JPH0969211A - Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer - Google Patents

Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer

Info

Publication number
JPH0969211A
JPH0969211A JP7221430A JP22143095A JPH0969211A JP H0969211 A JPH0969211 A JP H0969211A JP 7221430 A JP7221430 A JP 7221430A JP 22143095 A JP22143095 A JP 22143095A JP H0969211 A JPH0969211 A JP H0969211A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
magnetoresistive effect
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7221430A
Other languages
Japanese (ja)
Inventor
Katsumi Hoshino
勝美 星野
Ryoichi Nakatani
亮一 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7221430A priority Critical patent/JPH0969211A/en
Publication of JPH0969211A publication Critical patent/JPH0969211A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To strengthen the switched connection of a magnetic layer with an antiferromagnetic layer and to improve the heat resistance and corrosion resistance by forming two or more layers of multilayer structure containing different compositions as the antiferromagnetic layer in the magnetoresistance effect film having the magnetic layer and the antiferromagnetic layer. SOLUTION: In the case of manufacturing a multilayer film, a buffer layer 12, a magnetic layer 13 are sequentially formed on a board 11 by using an ion beam sputtering method. An Mn-Ir alloy is used for an antiferromagnetic layer 14, and the composition is altered. The magnetoresistance effect film exhibits a face centered cubic structure. When the surface (111) is grown in parallel with the board 11, the layer 14 and the layer 13 are strongly switch- connected. The element selected from V, Cr, Fe, Co, Ni, Cu, Pt, Pd, Rh and Ru is added to the Mn-Ir alloy to improve the coupling magnetic field of the layer 13 with the layer 14 and the heat resistance. The magnetoresistance effect element using the effect film does not exhibit Barkhausen noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果膜及びこれ
を用いた磁気抵抗効果素子,磁気ヘッド,磁気記録再生
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect film, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】再生用磁気ヘッドに用いる磁気抵抗効果
素子には、多数の磁区の挙動により生じるバルクハウゼ
ンノイズが問題になる。バルクハウゼンノイズを抑制す
るためには、磁気抵抗効果素子の磁区を単磁区化するこ
とが有効である。アイイーイーイー トランザクション
ズ オン マグネティクス(IEEE Transactions on M
agnetics ),第14巻,第5号,521〜523ペー
ジに記載のように、磁性層と反強磁性層とを交換結合さ
せることにより、磁気抵抗効果素子の磁区を単磁区化
し、バルクハウゼンノイズを抑制している。
2. Description of the Related Art In a magnetoresistive effect element used in a reproducing magnetic head, Barkhausen noise caused by the behavior of a large number of magnetic domains becomes a problem. In order to suppress Barkhausen noise, it is effective to make the magnetic domain of the magnetoresistive effect element a single domain. IEEE Transactions on M
magnetics), Vol. 14, No. 5, pp. 521-523, by exchanging the magnetic layer and the antiferromagnetic layer by exchange coupling, the magnetic domain of the magnetoresistive effect element is made into a single magnetic domain, and Barkhausen noise is generated. Is suppressed.

【0003】また、磁気記録の高密度化に伴い、現在使
われているNi−Fe合金を用いた磁気抵抗効果素子よ
りも高い磁気抵抗効果を示す材料が求められている。フ
ィジカル・レビュー・B(Pysical Review B),第43
巻,第1号,1297〜1300ページに記載のように、2層の
磁性層を非磁性層で分離し、一方の磁性層と反強磁性層
とが交換結合しており、二つの磁性層の磁化の向きによ
り磁気抵抗効果が生じる多層膜が考案されている。この
多層膜において、低磁界で高い磁気抵抗変化が得られて
いる。
Further, with the increase in density of magnetic recording, there is a demand for a material exhibiting a higher magnetoresistance effect than a magnetoresistance effect element using a Ni—Fe alloy currently used. Physical Review B, 43rd
Vol. 1, No. 1, pp. 1297-1300, two magnetic layers are separated by a non-magnetic layer, and one magnetic layer and an antiferromagnetic layer are exchange-coupled to each other. A multilayer film has been devised in which a magnetoresistive effect is generated depending on the magnetization direction. In this multilayer film, a high magnetic resistance change is obtained in a low magnetic field.

【0004】上述の二つの論文に述べられているよう
に、Ni−Fe膜と交換結合する反強磁性膜としては、
Fe−Mn系合金が知られている。しかし、Fe−Mn
系反強磁性膜は、耐食性が悪いという問題がある。
As described in the above two papers, the antiferromagnetic film exchange-coupled with the Ni--Fe film is:
Fe-Mn based alloys are known. However, Fe-Mn
The antiferromagnetic film has a problem of poor corrosion resistance.

【0005】また、第15回応用磁気学会学術講演概要
集、40ページには、反強磁性膜として、NiOを用い
ている。しかし、NiO層厚を厚くしないとNi−Fe
磁性層との交換結合が得られない。また、NiOが酸化
物であるので、電気伝導性がほとんどなく、磁気ヘッド
に用いるための電極形成が難しい。
In addition, NiO is used as an antiferromagnetic film in the 15th Applied Magnetics Society Academic Lectures, page 40. However, if the NiO layer thickness is not increased, Ni-Fe
Exchange coupling with the magnetic layer cannot be obtained. Moreover, since NiO is an oxide, it has almost no electrical conductivity, and it is difficult to form an electrode for use in a magnetic head.

【0006】特開平6−76247号公報に記載の「磁気抵抗
センサ」では、反強磁性層にNi−Mn系合金を用いる
ことにより、磁性層との交換結合が得られている。しか
し、Ni−Mn系合金が磁性層と交換結合するために
は、Ni−Mn系合金の膜厚を厚くし、成膜後250℃
程度の熱処理を長時間する必要がある。
In the "magnetoresistive sensor" described in JP-A-6-76247, exchange coupling with the magnetic layer is obtained by using a Ni--Mn alloy for the antiferromagnetic layer. However, in order for the Ni-Mn-based alloy to exchange-couple with the magnetic layer, the film thickness of the Ni-Mn-based alloy should be increased and 250 ° C after the film formation.
It is necessary to lengthen the heat treatment for a while.

【0007】[0007]

【発明が解決しようとする課題】磁性層と反強磁性層と
を交換結合させた磁気抵抗効果膜を、磁気抵抗効果素
子,磁気ヘッド等の応用に用いる場合、反強磁性材料
は、耐熱性,耐食性に優れ、磁性層との高い結合磁界が
得られ、かつ容易に作製できることが重要である。しか
し、これまでに開示されている反強磁性材料において、
上記の条件を十分に満たす材料はほとんどない。
When a magnetoresistive effect film in which a magnetic layer and an antiferromagnetic layer are exchange-coupled is used in applications such as a magnetoresistive effect element and a magnetic head, the antiferromagnetic material is heat resistant. , It is important that the corrosion resistance is excellent, a high coupling magnetic field with the magnetic layer can be obtained, and it can be easily manufactured. However, in the antiferromagnetic materials disclosed so far,
Few materials sufficiently satisfy the above conditions.

【0008】本発明の目的は、上述の磁気抵抗効果膜の
問題の解決方法を提供することにある。
An object of the present invention is to provide a method for solving the above-mentioned problem of the magnetoresistive effect film.

【0009】[0009]

【課題を解決するための手段】本発明者等は、種々の材
料及び膜厚を有する磁性層,反強磁性層を積層した多層
磁気抵抗効果膜について研究を行った結果、磁性層と反
強磁性層からなる磁気抵抗効果膜において、上記反強磁
性層を組成の異なる2層以上の多層構造とすることによ
り、耐熱性,耐食性に優れ、磁性層との交換結合が容易
に得られることを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted research on a multi-layered magnetoresistive effect film in which magnetic layers and antiferromagnetic layers having various materials and film thicknesses are laminated, and as a result, the magnetic layer and antiferromagnetic layer are shown. In the magnetoresistive film including a magnetic layer, the antiferromagnetic layer having a multi-layer structure of two or more layers having different compositions has excellent heat resistance and corrosion resistance, and exchange coupling with the magnetic layer can be easily obtained. Heading out, the present invention has been completed.

【0010】すなわち、磁性層と反強磁性層からなる磁
気抵抗効果膜において、上記反強磁性層として、組成の
異なる2層のMn−Ir層を形成することにより、耐熱
性,耐食性に優れ、磁性層と反強磁性層とが強く交換結
合する磁気抵抗効果膜が容易に作製できる。また、この
磁気抵抗効果膜は、面心立方構造を示し、(111)面
が基板に対し平行に成長する時、反強磁性層と強磁性層
とが強く交換結合する。さらに、上記Mn−Ir合金
に、V,Cr,Fe,Co,Ni,Cu,Pt,Pd,
Rh,Ruから選ばれる元素を添加することにより、磁
性層と反強磁性層との結合磁界、および耐熱性を向上さ
せることができる。上記磁気抵抗効果膜を用いた磁気抵
抗効果素子は、バルクハウゼンノイズを示さない。
That is, in a magnetoresistive effect film composed of a magnetic layer and an antiferromagnetic layer, by forming two Mn-Ir layers having different compositions as the antiferromagnetic layer, excellent heat resistance and corrosion resistance can be obtained. A magnetoresistive effect film in which the magnetic layer and the antiferromagnetic layer are strongly exchange-coupled can be easily produced. Further, this magnetoresistive film exhibits a face-centered cubic structure, and when the (111) plane grows parallel to the substrate, the antiferromagnetic layer and the ferromagnetic layer are strongly exchange-coupled. Furthermore, V, Cr, Fe, Co, Ni, Cu, Pt, Pd,
By adding an element selected from Rh and Ru, the coupling magnetic field between the magnetic layer and the antiferromagnetic layer and heat resistance can be improved. The magnetoresistive effect element using the magnetoresistive effect film does not show Barkhausen noise.

【0011】また、二つの磁性層を非磁性層で分割し、
一方の磁性層と反強磁性層とが接している多層膜であ
り、非磁性層で分割された磁性層の磁化の相対的な向き
により磁気抵抗効果が生じる磁気抵抗効果膜において、
反強磁性層として上記のように組成の異なる2層のMn
−Ir合金を用いることにより、耐熱性,耐食性に優れ
た磁気抵抗効果膜が容易に作製できる。上記磁気抵抗効
果膜を用いることにより、低磁界で高い磁気抵抗変化を
有する磁気抵抗効果素子が得られる。
Further, the two magnetic layers are divided into non-magnetic layers,
In a magnetoresistive effect film, which is a multilayer film in which one magnetic layer and an antiferromagnetic layer are in contact with each other, and a magnetoresistive effect is produced by a relative direction of magnetization of a magnetic layer divided by a nonmagnetic layer,
As the antiferromagnetic layer, two layers of Mn having different compositions as described above are used.
By using the -Ir alloy, a magnetoresistive effect film having excellent heat resistance and corrosion resistance can be easily manufactured. By using the magnetoresistive effect film, a magnetoresistive effect element having a high magnetoresistive change in a low magnetic field can be obtained.

【0012】また、上記磁気抵抗効果素子は、磁界セン
サ,磁気ヘッドなどに好適である。また、上記磁気ヘッ
ドを用いることにより、高性能磁気記録再生装置が得ら
れる。
The magnetoresistive effect element is suitable for a magnetic field sensor, a magnetic head and the like. Further, a high performance magnetic recording / reproducing apparatus can be obtained by using the above magnetic head.

【0013】[0013]

【作用】上述のように、磁性層と反強磁性層からなる磁
気抵抗効果膜において、反強磁性層として組成の異なる
2層のMn−Ir合金を用いることにより、耐熱性,耐
食性に優れ、磁性層と反強磁性層とが強く交換結合した
磁気抵抗効果膜が容易に作製できる。この結果、磁気抵
抗効果素子のバルクハウゼンノイズを抑制することがで
きる。また、この方法は、二つの磁性層を非磁性層で分
割し、一方の磁性層に反強磁性層が接しており、二つの
磁性層の磁化の向きにより磁気抵抗効果の生じる磁気抵
抗効果膜にも応用できる。さらに、磁気抵抗効果素子
は、磁界センサ,磁気ヘッドなどに好適である。また、
磁気ヘッドを用いることにより、高性能磁気記録再生装
置が得られる。
As described above, in the magnetoresistive effect film composed of the magnetic layer and the antiferromagnetic layer, by using two layers of Mn-Ir alloys having different compositions as the antiferromagnetic layer, excellent heat resistance and corrosion resistance can be obtained. A magnetoresistive effect film in which the magnetic layer and the antiferromagnetic layer are strongly exchange-coupled can be easily produced. As a result, Barkhausen noise of the magnetoresistive effect element can be suppressed. In addition, this method divides two magnetic layers into non-magnetic layers, and one magnetic layer is in contact with an antiferromagnetic layer, and a magnetoresistive film that produces a magnetoresistive effect depending on the magnetization directions of the two magnetic layers. It can also be applied to. Furthermore, the magnetoresistive effect element is suitable for a magnetic field sensor, a magnetic head, and the like. Also,
By using the magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0014】[0014]

【実施例】【Example】

<実施例1>多層膜の作製にはイオンビームスパッタリ
ング法を用いた。到達真空度は、1/104Pa、スパ
ッタリング時のAr圧力は0.02Paである。また、
膜形成速度は、0.02nm/s 以下である。形成した
多層膜の断面構造を図1に示す。基板11にはSi(1
00)単結晶を用いた。また、バッファ層12として、
厚さ10nmのZrを用いた。磁性層13には、厚さ2
0nmのNi−20at%Fe合金を用いた。また、反
強磁性層14には、厚さ50nmのMn−Ir合金を用
い、組成を変化させた。保護層15には、厚さ5nmの
Zrを用いた。なお、この試料は熱処理を行っていな
い。
<Example 1> An ion beam sputtering method was used for manufacturing the multilayer film. The ultimate vacuum is 1/10 4 Pa, and the Ar pressure during sputtering is 0.02 Pa. Also,
The film formation rate is 0.02 nm / s or less. FIG. 1 shows a cross-sectional structure of the formed multilayer film. Si (1
00) A single crystal was used. In addition, as the buffer layer 12,
Zr having a thickness of 10 nm was used. The magnetic layer 13 has a thickness of 2
A 0 nm Ni-20 at% Fe alloy was used. The antiferromagnetic layer 14 was made of a 50-nm-thick Mn-Ir alloy, and its composition was changed. For the protective layer 15, Zr having a thickness of 5 nm was used. This sample was not heat-treated.

【0015】図2にMn−Ir組成に対するNi−Fe
層との結合磁界の変化を示す。ここで、結合磁界とは、
磁界を容易軸方向に印加した時の磁化曲線がゼロ磁界か
らシフトした磁界と定義する。また、図3にはMn−I
r組成に対するブロッキング温度(結合磁界がゼロにな
る温度)の変化を示す。図2に示すように、磁性層と非
磁性層との結合磁界はIr濃度が20at%付近のとき
最大を示すが、図3に示すように、ブロッキング温度は
Ir濃度が40at%付近のとき最大を示す。
FIG. 2 shows Ni-Fe with respect to Mn-Ir composition.
The change of the coupling magnetic field with a layer is shown. Here, the coupling magnetic field is
The magnetic field when the magnetic field is applied in the easy axis direction is defined as the magnetic field shifted from the zero magnetic field. Further, in FIG. 3, Mn-I
4 shows changes in blocking temperature (temperature at which the coupling magnetic field becomes zero) with respect to r composition. As shown in FIG. 2, the coupling magnetic field between the magnetic layer and the non-magnetic layer shows the maximum when the Ir concentration is around 20 at%, but as shown in FIG. 3, the blocking temperature is the maximum when the Ir concentration is around 40 at%. Indicates.

【0016】図4はMn−Ir組成に対する、Ni−F
eのfcc(111)面間隔及びMn−Irのfcc
(111)面間隔の変化を示す。図4に見るように、I
r濃度が高くなるに従い、Ni−Fe合金の格子間隔と
Mn−Ir合金の格子間隔のミスマッチが大きくなって
おり、これが結合磁界低下の原因と考えられる。しか
し、Ir濃度が高い方が、ブロッキング温度が高くなっ
ている。
FIG. 4 shows Ni--F vs. Mn--Ir composition.
fcc (111) spacing of e and fcc of Mn-Ir
The change in (111) plane spacing is shown. As shown in FIG.
As the r concentration increases, the mismatch between the lattice spacing of the Ni—Fe alloy and the lattice spacing of the Mn—Ir alloy increases, which is considered to be the cause of the decrease in the coupling magnetic field. However, the higher the Ir concentration, the higher the blocking temperature.

【0017】そこで、同様な方法で、以下の多層膜を作
製した。図5に多層膜の構造を示す。基板21にはSi
(100)単結晶を用いた。バッファ層22として、厚さ
5nmのZrを用いた。磁性層23として、厚さ10n
mのNi−19at%Fe合金を用いた。反強磁性層2
4,25として、それぞれMn−20at%,Mn−4
0at%Irを用いた。ここで、反強磁性層24と25
との合計膜厚を20nm一定とし、その膜厚を変化させ
た。さらに、保護膜26として、厚さ5nmのZrを用
いた。なお、この試料は熱処理を行っていない。
Therefore, the following multilayer film was produced by the same method. FIG. 5 shows the structure of the multilayer film. Si on the substrate 21
A (100) single crystal was used. As the buffer layer 22, Zr having a thickness of 5 nm was used. The magnetic layer 23 has a thickness of 10 n
m of Ni-19 at% Fe alloy was used. Antiferromagnetic layer 2
4, 25 are Mn-20 at% and Mn-4, respectively.
0 at% Ir was used. Here, the antiferromagnetic layers 24 and 25
And the total film thickness was constant at 20 nm, and the film thickness was changed. Further, as the protective film 26, Zr having a thickness of 5 nm was used. This sample was not heat-treated.

【0018】図6に、Mn−40at%Ir層厚に対す
る、結合磁界の変化を示す。さらに、図7には、Mn−
40at%Ir層厚に対する、ブロッキング温度の変化
を示す。図のように、組成の異なるMn−Ir合金の多
層構造を用いることにより、Mn−Ir合金単層膜の場
合と比較して、高い結合磁界及び高いブロッキング温度
を有する膜が得られる。
FIG. 6 shows changes in the coupling magnetic field with respect to the Mn-40 at% Ir layer thickness. Further, in FIG. 7, Mn-
The change of blocking temperature with respect to 40 at% Ir layer thickness is shown. As shown in the figure, by using a multi-layer structure of Mn-Ir alloys having different compositions, a film having a high coupling magnetic field and a high blocking temperature can be obtained as compared with the case of a Mn-Ir alloy single layer film.

【0019】本実施例では、Zrバッファ層を用いてい
るが、周期率表上の他のIVa族金属元素,Va族金属元
素(Ti,Hf,V,Nb,Ta)を用いても同様な効
果が得られる。バッファ層を用いることにより、磁性層
の膜厚が薄くても磁性層が(111)配向し、反強磁性
層と交換結合する。また、磁性層の膜厚が十分厚く、磁
性層が(111)配向を示す場合には、バッファ層を用
いる必要はない。
Although the Zr buffer layer is used in this embodiment, the same effect can be obtained by using other IVa group metal elements and Va group metal elements (Ti, Hf, V, Nb, Ta) on the periodic table. The effect is obtained. By using the buffer layer, even if the magnetic layer is thin, the magnetic layer is (111) oriented and exchange-coupled with the antiferromagnetic layer. If the magnetic layer is thick enough and the magnetic layer exhibits (111) orientation, it is not necessary to use the buffer layer.

【0020】さらに、本実施例では、磁性層としてNi
−Fe系合金を使用したが、他の面心立方構造を有する
磁性層を用いても、同様な結果が得られる。しかし、磁
気ヘッド等の応用を考えた場合、磁性層は軟磁性を示す
ことが必要であり、磁性層として、Ni−Fe系合金,
Ni−Fe−Co系合金を用いることが好ましい。
Further, in this embodiment, Ni is used as the magnetic layer.
Although the -Fe-based alloy is used, similar results can be obtained by using other magnetic layers having a face-centered cubic structure. However, when the application of a magnetic head or the like is considered, it is necessary that the magnetic layer exhibits soft magnetism.
It is preferable to use a Ni-Fe-Co based alloy.

【0021】<実施例2>実施例1と同様の方法で多層
膜を形成した。形成した多層膜の断面構造を図5に示
す。基板21にはSi(100)単結晶を用いた。バッ
ファ層22として、厚さ5nmのZrを用いた。磁性層
23として、厚さ10nmのNi−19at%Fe合金
を用いた。反強磁性層24および25として、膜厚が1
0nmである様々な組成のMn−Irを主成分とする合
金を用いた。さらに、保護膜26として、厚さ5nmの
Zrを用いた。なお、この試料は熱処理を行っていな
い。
<Example 2> A multilayer film was formed in the same manner as in Example 1. The cross-sectional structure of the formed multilayer film is shown in FIG. The substrate 21 was made of Si (100) single crystal. As the buffer layer 22, Zr having a thickness of 5 nm was used. As the magnetic layer 23, a Ni-19 at% Fe alloy having a thickness of 10 nm was used. The thickness of the antiferromagnetic layers 24 and 25 is 1
Alloys having various compositions of 0 nm and containing Mn-Ir as a main component were used. Further, as the protective film 26, Zr having a thickness of 5 nm was used. This sample was not heat-treated.

【0022】表1に多層膜の結合磁界及びブロッキング
温度を示す。本実施例のように、反強磁性層を組み合わ
せることにより、結合磁界及びブロッキング温度を向上
させることができる。
Table 1 shows the coupling magnetic field and blocking temperature of the multilayer film. By combining an antiferromagnetic layer as in this embodiment, the coupling magnetic field and the blocking temperature can be improved.

【0023】[0023]

【表1】 [Table 1]

【0024】<実施例3>本発明のバルクハウゼンノイ
ズを抑制するための反強磁性材料を用いた磁気抵抗効果
素子を形成した。図8に、本発明の磁気抵抗効果素子の
膜構造を示す。図8の基板21には、ガラス基板を用い
た。バッファ層22として、厚さ5nmのHfを用い
た。磁性層23には、厚さ10nmのNi−19at%
Fe合金を用いた。反強磁性層24には、厚さ10nm
のMn−20at%Irを用いた。反強磁性層25には
厚さ10nmのMn−40at%Irを用いた。電極3
6には、厚さ300nmのCuを用いた。
Example 3 A magnetoresistive effect element using an antiferromagnetic material for suppressing Barkhausen noise of the present invention was formed. FIG. 8 shows the film structure of the magnetoresistive effect element of the present invention. A glass substrate was used as the substrate 21 in FIG. As the buffer layer 22, Hf having a thickness of 5 nm was used. The magnetic layer 23 has a thickness of 10 nm of Ni-19 at%.
An Fe alloy was used. The antiferromagnetic layer 24 has a thickness of 10 nm.
No. Mn-20 at% Ir was used. For the antiferromagnetic layer 25, Mn-40 at% Ir having a thickness of 10 nm was used. Electrode 3
For 6, Cu having a thickness of 300 nm was used.

【0025】図9に磁気抵抗効果素子の構造を示す。磁
気抵抗効果素子は、図8で示した磁気抵抗効果膜41お
よび電極42で構成されたものが、シールド層43,4
4で挟まれた構造を有する。本発明の磁気抵抗効果素子
を用いた場合、バルクハウゼンノイズが発生せず、反強
磁性層にFe−Mnを用いた磁気抵抗効果素子と同様な
効果が得られた。
FIG. 9 shows the structure of the magnetoresistive effect element. The magnetoresistive effect element is composed of the magnetoresistive effect film 41 and the electrode 42 shown in FIG.
It has a structure sandwiched by 4. When the magnetoresistive effect element of the present invention was used, Barkhausen noise was not generated, and the same effect as the magnetoresistive effect element using Fe—Mn for the antiferromagnetic layer was obtained.

【0026】<実施例4>実施例3で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図10は記録再生分離型ヘッドの一部
分を切断した場合の斜視図である。多層磁気抵抗効果膜
51をシールド層52,53で挾んだ部分が再生ヘッド
として働き、コイル54を挾む下部磁極55,上部磁極
56の部分が記録ヘッドとして働く。多層磁気抵抗効果
膜51は実施例3に記載の多層膜からなる。また、電極
58には、Cr/Cu/Crという多層構造の材料を用
いた。
Example 4 A magnetic head was produced using the magnetoresistive effect element described in Example 3. The structure of the magnetic head is shown below. FIG. 10 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive film 51 sandwiched by the shield layers 52 and 53 functions as a reproducing head, and the lower magnetic pole 55 and the upper magnetic pole 56 that sandwich the coil 54 function as a recording head. The multilayer magnetoresistive effect film 51 is composed of the multilayer film described in the third embodiment. Further, a material having a multilayer structure of Cr / Cu / Cr is used for the electrode 58.

【0027】以下にこのヘッドの作製方法を示す。The manufacturing method of this head will be described below.

【0028】Al23・TiCを主成分とする焼結体を
スライダ用の基板57とした。シールド層,記録磁極に
はスパッタリング法で形成したNi−Fe合金を用い
た。各磁性膜の膜厚は、以下のようにした。上下のシー
ルド層52,53は1.0μm、下部・上部磁極55,
56は3.0μm 、各層間のギャップ材としてはスパッ
タリングで形成したAl23を用いた。ギャップ層の膜
厚は、シールド層と磁気抵抗効果素子間で0.2μm,
記録磁極間では0.4μmとした。さらに再生ヘッドと
記録ヘッドの間隔は約4μmとし、このギャップもAl
23で形成した。コイル54には膜厚3μmのCuを使
用した。
A sintered body containing Al 2 O 3 .TiC as the main component was used as the substrate 57 for the slider. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 52 and 53 are 1.0 μm, the lower and upper magnetic poles 55,
56 was 3.0 μm, and Al 2 O 3 formed by sputtering was used as the gap material between the layers. The film thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive effect element,
The distance between the recording magnetic poles was 0.4 μm. Further, the distance between the reproducing head and the recording head is about 4 μm, and this gap is also made of Al.
Formed with 2 O 3 . Cu having a film thickness of 3 μm was used for the coil 54.

【0029】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、バルクハウゼンノイイズを示さず、良好
な再生特性を示した。
When recording / reproducing was performed with the magnetic head having the above-mentioned structure, Barkhausen noise was not shown and good reproducing characteristics were shown.

【0030】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.

【0031】<実施例5>実施例4で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。図11
に磁気ディスク装置の構造の概略図を示す。
<Embodiment 5> Using the magnetic head of the present invention described in Embodiment 4, a magnetic disk device was manufactured. FIG.
1 shows a schematic diagram of the structure of the magnetic disk drive.

【0032】磁気記録媒体61には、残留磁束密度0.
75T のCo−Ni−Pt−Ta系合金からなる材料
を用いた。磁気ヘッド63の記録ヘッドのトラック幅は
3μm,再生ヘッドのトラック幅は2μmとした。磁気
ヘッド63には、再生時にバルクハウゼンノイズを発生
しない実施例4で用いた磁気ヘッドを用いているため、
エラーレートの低い磁気ディスク装置が得られた。ここ
で、図の64はヘッド駆動部、65は信号処理系であ
る。
The magnetic recording medium 61 has a residual magnetic flux density of 0.
A material made of 75T Co-Ni-Pt-Ta alloy was used. The track width of the recording head of the magnetic head 63 was 3 μm, and the track width of the reproducing head was 2 μm. Since the magnetic head 63 used in Example 4 does not generate Barkhausen noise during reproduction,
A magnetic disk drive with a low error rate was obtained. Here, 64 in the drawing is a head drive unit, and 65 is a signal processing system.

【0033】<実施例6>実施例1と同様の方法で、多
層膜を形成した。形成した多層膜の断面構造を図12に
示す。基板71にはSi(100)単結晶基板を用いた。
バッファ層72には厚さ5nmのZrを用いた。磁性層
73及び75には厚さ5nmのNi−16at%Fe−
18at%Coを用いた。非磁性層74には厚さ2.5
nm のCuを用いた。反強磁性層76,77にはそれ
ぞれ厚さ10nmのMn−20at%Irおよび厚さ1
0nmのMn−40at%Ir合金を用いた。保護膜7
8には厚さ5nmのZrを用いた。
<Example 6> A multilayer film was formed in the same manner as in Example 1. The sectional structure of the formed multilayer film is shown in FIG. As the substrate 71, a Si (100) single crystal substrate was used.
For the buffer layer 72, Zr having a thickness of 5 nm was used. The magnetic layers 73 and 75 have a thickness of 5 nm of Ni-16 at% Fe-.
18 at% Co was used. The nonmagnetic layer 74 has a thickness of 2.5.
nm of Cu was used. Each of the antiferromagnetic layers 76 and 77 has a thickness of 10 nm of Mn-20 at% Ir and a thickness of 1, respectively.
A 0 nm Mn-40 at% Ir alloy was used. Protective film 7
For Zr, Zr having a thickness of 5 nm was used.

【0034】図13に多層膜の磁気抵抗効果曲線を示
す。図のように、約2.3% 程度の磁気抵抗変化率が得
られた。また、多層膜の構造をX線回折法により調べた
ところ、多層膜はNi−Fe−Co層、Cu層の面心立
方構造の強い(111)回折ピークがおよび、Mn−I
r層の面心立方構造の(111)回折ピークが観測され
た。
FIG. 13 shows a magnetoresistive effect curve of the multilayer film. As shown in the figure, a magnetoresistance change rate of about 2.3% was obtained. Further, when the structure of the multilayer film was examined by an X-ray diffraction method, the multilayer film had a strong (111) diffraction peak of the face-centered cubic structure of the Ni—Fe—Co layer and the Cu layer, and Mn-I.
A (111) diffraction peak of the face-centered cubic structure of the r layer was observed.

【0035】また、本実施例では、バッファ層72とし
てZrを用いたが、周期律表上のIVa族金属元素,Va
族金属元素、あるいはこれらを主成分とする合金からな
る非磁性金属であれば、実施例と同様の効果が得られ
る。
In this embodiment, Zr is used as the buffer layer 72. However, group IVa metal element, Va on the periodic table is used.
If the non-magnetic metal is made of a group metal element or an alloy containing these as the main components, the same effect as that of the embodiment can be obtained.

【0036】また、本実施例では、非磁性層としてCu
を用いたが、電気抵抗の低いAu,Agを用いても同様
な結果が得られる。しかし、磁性層として3d遷移金属
元素を用いる場合には、磁性層とのフェルミ面のマッチ
ングの観点から、非磁性層はCuであることが好まし
い。
In this embodiment, the nonmagnetic layer is made of Cu.
However, similar results can be obtained by using Au and Ag having low electric resistance. However, when the 3d transition metal element is used for the magnetic layer, the nonmagnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.

【0037】さらに、本実施例では、磁性層としてNi
−Fe−Co系合金を用いたが、他の面心立方構造を有
する磁性層を用いても、実施例と同様な結果が得られ
る。しかし、反強磁性層に接していない磁性層は、軟磁
気特性を示すことが重要であり、磁性層としては、Ni
−Fe系合金,Ni−Fe−Co系合金を用いることが
好ましい。また、磁性層と非磁性層との界面に、磁性層
の軟磁気特性を劣化させない程度の薄いCo層あるいは
Coを主成分とするCo合金層を用いることにより、更
に高い磁気抵抗変化率が得られる。
Further, in this embodiment, Ni is used as the magnetic layer.
Although the -Fe-Co alloy was used, the same results as in the example can be obtained by using another magnetic layer having a face-centered cubic structure. However, it is important that the magnetic layer that is not in contact with the antiferromagnetic layer exhibits soft magnetic characteristics.
It is preferable to use a -Fe-based alloy or a Ni-Fe-Co-based alloy. Further, by using a thin Co layer or a Co alloy layer containing Co as a main component at the interface between the magnetic layer and the non-magnetic layer, which does not deteriorate the soft magnetic characteristics of the magnetic layer, a higher magnetoresistance change rate can be obtained. To be

【0038】<実施例7>実施例6に述べた多層膜を用
い、磁気抵抗効果素子を形成した。構造を図9に示す。
磁気抵抗効果素子は、多層磁気抵抗効果膜41及び電極
42をシールド層43,44で挟んだ構造を有する。磁
気抵抗効果素子に磁界を印加し、電気抵抗率の変化を測
定したところ、本発明の多層磁気抵抗効果膜を用いた磁
気抵抗効果素子は、20Oe程度の印加磁界で約2.3
%の磁気抵抗変化率を示した。また、本発明の磁気抵抗
効果素子の再生出力は、Ni−Fe単層膜を用いた磁気
抵抗効果素子と比較して、2.6倍であった。
Example 7 A magnetoresistive effect element was formed by using the multilayer film described in Example 6. The structure is shown in FIG.
The magnetoresistive effect element has a structure in which the multilayer magnetoresistive effect film 41 and the electrode 42 are sandwiched by shield layers 43 and 44. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention was about 2.3 in an applied magnetic field of about 20 Oe.
The magnetic reluctance rate of% was shown. The reproduction output of the magnetoresistive effect element of the present invention was 2.6 times that of the magnetoresistive effect element using the Ni-Fe single layer film.

【0039】<実施例8>実施例7で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を図10に示す。記録再生分離型ヘッドの一部分を切
断した場合の斜視図である。多層磁気抵抗効果膜51を
シールド層52,53で挾んだ部分が再生ヘッドとして
働き、コイル54を挾む下部磁極55,上部磁極56の
部分が記録ヘッドとして働く。多層磁気抵抗効果膜51
は実施例6に記載の多層膜からなる。また、電極58に
は、Cr/Cu/Crという多層構造の材料を用いた。
ヘッドの作製方法については、実施例4で述べた方法と
同じである。
<Embodiment 8> A magnetic head was manufactured using the magnetoresistive effect element described in Embodiment 7. The structure of the magnetic head is shown in FIG. It is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive film 51 sandwiched by the shield layers 52 and 53 functions as a reproducing head, and the lower magnetic pole 55 and the upper magnetic pole 56 that sandwich the coil 54 function as a recording head. Multilayer magnetoresistive film 51
Consists of the multilayer film described in Example 6. Further, a material having a multilayer structure of Cr / Cu / Cr is used for the electrode 58.
The method of manufacturing the head is the same as the method described in the fourth embodiment.

【0040】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Feの単層膜を用いた磁気ヘッド
と比較して、2.6 倍高い再生出力を得た。これは、本
発明の磁気ヘッドに、高い磁気抵抗効果を示す多層膜を
用いたためであると考えられる。
When recording / reproducing was performed with the magnetic head having the above-described structure, a reproducing output 2.6 times higher than that of the magnetic head using the Ni--Fe single layer film was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect.

【0041】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
The magnetoresistive effect element of the present invention can also be used in a magnetic field detector other than the magnetic head.

【0042】<実施例9>実施例8で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。図11
に磁気ディスク装置の構造の概略図を示す。
<Embodiment 9> Using the magnetic head of the present invention described in Embodiment 8, a magnetic disk device was manufactured. FIG.
1 shows a schematic diagram of the structure of the magnetic disk drive.

【0043】磁気記録媒体61には、残留磁束密度0.
75T のCo−Ni−Pt−Ta系合金からなる材料
を用いた。磁気ヘッド63の記録ヘッドのトラック幅は
3μm,再生ヘッドのトラック幅は2μmとした。磁気
ヘッド63における磁気抵抗効果素子は、従来のパーマ
ロイ単層膜を用いた磁気抵抗効果素子の約2.6 倍の出
力を示すため、さらにトラック幅が狭く、記録密度の高
い磁気ディスク装置を作製することができる。本発明の
磁気ヘッドは、特に、1Gb/in2 以上の記録密度を有
する磁気記録再生装置に有効である。また、10Gb/
in2 以上の記録密度を有する磁気記録再生装置には、必
須であると考えられる。
The magnetic recording medium 61 has a residual magnetic flux density of 0.
A material made of 75T Co-Ni-Pt-Ta alloy was used. The track width of the recording head of the magnetic head 63 was 3 μm, and the track width of the reproducing head was 2 μm. Since the magnetoresistive effect element in the magnetic head 63 exhibits an output about 2.6 times that of the conventional magnetoresistive effect element using the permalloy single layer film, a magnetic disk device having a narrower track width and a higher recording density is manufactured. can do. The magnetic head of the present invention is particularly effective for a magnetic recording / reproducing device having a recording density of 1 Gb / in 2 or more. Also, 10 Gb /
It is considered essential for a magnetic recording / reproducing apparatus having a recording density of in 2 or more.

【0044】[0044]

【発明の効果】磁性層に反強磁性層が接した磁気抵抗効
果膜において、反強磁性層として、組成の異なる2層の
Mn−Ir系合金を用いることにより、耐熱性,耐食性
に優れ、磁性層と反強磁性層とが強く交換結合する磁気
抵抗効果膜を容易に作製できる。磁気抵抗効果膜を用い
た磁気抵抗効果素子は、バルクハウゼンノイズを示さな
い。また、二つの磁性層を非磁性層で分割し、一方の磁
性層と反強磁性層とが接しており、非磁性層で分割され
た磁性層の磁化の相対的な向きにより磁気抵抗効果が生
じる磁気抵抗効果膜にも、この方法を応用することがで
きる。磁気抵抗効果膜を用いた磁気抵抗効果素子は、低
磁界で高い磁気抵抗変化を有する。さらに、磁気抵抗効
果素子は、磁界センサ,磁気ヘッドなどに好適である。
磁気ヘッドを用いることにより、高性能磁気記録再生装
置を得ることができる。
In the magnetoresistive film in which the antiferromagnetic layer is in contact with the magnetic layer, by using two layers of Mn-Ir type alloys having different compositions as the antiferromagnetic layer, excellent heat resistance and corrosion resistance can be obtained. A magnetoresistive effect film in which the magnetic layer and the antiferromagnetic layer are strongly exchange-coupled can be easily produced. The magnetoresistive effect element using the magnetoresistive effect film does not show Barkhausen noise. Further, the two magnetic layers are divided by the non-magnetic layer, and one of the magnetic layers and the antiferromagnetic layer are in contact with each other, and the magnetoresistive effect is produced by the relative directions of the magnetizations of the magnetic layers divided by the non-magnetic layer. This method can also be applied to the resulting magnetoresistive film. A magnetoresistive effect element using a magnetoresistive effect film has a high magnetoresistive change in a low magnetic field. Furthermore, the magnetoresistive effect element is suitable for a magnetic field sensor, a magnetic head, and the like.
A high-performance magnetic recording / reproducing apparatus can be obtained by using the magnetic head.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁気抵抗効果膜の構造を示す断面図。FIG. 1 is a sectional view showing the structure of a conventional magnetoresistive film.

【図2】Mn−Ir合金組成に対する結合磁界の変化の
説明図。
FIG. 2 is an explanatory diagram of changes in the coupling magnetic field with respect to the composition of Mn-Ir alloy.

【図3】Mn−Ir合金組成に対するブロッキング温度
の変化の説明図。
FIG. 3 is an explanatory diagram of changes in blocking temperature with respect to Mn-Ir alloy composition.

【図4】Mn−Ir合金組成に対するNi−Fe(11
1)面間隔及びMn−Ir(111)面間隔の変化の説
明図。
FIG. 4 shows the composition of Ni—Fe (11) for Mn—Ir alloy composition.
1) An explanatory view of changes in the interplanar spacing and the Mn-Ir (111) interplanar spacing.

【図5】本発明の磁気抵抗効果膜の構造を示す断面図。FIG. 5 is a sectional view showing the structure of a magnetoresistive effect film of the present invention.

【図6】本発明の磁気抵抗効果膜における、Mn−40
at%Ir層厚に対する結合磁界の変化の説明図。
FIG. 6 shows Mn-40 in the magnetoresistive film of the present invention.
Explanatory drawing of the change of a coupling magnetic field with respect to at% Ir layer thickness.

【図7】本発明の磁気抵抗効果膜における、Mn−40
at%Ir層厚に対するブロッキング温度の変化の説明
図。
FIG. 7 shows Mn-40 in the magnetoresistive film of the present invention.
Explanatory drawing of the change of blocking temperature with respect to at% Ir layer thickness.

【図8】本発明の磁気抵抗効果素子の膜の断面図。FIG. 8 is a sectional view of a film of the magnetoresistive effect element of the present invention.

【図9】本発明の磁気抵抗効果素子の斜視図。FIG. 9 is a perspective view of a magnetoresistive effect element of the present invention.

【図10】本発明の磁気ヘッドの斜視図。FIG. 10 is a perspective view of a magnetic head of the present invention.

【図11】本発明の磁気ディスク装置の断面図。FIG. 11 is a sectional view of the magnetic disk device of the present invention.

【図12】本発明の多層磁気抵抗効果膜の断面図。FIG. 12 is a sectional view of a multilayer magnetoresistive film of the present invention.

【図13】本発明の多層磁気抵抗効果膜の磁気抵抗効果
の説明図。
FIG. 13 is an explanatory diagram of a magnetoresistive effect of the multilayer magnetoresistive film of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…バッファ層、13…磁性層、14…
反強磁性層、15…保護層。
11 ... substrate, 12 ... buffer layer, 13 ... magnetic layer, 14 ...
Antiferromagnetic layer, 15 ... Protective layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/10 H01L 43/10 C4-11─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 43/10 H01L 43/10 C4-11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】磁性層に反強磁性層が接した磁気抵抗効果
膜であり、上記磁性層の磁化の向きと膜に流れる電流方
向との相対的な向きにより磁気抵抗効果が生じる磁気抵
抗効果膜において、上記反強磁性層が組成の異なる複数
層の多層構造を有することを特徴とする磁気抵抗効果
膜。
1. A magnetoresistive effect film in which an antiferromagnetic layer is in contact with a magnetic layer, and a magnetoresistive effect is produced by a relative direction of a magnetization direction of the magnetic layer and a current direction flowing in the film. A magnetoresistive film, wherein the antiferromagnetic layer has a multi-layer structure of a plurality of layers having different compositions.
【請求項2】2層以上の磁性層を非磁性層で分割し、少
なくとも1層の磁性層が反強磁性層に接しており、少な
くとも1層の磁性層が反強磁性層に接していない多層膜
を用いた磁気抵抗効果膜であり、非磁性層で分割された
磁性層の磁化の相対的な向きにより、磁気抵抗効果が生
じる磁気抵抗効果膜において、上記反強磁性層が組成の
異なる2層以上の多層構造を有することを特徴とする磁
気抵抗効果膜。
2. Two or more magnetic layers are divided by nonmagnetic layers, at least one magnetic layer is in contact with the antiferromagnetic layer, and at least one magnetic layer is not in contact with the antiferromagnetic layer. A magnetoresistive effect film using a multi-layered film, wherein the antiferromagnetic layer has a different composition in the magnetoresistive effect film in which a magnetoresistive effect occurs depending on the relative directions of magnetization of the magnetic layers divided by the nonmagnetic layer. A magnetoresistive effect film having a multilayer structure of two or more layers.
【請求項3】請求項1または請求項2において、上記反
強磁性層が、組成の異なるMn−Ir合金の多層構造か
らなる磁気抵抗効果膜。
3. The magnetoresistive film according to claim 1, wherein the antiferromagnetic layer has a multilayer structure of Mn—Ir alloys having different compositions.
【請求項4】請求項3において、上記反強磁性層が、M
n−Ir合金に、V,Cr,Fe,Co,Ni,Cu,
Pt,Pd,Ru,Rhから選ばれる少なくとも1種類
の元素が添加された合金の多層構造からなる磁気抵抗効
果膜。
4. The antiferromagnetic layer according to claim 3, wherein M is M.
For n-Ir alloy, V, Cr, Fe, Co, Ni, Cu,
A magnetoresistive effect film having a multilayer structure of an alloy to which at least one element selected from Pt, Pd, Ru, and Rh is added.
【請求項5】請求項1,2,3または4において、基板
と上記磁気抵抗効果膜との間に、周期律表上におけるIV
a金属元素,Va金属元素、あるいはこれらを主成分と
する合金からなる非磁性層を形成した磁気抵抗効果膜。
5. The IV on the periodic table between the substrate and the magnetoresistive film according to claim 1, 2, 3 or 4.
A magnetoresistive effect film in which a nonmagnetic layer made of a metal element, a Va metal element, or an alloy containing these as main components is formed.
【請求項6】請求項1,2,3,4または5に記載の上
記磁気抵抗効果膜が面心立方構造を有し、(111)配
向している磁気抵抗効果膜。
6. A magnetoresistive effect film according to claim 1, 2, 3, 4 or 5, which has a face-centered cubic structure and is (111) oriented.
【請求項7】請求項1,2,3,4,5または6におい
て、上記磁性層の少なくとも一部がNi−Fe系合金あ
るいはNi−Fe−Co系合金である磁気抵抗効果膜。
7. The magnetoresistive film according to claim 1, 2, 3, 4, 5 or 6, wherein at least a part of the magnetic layer is a Ni—Fe based alloy or a Ni—Fe—Co based alloy.
【請求項8】請求項1,2,3,4,5,6または7に
記載の上記磁気抵抗効果膜を用いた磁気抵抗効果素子。
8. A magnetoresistive effect element using the magnetoresistive effect film according to claim 1, 2, 3, 4, 5, 6 or 7.
【請求項9】請求項8に記載の上記磁気抵抗効果素子を
少なくとも一部に用いた磁気ヘッド。
9. A magnetic head using at least a part of the magnetoresistive element according to claim 8.
【請求項10】請求項8に記載の上記磁気抵抗効果素子
と誘導型磁気ヘッドとを組み合わせた複合型磁気ヘッ
ド。
10. A composite magnetic head in which the magnetoresistive effect element according to claim 8 and an inductive magnetic head are combined.
【請求項11】請求項9または請求項10に記載の上記
磁気ヘッドを用いた磁気記録再生装置。
11. A magnetic recording / reproducing apparatus using the magnetic head according to claim 9.
JP7221430A 1995-08-30 1995-08-30 Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer Pending JPH0969211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7221430A JPH0969211A (en) 1995-08-30 1995-08-30 Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7221430A JPH0969211A (en) 1995-08-30 1995-08-30 Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer

Publications (1)

Publication Number Publication Date
JPH0969211A true JPH0969211A (en) 1997-03-11

Family

ID=16766626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7221430A Pending JPH0969211A (en) 1995-08-30 1995-08-30 Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer

Country Status (1)

Country Link
JP (1) JPH0969211A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010781A (en) * 1997-09-18 2000-01-04 Fujitsu Limited Magnetoresistance effect element, magnetoresistance effect type head and magnetic recording/reproducing apparatus
EP1096478A2 (en) * 1999-10-28 2001-05-02 International Business Machines Corporation Trilayer seed layer structure for spin valve sensor
US6648985B2 (en) 2000-04-12 2003-11-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling
US6678128B2 (en) 2000-04-12 2004-01-13 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6790541B2 (en) 2000-04-12 2004-09-14 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US7119998B2 (en) 2000-07-11 2006-10-10 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7270854B2 (en) 2003-11-19 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a head having improved spin valve properties
KR100773544B1 (en) * 2006-02-09 2007-11-05 삼성전자주식회사 Magnetoresistance device comprising diffusion barrier layer
US7300645B2 (en) 1998-04-24 2007-11-27 Sunstar Kabushiki Kaisha Oral composition comprising isomalt and remineralizing enhancing agent
CN100369121C (en) * 2005-03-28 2008-02-13 中国科学院物理研究所 Magnetic recording medium based on FePt magnetic layer and producing method thereof
US7606007B2 (en) 2006-02-17 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Shield stabilization for magnetoresistive sensors
US7612970B2 (en) 2005-02-23 2009-11-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with a free layer stabilized by direct coupling to in stack antiferromagnetic layer
US7697244B2 (en) 2006-06-12 2010-04-13 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with stabilized ferromagnetic shield

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010781A (en) * 1997-09-18 2000-01-04 Fujitsu Limited Magnetoresistance effect element, magnetoresistance effect type head and magnetic recording/reproducing apparatus
US7300645B2 (en) 1998-04-24 2007-11-27 Sunstar Kabushiki Kaisha Oral composition comprising isomalt and remineralizing enhancing agent
EP1096478A2 (en) * 1999-10-28 2001-05-02 International Business Machines Corporation Trilayer seed layer structure for spin valve sensor
EP1096478A3 (en) * 1999-10-28 2006-05-17 Hitachi Global Storage Technologies Netherlands B.V. Trilayer seed layer structure for spin valve sensor
US6648985B2 (en) 2000-04-12 2003-11-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling
US6678128B2 (en) 2000-04-12 2004-01-13 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6790541B2 (en) 2000-04-12 2004-09-14 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6879472B2 (en) 2000-04-12 2005-04-12 Alps Electric Co., Ltd. Exchange coupling film and electoresistive sensor using the same
US7005014B2 (en) 2000-04-12 2006-02-28 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
US7077936B2 (en) 2000-04-12 2006-07-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
US7142399B2 (en) * 2000-07-11 2006-11-28 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7218487B2 (en) 2000-07-11 2007-05-15 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7119998B2 (en) 2000-07-11 2006-10-10 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7270854B2 (en) 2003-11-19 2007-09-18 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a head having improved spin valve properties
US7362547B2 (en) 2003-11-19 2008-04-22 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having PtMn layer formed by ion beam deposition
US7612970B2 (en) 2005-02-23 2009-11-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with a free layer stabilized by direct coupling to in stack antiferromagnetic layer
CN100369121C (en) * 2005-03-28 2008-02-13 中国科学院物理研究所 Magnetic recording medium based on FePt magnetic layer and producing method thereof
KR100773544B1 (en) * 2006-02-09 2007-11-05 삼성전자주식회사 Magnetoresistance device comprising diffusion barrier layer
US7606007B2 (en) 2006-02-17 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Shield stabilization for magnetoresistive sensors
US7697244B2 (en) 2006-06-12 2010-04-13 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with stabilized ferromagnetic shield

Similar Documents

Publication Publication Date Title
JP2612988B2 (en) Multilayer magnetic structure and magnetoresistive sensor
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
KR100238912B1 (en) Magnetoresistive head
KR100690492B1 (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
JPH04247607A (en) Magnetoresistance effect element
JP2004335071A (en) Cpp giant magnetoresistive head
JPH0969211A (en) Magnetoresistance effect film, magnetic head and magnetic recorder/reproducer
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JPH0950612A (en) Magnetoresistive effect film, magnetoresistive effect element, magnetic head and magnetic recording and reproducing device
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH076329A (en) Magneto-resistance effect element and magnetic head using the same and magnetic recording and reproducing device
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JPH0774022A (en) Multilayer magnetoresistance-effect film and magnetic head
JP2656449B2 (en) Magnetoresistive head
JPH05175572A (en) Magnetoresistance effect element, and magnetic head and recording/reproducing device using same
JPH09161243A (en) Multilayered magnetoresistive film and magnetic head
JPH04339309A (en) Magneto-resistance effect element using multilayred magneto-resistance effect film
JPH05258248A (en) Multilayer magnetoresistance effect film, magnetic head, and magnetic recording and reproducing device
JPH07254118A (en) Magneto resistance effect head and magnetic recording and reproducing device
JPH0766036A (en) Multilayer magnetoresistance effect film, and magnetoresistance effect element and magnetic head using same
JPH08241506A (en) Multilayered magnetoresistance effect film and magnetic head
JPH0661048A (en) Multilayer magnetoresistance effect film and magnetic head
JPH06260337A (en) Multilayer magnetoresistance effect film and magnetic head