低温で焼結が可能であり、
なおかつ焼結性が良好である。このため、成膜材料であ
る高密度スパッタリングターゲット等の製造が容易に行
えるという利点を有する。
On the other hand, the main constituent elements of the complex oxide of the present invention are Sb and Cd or Zn, which are higher than those of expensive In, which is the main constituent element of ITO, and Sb, Cd or Z.
n is very cheap. Therefore, the double oxide material of the present invention can be manufactured at a lower cost than ITO. In addition, antimony oxide is highly reactive with cadmium oxide or zinc oxide, which makes it possible to sinter at low temperatures,
Moreover, the sinterability is good. Therefore, there is an advantage that a high-density sputtering target which is a film forming material can be easily manufactured.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに説明
するが、かかる実施例に限定されるものではない。
EXAMPLES The present invention will be further described below based on examples, but the invention is not limited to these examples.

【0016】実施例 1 平均粒径1μm以下、純度99.99%の酸化カドミウ
ム粉末(CdO)と酸化アンチモン粉末(Sb2 5
をモル比で2:1になるように秤量し、エタノール溶媒
中で湿式ールミル混合した。さらに、得られたスラリー
を60℃、24時間乾燥後、アルミナるつぼ中で700
℃、5時間仮焼した。仮焼後の前駆体を再びエタノール
溶媒中で湿式ボールミル粉砕し、乾燥後、成型バインダ
としてPVAを2重量%添加した。
Example 1 Cadmium oxide powder (CdO) and antimony oxide powder (Sb 2 O 5 ) having an average particle size of 1 μm or less and a purity of 99.99%.
Was weighed to a molar ratio of 2: 1 and wet-mill mill mixed in an ethanol solvent. Furthermore, after drying the obtained slurry at 60 ° C. for 24 hours, 700 ° C. in an alumina crucible.
It was calcined at ℃ for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0017】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1200℃、5時間大気中で焼成した。
After that, the particle size was adjusted to 150 μm under and 1
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was fired at 1200 ° C. for 5 hours in the air.

【0018】以上のようにして調製した焼結体は、褐色
を呈しており、粉末X線回折法による解析の結果、パイ
ロクロア相のみが認められ、Cd2 Sb2 7 に帰属さ
れた。
The sintered body prepared as described above had a brown color, and as a result of an analysis by a powder X-ray diffraction method, only a pyrochlore phase was recognized and it was assigned to Cd 2 Sb 2 O 7 .

【0019】実施例 2 平均粒径1μm以下、純度99.99%の酸化亜鉛粉末
(ZnO)と酸化アンチモン粉末(Sb2 5 )をモル
比で2:1になるように秤量し、エタノール溶媒中で湿
式ボールミル混合した。さらに、得られたスラリーを6
0℃、24時間乾燥後、アルミナるつぼ中で700℃、
5時間仮焼した。仮焼後の前駆体を再びエタノール溶媒
中で湿式ボールミル粉砕し、乾燥後、成型バインダとし
てPVAを2重量%添加した。
Example 2 A zinc oxide powder (ZnO) having an average particle size of 1 μm or less and a purity of 99.99% and an antimony oxide powder (Sb 2 O 5 ) were weighed out in a molar ratio of 2: 1 and an ethanol solvent was used. Wet ball mill mixing in. Further, the obtained slurry is added to 6
After drying at 0 ° C for 24 hours, 700 ° C in an alumina crucible,
It was calcined for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0020】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1200℃、5時間大気中で焼成した。
Then, the particles were sized to 150 μm under,
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was fired at 1200 ° C. for 5 hours in the air.

【0021】以上のようにして調製した焼結体は、褐色
を呈しており、粉末X線回折法による解析の結果、パイ
ロクロア相のみが認められ、Zn2 Sb2 7 に帰属さ
れた。
The sintered body prepared as described above had a brown color, and as a result of an analysis by a powder X-ray diffraction method, only a pyrochlore phase was recognized and it was assigned to Zn 2 Sb 2 O 7 .

【0022】実施例 3 平均粒径1μm以下、純度99.99%の酸化カドミウ
ム粉末(CdO)と酸化アンチモン粉末(Sb2 5
および酸化インジウム粉末(In2 3 )をモル比で
1.8:1:0.1になるように秤量し、エタノール溶
媒中で湿式ボールミル混合した。さらに、得られたスラ
リーを60℃、24時間乾燥後、アルミナるつぼ中で7
00℃、5時間仮焼した。仮焼後の前駆体を再びエタノ
ール溶媒中で湿式ボールミル粉砕し、乾燥後、成型バイ
ンダとしてPVAを2重量%添加した。
Example 3 Cadmium oxide powder (CdO) and antimony oxide powder (Sb 2 O 5 ) having an average particle size of 1 μm or less and a purity of 99.99%.
And indium oxide powder (In 2 O 3 ) were weighed so that the molar ratio was 1.8: 1: 0.1, and wet-ball mill mixed in an ethanol solvent. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then dried in an alumina crucible.
It was calcined at 00 ° C for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0023】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1200℃、5時間大気中で焼成した。
Then, the particles are sized to 150 μm under,
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was fired at 1200 ° C. for 5 hours in the air.

【0024】以上のようにして調製した焼結体は、灰色
を呈しており、粉末X線回折法による解析の結果、パイ
ロクロア相のみが認められ、Cd2 Sb2 7 に帰属さ
れた。さらに、酸化インジウム相のピークは認められ
ず、無添加のCd2 Sb2 7のピークと比較してシフ
トが認められたことから、添加した酸化インジウムはC
2 Sb2 7 に置換固溶したと判断された。
The sintered body prepared as described above had a gray color, and as a result of analysis by a powder X-ray diffraction method, only a pyrochlore phase was recognized and it was assigned to Cd 2 Sb 2 O 7 . Furthermore, the peak of the indium oxide phase was not recognized, and a shift was recognized as compared with the peak of Cd 2 Sb 2 O 7 without addition.
It is determined to have replaced solid solution d 2 Sb 2 O 7.

【0025】実施例 4 平均粒径1μm以下、純度99.99%の酸化カドミウ
ム粉末(CdO)と酸化アンチモン粉末(Sb2 5
および酸化イッテルビウム粉末(Yb2 3 )をモル比
で1.8:1:0.1になるように秤量し、エタノール
溶媒中で湿式ボールミル混合した。さらに、得られたス
ラリーを60℃、24時間乾燥後、アルミナるつぼ中で
700℃、5時間仮焼した。仮焼後の前駆体を再びエタ
ノール溶媒中で湿式ボールミル粉砕し、乾燥後、成型バ
インダとしてPVAを2重量%添加した。
Example 4 Cadmium oxide powder (CdO) and antimony oxide powder (Sb 2 O 5 ) having an average particle size of 1 μm or less and a purity of 99.99%.
And ytterbium oxide powder (Yb 2 O 3 ) was weighed so that the molar ratio was 1.8: 1: 0.1, and wet-ball mill mixed in an ethanol solvent. Further, the obtained slurry was dried at 60 ° C. for 24 hours and then calcined in an alumina crucible at 700 ° C. for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0026】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1200℃、5時間大気中で焼成した。
After that, the particles were sized to 150 μm under and 1
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was fired at 1200 ° C. for 5 hours in the air.

【0027】以上のようにして調製した焼結体は、淡緑
色を呈しており、粉末X線回折法による解析の結果、パ
イロクロア相のみが認められ、Cd2 Sb2 7 に帰属
された。
The sintered body prepared as described above had a light green color, and as a result of an analysis by a powder X-ray diffraction method, only a pyrochlore phase was recognized and it was assigned to Cd 2 Sb 2 O 7 .

【0028】さらに、酸化イッテルビウム相のピークは
認められず、無添加のCd2 Sb27 のピークと比較
してシフトが認められことから、添加した酸化イッテル
ビウムはCd2 Sb2 7 に置換固溶したと判断され
た。
Further, no peak of the ytterbium oxide phase was observed, and a shift was observed in comparison with the peak of Cd 2 Sb 2 O 7 without addition. Therefore, the added ytterbium oxide was replaced with Cd 2 Sb 2 O 7 . It was determined that a solid solution was formed.

【0029】実施例 5 平均粒径1μm以下、純度99.99%の酸化カドミウ
ム粉末(CdO)と酸化アンチモン粉末(Sb2 5
をモル比で2:1になるように秤量し、エタノール溶媒
中で湿式ールミル混合した。さらに、得られたスラリー
を60℃、24時間乾燥後、アルミナるつぼ中で700
℃、5時間仮焼した。仮焼後の前駆体を再びエタノール
溶媒中で湿式ボールミル粉砕し、乾燥後、成型バインダ
としてPVAを2重量%添加した。
Example 5 Cadmium oxide powder (CdO) and antimony oxide powder (Sb 2 O 5 ) having an average particle size of 1 μm or less and a purity of 99.99%
Was weighed to a molar ratio of 2: 1 and wet-mill mill mixed in an ethanol solvent. Furthermore, after drying the obtained slurry at 60 ° C. for 24 hours, 700 ° C. in an alumina crucible.
It was calcined at ℃ for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0030】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1200℃、5時間大気中で焼成した。さらに、焼結体
を窒素気流中、1000℃、10時間還元雰囲気アニー
ル処理を行った。
Then, the particles are sized to 150 μm under,
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was fired at 1200 ° C. for 5 hours in the air. Further, the sintered body was annealed in a nitrogen stream at 1000 ° C. for 10 hours in a reducing atmosphere.

【0031】以上のようにして調製した焼結体は、灰色
を呈しており、粉末X線回折法による解析の結果、パイ
ロクロア相のみが認められ、Cd2 Sb2 7 に帰属さ
れた。
The sintered body prepared as described above had a gray color, and as a result of an analysis by a powder X-ray diffraction method, only a pyrochlore phase was recognized and it was assigned to Cd 2 Sb 2 O 7 .

【0032】比較例1 平均粒径1μm以下、純度99.99%の酸化インジウ
ム粉末(In2 3 )と酸化ス粉末(SnO2 )をモル
比で0.9:0.1になるように秤量し、エタノール溶
媒中で湿式ボールミル混合した。さらに、得られたスラ
リーを60℃、24時間乾燥後、アルミナるつぼ中で1
000℃、5時間仮焼した。仮焼後の前駆体を再びエタ
ノール溶媒中で湿式ボールミル粉砕し、乾燥後、成型バ
インダとしてPVAを2重量%添加した。
Comparative Example 1 An indium oxide powder (In 2 O 3 ) having a mean particle size of 1 μm or less and a purity of 99.99% and a soot oxide powder (SnO 2 ) were mixed in a molar ratio of 0.9: 0.1. Weighed and wet ball mill mixed in ethanol solvent. Furthermore, after drying the obtained slurry at 60 ° C. for 24 hours, the resulting slurry was placed in an alumina crucible and
It was calcined at 000 ° C for 5 hours. The precursor after calcination was wet-ball milled again in an ethanol solvent, dried, and then 2% by weight of PVA was added as a molding binder.

【0033】その後、150μmアンダーに整粒し、1
5mmφ×3mmtのサイズで一軸成型およびラバープ
レス(2t/cm2 )し、成型後のグリーンディスクを
1400℃、5時間大気中で焼成した。
Then, the particles are sized to 150 μm under, and 1
After uniaxial molding with a size of 5 mmφ × 3 mmt and rubber pressing (2 t / cm 2 ), the molded green disk was baked at 1400 ° C. for 5 hours in the air.

【0034】以上のようにして調製した焼結体は、濃緑
色を呈しており、粉末X線回折法による解析の結果、酸
化インジウム相のみが認められ、In2 3 に帰属され
た。さらに、酸化スズ相のピークは認められず、純粋な
In2 3 のピークと比較してシフトが認められことか
ら添加した酸化スズは酸化インジウムに置換固溶したと
判断された。
The sintered body prepared as described above had a dark green color, and as a result of analysis by the powder X-ray diffraction method, only an indium oxide phase was recognized and attributed to In 2 O 3 . Further, no peak of tin oxide phase was observed and a shift was observed as compared with the peak of pure In 2 O 3 , so it was judged that the added tin oxide was replaced with indium oxide to form a solid solution.

【0035】本発明における可視光透過性の評価方法に
ついては、試料が多結晶セラミックスであるため、透過
率測定と等価である拡散反射率測定法を採用した。ここ
で、測定試料は、上記の実施例で調製した焼結体を粉砕
し、25mmφ×3mmtのサイズに一軸成型したもの
を用いた。
As for the method of evaluating visible light transmittance in the present invention, since the sample is polycrystalline ceramics, the diffuse reflectance measuring method which is equivalent to the transmittance measuring was adopted. Here, as the measurement sample, the sinter prepared in the above example was crushed and uniaxially molded into a size of 25 mmφ × 3 mmt.

【0036】また、標準白色試料には、純度99.99
%のMgO粉末を上記と同様の方法で成型したものを用
いた。一方、電気伝導度測定は、上記の実施例で調製し
た焼結体を、ダイヤモンドカッターにて直方体に切り出
し、電圧および電流電極を取り付けた素子を用いた、通
常の直流4端子法を採用した。
The standard white sample has a purity of 99.99.
% MgO powder molded by the same method as above was used. On the other hand, for the electrical conductivity measurement, a normal DC four-terminal method was employed, in which the sintered body prepared in the above example was cut into a rectangular parallelepiped with a diamond cutter and an element equipped with voltage and current electrodes was used.

【0037】表1に本発明における実施例および比較例
で調製した酸化物の拡散反射率測定結果を示す。表1か
ら明らかなように、本発明の酸化物は従来材料であるI
TO(比較例1)と比較して、反射率、すなわち可視光
透過性が非常に高く、とくに可視域短波長側での吸収が
顕著に少ないことがわかる。
Table 1 shows the diffuse reflectance measurement results of the oxides prepared in Examples and Comparative Examples of the present invention. As is clear from Table 1, the oxide of the present invention is a conventional material I
It can be seen that, as compared with TO (Comparative Example 1), the reflectance, that is, the visible light transmissivity is extremely high, and the absorption particularly on the short wavelength side of the visible region is significantly small.

【0038】[0038]

【表1】 [Table 1]

【0039】表2に本発明の実施例で調製した酸化物の
−40℃、室温(25℃)、および100℃での電気伝
導度を示す。ここで、各酸化物は電気伝導度が温度にほ
とんど依存せず、金属的導電挙動に近く、また、高い電
気伝導性を示していることがわかる。
Table 2 shows the electrical conductivity of the oxides prepared in the examples of the present invention at -40 ° C, room temperature (25 ° C) and 100 ° C. Here, it can be seen that the electric conductivity of each oxide is almost independent of temperature, is close to a metallic conductive behavior, and exhibits high electric conductivity.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明によれば、一般式:M2-x Sb2
7 [M=CdまたはZn、−0.2≦X≦0.2]で
表される複酸化物、およびこれにランタノイド系元素を
含むIII 族金属元素であるIn、Ga、Al、Y、L
a、Nd、Sm、Eu、Gd、Ybから選ばれる少なく
とも一種を0.01〜20原子%の割合でドープした複
酸化物で、いずれもパイロクロア型結晶構造を有する複
酸化物であることを特徴とする透明導電性酸化物材料
は、高い電気伝導性を示しながらも、従来材料と比較し
て透明性とくに可視域短波長側での飛躍的な向上、およ
び材料コスト低減を与えるものである。
According to the present invention, the general formula: M 2-x Sb 2
O 7 [M = Cd or Zn, −0.2 ≦ X ≦ 0.2], and Group III metal elements In, Ga, Al, Y, which contain a lanthanoid element in the complex oxide. L
a compound oxide in which at least one selected from a, Nd, Sm, Eu, Gd, and Yb is doped at a rate of 0.01 to 20 atomic%, and each compound is a compound oxide having a pyrochlore type crystal structure. While exhibiting high electric conductivity, the transparent conductive oxide material provides a dramatic improvement in transparency, especially in the visible wavelength short wavelength side, and a material cost reduction as compared with conventional materials.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cd2-x Sb2 7 [−0.2≦x≦
0.2]で表され、パイロクロア型結晶構造を有する複
酸化物であることを特徴とする透明導電性酸化物材料。
1. Cd 2-x Sb 2 O 7 [-0.2 ≦ x ≦
0.2], which is a double oxide having a pyrochlore type crystal structure.
【請求項2】 Zn2-x Sb2 7 [−0.2≦x≦
0.2]で表され、パイロクロア型結晶構造を有する複
酸化物であることを特徴とする透明導電性酸化物材料。
2. Zn 2-x Sb 2 O 7 [-0.2 ≦ x ≦
0.2], which is a double oxide having a pyrochlore type crystal structure.
【請求項3】 CdサイトまたはZnサイトに、ランタ
ノイド系元素を含むIII族金属元素であるIn、Ga、
Al、Y、La、Nd、Sm、Eu、Gd、Ybから選
ばれる少なくとも一種を0.01〜20原子%の割合で
ドープしたパイロクロア型結晶構造を有する複酸化物で
あることを特徴とする請求項1、2記載の透明導電性酸
化物材料。
3. A group III metal element, In, Ga, containing a lanthanoid element at a Cd site or a Zn site,
A complex oxide having a pyrochlore type crystal structure doped with at least one selected from Al, Y, La, Nd, Sm, Eu, Gd and Yb at a ratio of 0.01 to 20 atomic%. Item 3. The transparent conductive oxide material according to items 1 and 2.
【請求項4】 還元雰囲気アニールにより酸素空孔を生
成させ、それによりキャリア電子を注入したパイロクロ
ア型結晶構造を有する複酸化物であることを特徴とする
請求項1〜3記載の透明導電性酸化物材料。
4. The transparent conductive oxide according to claim 1, which is a complex oxide having a pyrochlore type crystal structure in which oxygen vacancies are generated by reducing atmosphere annealing and carrier electrons are injected thereby. Material.
JP22643995A 1995-09-04 1995-09-04 Transparent conductive oxide material Expired - Fee Related JP3379745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22643995A JP3379745B2 (en) 1995-09-04 1995-09-04 Transparent conductive oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22643995A JP3379745B2 (en) 1995-09-04 1995-09-04 Transparent conductive oxide material

Publications (2)

Publication Number Publication Date
JPH0971420A true JPH0971420A (en) 1997-03-18
JP3379745B2 JP3379745B2 (en) 2003-02-24

Family

ID=16845135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22643995A Expired - Fee Related JP3379745B2 (en) 1995-09-04 1995-09-04 Transparent conductive oxide material

Country Status (1)

Country Link
JP (1) JP3379745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161004A (en) * 2004-12-10 2006-06-22 Bridgestone Corp Antistatic filler, antireflective film having this filler, and display filter having this antireflective film
WO2007060816A1 (en) * 2005-11-25 2007-05-31 Murata Manufacturing Co., Ltd. Translucent ceramic, process for producing the same, optical part and optical apparatus
KR100859517B1 (en) * 2002-06-10 2008-09-22 삼성전자주식회사 Amorphous transparent conductive film and method for preparing the same
CN114496353A (en) * 2022-01-20 2022-05-13 汕头大学 Transparent conductive film with high conductivity and high transmissivity and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859517B1 (en) * 2002-06-10 2008-09-22 삼성전자주식회사 Amorphous transparent conductive film and method for preparing the same
JP2006161004A (en) * 2004-12-10 2006-06-22 Bridgestone Corp Antistatic filler, antireflective film having this filler, and display filter having this antireflective film
WO2007060816A1 (en) * 2005-11-25 2007-05-31 Murata Manufacturing Co., Ltd. Translucent ceramic, process for producing the same, optical part and optical apparatus
US8034468B2 (en) 2005-11-25 2011-10-11 Murata Manufacturing Co., Ltd. Translucent ceramic, method for producing the same, optical component, and optical device
JP5029365B2 (en) * 2005-11-25 2012-09-19 株式会社村田製作所 Translucent ceramic, method for producing the same, optical component and optical device
DE112006003154B4 (en) * 2005-11-25 2014-07-10 Murata Manufacturing Co., Ltd. Translucent ceramic, method of making the same, optical component and optical device
CN114496353A (en) * 2022-01-20 2022-05-13 汕头大学 Transparent conductive film with high conductivity and high transmissivity and preparation method and application thereof
CN114496353B (en) * 2022-01-20 2024-03-26 汕头大学 Transparent conductive film with high conductivity and high transmissivity, and preparation method and application thereof

Also Published As

Publication number Publication date
JP3379745B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
KR101344633B1 (en) ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
JP3947575B2 (en) Conductive oxide and electrode using the same
KR101841314B1 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
EP2301904A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP3644647B2 (en) Conductive oxide and electrode using the same
JP5411945B2 (en) Indium oxide-based sintered body and indium oxide-based transparent conductive film
JP2009249187A (en) Zinc oxide sintered compact, its producing method, sputtering target and electrode
Bueno et al. Low‐voltage varistor based on (Sn, Ti) O2 ceramics
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
KR20150051069A (en) Transparent conductive thin film
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
JP3881407B2 (en) Conductive oxide thin film, article having this thin film, and method for producing the same
JP5082928B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
EP2514851A1 (en) Transparent conductive film, solar cell using same, sputtering target for forming said transparent conductive film, and manufacturing method therefor
KR100891952B1 (en) Oxide-based target for transparent conductive film and method for manufacturing the same, and oxide-based transparent conductive film
KR950006208B1 (en) Zinc oxide sintered body and preparation process thereof
JP3379745B2 (en) Transparent conductive oxide material
EP2921467B1 (en) Oxide sinter, sputtering target using same, and oxide film
JP3379743B2 (en) Transparent conductive oxide material
JPH0971419A (en) Electrically conductive transparent oxide material
JP3506390B2 (en) Transparent oxide and transparent conductive oxide using the same
JPH08277112A (en) Transparent conductive oxide material
JPH09194259A (en) Transparent electrically conductive oxide material
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081213

LAPS Cancellation because of no payment of annual fees