JPH0968731A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPH0968731A
JPH0968731A JP22406995A JP22406995A JPH0968731A JP H0968731 A JPH0968731 A JP H0968731A JP 22406995 A JP22406995 A JP 22406995A JP 22406995 A JP22406995 A JP 22406995A JP H0968731 A JPH0968731 A JP H0968731A
Authority
JP
Japan
Prior art keywords
single crystal
ktp
optical element
ferroelectric material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22406995A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
誠 渡邊
Tatsuo Fukui
達雄 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22406995A priority Critical patent/JPH0968731A/en
Publication of JPH0968731A publication Critical patent/JPH0968731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an optical element having excellent mass productivity at a low cost by injecting a current to a single crystal ferroelectric material unipolarization treatment and then producing an optical element. SOLUTION: As for the single crystal ferroelectric material, for example, a single crystal of potassium titanate phosphate (KTP) is used, to which an electric current is injected to form a unipolar (single domain) structure. The KTP subjected to unipolar treatment is used to produce a nonlinear optical element or an electro-optical modulator. The both end faces on the C-axis of the KTP single crystal are segmented perpendicular to the C-axis to prepare a KTP single crystal 11 to be subjected to unipolarization treatment. The obtd. single crystal is disposed between platinum electrode plates 12, 13 and a KTP powder 14, 15. An electric current with const. current density is applied on the KTP single crystal 11 for unipolarization treatment. The current density injected is controlled to such a degree that the KTP single crystal is sufficicnthy unipolarized but does not cause change in property, and in the range from 2A/m<2> to 25A/m<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非線形光学特性や
電気光学効果を応用した光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical element that applies nonlinear optical characteristics and electro-optical effects.

【0002】[0002]

【従来の技術】近年、例えば第二高調波発生器のような
光学素子においては、光記録技術等の発展に伴い、集光
径をより小さく絞り込むことが可能な短波長レーザ光を
発生させるために、例えばチタン酸燐酸カリウム(KT
iPO4、以下KTPという。)単結晶のような強誘電
体材料単結晶からなる非線形光学効果を応用した波長変
換素子の開発が進められている。また、例えば電気光学
変調器のような光学素子においては、大容量ディジタル
データの記録再生を行うために、KTP単結晶のような
強誘電体材料単結晶からなる電気光学効果を応用した高
速な応答特性を有する光強度変調器等の開発が進められ
ている。
2. Description of the Related Art In recent years, in an optical element such as a second harmonic generator, in order to generate a short-wavelength laser light whose focused diameter can be narrowed down with the development of optical recording technology and the like. For example, potassium titanate phosphate (KT
iPO 4 , hereinafter referred to as KTP. ) Development of a wavelength conversion element that uses a nonlinear optical effect made of a ferroelectric material single crystal such as a single crystal is under way. Further, for example, in an optical element such as an electro-optical modulator, a high-speed response is obtained by applying an electro-optical effect made of a ferroelectric material single crystal such as KTP single crystal in order to record and reproduce large-capacity digital data. Development of a light intensity modulator having characteristics has been promoted.

【0003】波長変換素子や電気光学変調器に用いられ
ている例えば上記KTP単結晶は、約936℃にキュリ
ー温度を持つ強誘電体材料であるために、キュリー温度
以上で結晶を成長させた場合には、室温への冷却過程で
不均一な方向に自発分極が発生する。その結果、自発分
極の方向が異なる領域が混在する、いわゆるマルチドメ
インの状態となる。このようなKTP単結晶を用いた光
学素子では、分極によって生じた非線形光学特性や電気
光学特性が分極方向の違いによって相殺されるために、
光学素子として期待される特性を歩留り良く得ることは
困難である。
For example, the KTP single crystal used in the wavelength conversion element and the electro-optical modulator is a ferroelectric material having a Curie temperature of about 936 ° C., and therefore, when the crystal is grown at the Curie temperature or higher. , Spontaneous polarization occurs in a non-uniform direction during the cooling process to room temperature. As a result, there is a so-called multi-domain state in which regions having different directions of spontaneous polarization are mixed. In such an optical element using a KTP single crystal, nonlinear optical characteristics and electro-optical characteristics caused by polarization are canceled by the difference in polarization direction.
It is difficult to obtain the characteristics expected as an optical element with high yield.

【0004】このため、従来の非線形光学素子や電気光
学素子等では、融剤に対するKTP濃度を調整して結晶
析出開始温度をキュリー温度以下として成長させること
で自発分極を同一結晶軸方向に揃えた、いわゆる単分極
(シングルドメイン)のKTP単結晶を使用していた。
Therefore, in the conventional nonlinear optical element, electro-optical element, etc., the spontaneous polarization is aligned in the same crystal axis direction by adjusting the KTP concentration with respect to the flux to grow the crystal precipitation starting temperature below the Curie temperature. A so-called single polarization (single domain) KTP single crystal was used.

【0005】[0005]

【発明が解決しようとする課題】ところで、例えば第二
高調波光発生器や電気光学変調器等の光学素子において
は、光記録等へ応用し光記録装置に搭載する為に、量産
性を向上させて低いコストで光学素子を製造することが
望まれている。
By the way, in the case of an optical element such as a second harmonic light generator or an electro-optic modulator, the mass productivity is improved because it is applied to optical recording and mounted in an optical recording apparatus. It is desired to manufacture optical elements at low cost.

【0006】しかし、上述したようにキュリー温度以下
で例えばKTP単結晶を成長させるためには、結晶成長
原料中のKTP単結晶濃度を比較的小さく設定しなけれ
ばならない。例えば、K6413を融剤とする場合に
は、KTP成分を約62.5モルパーセント以下とする
必要がある。このような条件化では結晶成長の速度は比
較的遅く、結晶製造の費用を増大させ、光学素子の価格
を引き上げる要因となっていた。原料中KTPの濃度を
増大させることで、結晶析出速度を向上させ、KTP単
結晶の生産性を向上させることも可能であるが、その場
合には前述したようなマルチドメインとなってしまうた
めに、光学素子を歩留り良く作成することができなかっ
た。
However, as described above, in order to grow, for example, a KTP single crystal below the Curie temperature, the KTP single crystal concentration in the crystal growth raw material must be set to a relatively small value. For example, when K 6 P 4 O 13 is used as the fluxing agent, the KTP component should be about 62.5 mol% or less. Under such conditions, the rate of crystal growth is relatively slow, which increases the cost of crystal production and raises the cost of the optical element. By increasing the concentration of KTP in the raw material, it is possible to improve the crystal precipitation rate and improve the productivity of KTP single crystal, but in that case, the multi-domain as described above is caused. However, the optical element could not be manufactured with high yield.

【0007】また、キュリー温度以下で成長させたKT
P単結晶であっても、冷却時に熱的又は機械的要因で生
じた歪みによって結晶育成直後にマルチドメインになる
場合があり、光学素子の製造歩留りや性能を低下させる
要因となっていた。
KT grown at a Curie temperature or lower
Even a P single crystal may become a multi-domain immediately after crystal growth due to strain caused by thermal or mechanical factors during cooling, which is a factor that reduces the manufacturing yield and performance of optical elements.

【0008】本発明は、上記実情に鑑みてなされてもの
であり、特にキュリー温度以上の温度範囲で成長した強
誘電材料の単結晶を用いることにより、低価格で量産性
が優れた光学素子を製造できる光学素子の製造方法の提
供を目的とする。
The present invention has been made in view of the above circumstances, and in particular, by using a single crystal of a ferroelectric material grown in a temperature range of the Curie temperature or higher, an optical element excellent in mass productivity at low cost can be obtained. An object of the present invention is to provide a method for manufacturing an optical element that can be manufactured.

【0009】[0009]

【課題を解決するための手段】本発明に係る光学素子の
製造方法は、上記課題を解決するために、単結晶の強誘
電体材料に電流注入によって単分極化処理を施して非線
形光学特性や電気光学効果を応用した光学素子を製造す
る。
In order to solve the above-mentioned problems, a method for manufacturing an optical element according to the present invention is applied to a non-linear optical characteristic by subjecting a single crystal ferroelectric material to a single polarization treatment by current injection. Manufactures optical elements that apply the electro-optic effect.

【0010】この場合、上記単結晶の強誘電材料のC面
に上記板状の金属電極を配し、上記単結晶の強誘電体材
料と上記金属電極との間に粉末状の強有電材料を配す
る。
In this case, the plate-shaped metal electrode is arranged on the C surface of the single crystal ferroelectric material, and the powdery ferroelectric material is provided between the single crystal ferroelectric material and the metal electrode. Distribute.

【0011】また、上記電極間への電流注入は、上記単
結晶の強誘電体材料のキュリー温度を通過する温度範囲
にわたっての冷却過程で行う。
The current injection between the electrodes is performed in a cooling process over a temperature range that passes the Curie temperature of the single crystal ferroelectric material.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る光学素子の製
造方法の実施の形態について図面を参照しながら説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for manufacturing an optical element according to the present invention will be described below with reference to the drawings.

【0013】この実施の形態では、単結晶の強誘電体材
料として例えばチタン酸燐酸カリウム(KTiPO4
以下KTPという。)単結晶を用い、このKTP単結晶
に電流注入によって単分極化(シングルドメイン)構造
を形成し、この単分極化したKTPを使って非線形光学
素子や電気光学変調器を製造している。
In this embodiment, a single crystal ferroelectric material such as potassium titanate phosphate (KTiPO 4 ,
Hereinafter referred to as KTP. ) A single crystal is used, a single polarization (single domain) structure is formed in this KTP single crystal by current injection, and a nonlinear optical element or an electro-optic modulator is manufactured using this single polarization KTP.

【0014】先ず、KTPを製造するにあたり、KTP
の成分原料として、燐酸二水素カリウムKH2PO4、燐
酸水素二カリウムK2HPO4、二酸化チタンTiO2
粉末を用いて、K2O、TiO2、P25の比率が各々4
3.92、22.97、33.11モルパーセントとな
るように調整したものを用意する。
First, in manufacturing KTP, KTP
Powders of potassium dihydrogen phosphate KH 2 PO 4 , dipotassium hydrogen phosphate K 2 HPO 4 , and titanium dioxide TiO 2 are used as the raw materials for the components, and the ratio of K 2 O, TiO 2 , and P 2 O 5 is 4 each.
Prepare those adjusted to be 3.92, 22.97, 33.11 mole percent.

【0015】これを白金製のルツボに入れて1100℃
以上の温度に保ち、8時間以上混合することで反応させ
る。このようにして作成された原料を約1000℃の温
度から毎時約0.1℃で約200時間冷却し、その間原
料液面にKTPの種結晶をC軸方向で接触させながら、
KTPの単結晶を溶融している原料液中で成長させた。
なお、種結晶は、KTP成分が連続的に析出する様に、
毎分約60回転の速度で回転させた。成長した結晶は、
液中から取り出した後に毎時約50℃で室温まで冷却し
た。
Put this in a platinum crucible and put it at 1100 ° C.
The reaction is carried out by maintaining the above temperature and mixing for 8 hours or more. The raw material thus prepared is cooled from a temperature of about 1000 ° C. to about 0.1 ° C./hour for about 200 hours, while KTP seed crystals are brought into contact with the liquid surface of the raw material in the C-axis direction,
A single crystal of KTP was grown in a molten raw material liquid.
In addition, the seed crystal was prepared so that the KTP component was continuously precipitated.
It was rotated at a speed of about 60 revolutions per minute. The grown crystal is
After being taken out from the liquid, it was cooled to room temperature at about 50 ° C. per hour.

【0016】このようにして作成したKTP単結晶のC
軸側の両端面を、C軸に対して略垂直に切り出し、図1
の様に、単分極化処理を行うKTP単結晶11とし、白
金電極板12、13及びKTP粉末14、15に挟まれ
るように配置する。KTP粉末14、15は白金電極1
2、13とKTP単結晶11が、直接接触して反応する
のを防止する目的で配置する。この状態で約950℃の
温度から毎時約30℃の速度で約880℃まで冷却を行
う間、定電流電源16で約6アンペア毎平方メートルの
一定電流密度でKTP単結晶11に通電し単分極化す
る。注入する電流密度は、KTP単結晶が充分に単分極
化され、かつ変質しない程度の範囲であり、2アンペア
毎平方メートルから25アンペア毎平方メートルの電流
密度であればよい。
C of the KTP single crystal thus prepared
Cut both end surfaces of the shaft side substantially perpendicular to the C-axis, and
As described above, the KTP single crystal 11 is subjected to the monopolarization treatment, and is arranged so as to be sandwiched between the platinum electrode plates 12, 13 and the KTP powders 14, 15. KTP powder 14 and 15 are platinum electrodes 1
2, 13 and KTP single crystal 11 are arranged for the purpose of preventing them from directly contacting and reacting with each other. In this state, while cooling from a temperature of about 950 ° C. to about 880 ° C. at a rate of about 30 ° C./hour, the constant current power supply 16 energizes the KTP single crystal 11 at a constant current density of about 6 amps per square meter to monopolarize it. To do. The current density to be injected is within a range in which the KTP single crystal is sufficiently monopolarized and does not deteriorate, and the current density may be 2 ampere per square meter to 25 ampere per square meter.

【0017】この実施の形態では、KTP単結晶とし
て、育成された結晶ブール状態からの単分極化処理につ
いて示したが、ブロック状に加工されたKTP単結晶に
ついても同様に処理を行うことができる。
In this embodiment, a single polarization process from a grown crystal boule state was shown as a KTP single crystal, but a KTP single crystal processed into a block shape can be similarly processed. .

【0018】図2に本実施の形態によって製造された、
内部レーザ共振型光波長変換素子の構成図を示す。第一
のレーザ光である励起用半導体レーザ21によって発生
した励起レーザ光は、集光レンズ22で集光され、略平
行な反射鏡23、24で構成される共振器内のレーザ媒
質25に吸収される。これにより上記共振器内で基本波
レーザの定在波が発生し、非線形光学媒質26から第二
高調波が発生する。
FIG. 2 shows the structure manufactured by this embodiment.
The block diagram of an internal laser resonance type optical wavelength conversion element is shown. The excitation laser light generated by the excitation semiconductor laser 21, which is the first laser light, is condensed by the condenser lens 22 and absorbed by the laser medium 25 in the resonator constituted by the reflecting mirrors 23 and 24 that are substantially parallel to each other. To be done. As a result, the standing wave of the fundamental laser is generated in the resonator, and the second harmonic is generated from the nonlinear optical medium 26.

【0019】この内部レーザ共振型光波長変換素子で
は、励起用半導体レーザ21には出力約200mW、波
長約810nmのものを使用し、またレーザ媒質25に
は約1原子パーセントのネオジウムNdが添加された、
厚み約3mmのイットリウムアルミニウムガーネット
(Nd:YAG)を使用して波長約1064nmの基本
波レーザ光を発生させた。非線形光学媒質26には、前
述した様な手順で単分極化を施したKTP単結晶を使用
し、第二高調波発生によって、基本波レーザ光を波長約
532nmに変換させた。なお、KTP単結晶はタイプ
2と呼ばれる第二高調波位相整合面で切り出され、厚み
を約1.5mmに調整してある。また、各々の部品には
必要に応じて、表面に無反射処理が施されている。
In this internal laser resonance type optical wavelength conversion element, the pumping semiconductor laser 21 having an output of about 200 mW and a wavelength of about 810 nm is used, and the laser medium 25 is doped with about 1 atomic percent of neodymium Nd. Was
A fundamental wave laser beam having a wavelength of about 1064 nm was generated using yttrium aluminum garnet (Nd: YAG) having a thickness of about 3 mm. As the nonlinear optical medium 26, a KTP single crystal monopolarized by the above-described procedure was used, and the fundamental laser light was converted to a wavelength of about 532 nm by the generation of the second harmonic. The KTP single crystal was cut out at a second harmonic phase matching surface called type 2 and its thickness was adjusted to about 1.5 mm. In addition, the surface of each component is subjected to antireflection treatment, if necessary.

【0020】この様な構成の内部レーザ共振型光波長変
換素子を20個作成したところ、いずれも3mW以上の
最終出力が得られた。これは従来のキュリー温度以下で
成長させたKTP単結晶を使用した場合と同様の結果で
ある。また、比較の為キュリー温度以上で成長させたK
TP単結晶に単分極化を施さないで、同様の光波長変換
素子を作成したところ、最終出力が1mWに満たない、
出力不良品が約40%発生した。
When 20 internal laser resonance type optical wavelength conversion elements having such a structure were prepared, a final output of 3 mW or more was obtained in each case. This is the same result as in the case of using a conventional KTP single crystal grown at a Curie temperature or lower. Also, for comparison, K grown above the Curie temperature
When a similar optical wavelength conversion element was prepared without subjecting the TP single crystal to monopolarization, the final output was less than 1 mW.
About 40% of defective products occurred.

【0021】次に、図3に本実施の形態によって製造さ
れた、光強度変調器の模式図を示す。この光強度変調器
は、二つの単分極化されたKTP単結晶30、40を用
いて成る。単分極化KTP単結晶30の光入射面31及
び光出射面32と、単分極化KTP単結晶40の光入射
面41及び光出射面42は単結晶のb面であり、寸法は
1mm角で、各々光学鏡面研磨と無反射コーディングが
施してある。また、上記KTP単結晶30、40の長手
方向の長さは約6mmである。
Next, FIG. 3 shows a schematic view of a light intensity modulator manufactured according to this embodiment. This light intensity modulator is composed of two monopolarized KTP single crystals 30 and 40. The light incident surface 31 and the light emitting surface 32 of the monopolarized KTP single crystal 30 and the light incident surface 41 and the light emitting surface 42 of the single polarized KTP single crystal 40 are b-planes of the single crystal, and the dimensions are 1 mm square. , Each have optical mirror polishing and anti-reflection coating. The length of the KTP single crystals 30 and 40 in the longitudinal direction is about 6 mm.

【0022】上記KTP単結晶30のc面33及び34
と、KTP単結晶40のc面43及び44の各面には、
真空蒸着で形成した金属電極が配されている。なお、図
3には、金属電極33、34、43及び44として示し
ている。
C-planes 33 and 34 of the KTP single crystal 30
And on each of the c-planes 43 and 44 of the KTP single crystal 40,
A metal electrode formed by vacuum vapor deposition is arranged. In FIG. 3, the metal electrodes 33, 34, 43 and 44 are shown.

【0023】変調された光の出射面42の後には検光子
50及び受光素子51が置かれ、変調された光を電気信
号に変換する。
An analyzer 50 and a light receiving element 51 are placed after the modulated light emitting surface 42 to convert the modulated light into an electric signal.

【0024】このような構成で10個の光強度変調器を
作成し、各々金属電極33、34、43及び44の間に
振幅約200Vで1MHzの交流電圧を注入し、波長5
32nmで直線偏光のレーザ光を入射させて、出射光の
強度変化の大きさ、いわゆる消光比の大きさを測定した
ところ、何れも90%以上の消光比が得られた。これは
従来のキュリー温度以下で成長させたKTP単結晶を使
用した場合と同様の結果である。また、比較の為キュリ
ー温度以上で成長させたKTP単結晶に単分極化を施さ
ないで、同様の光変調器を作成したところ、消光比が8
0%に満たない、消光不良品が約80%発生した。
Ten light intensity modulators having such a structure were prepared, and an alternating voltage of 1 MHz with an amplitude of about 200 V was injected between the metal electrodes 33, 34, 43 and 44, respectively, and a wavelength of 5 was obtained.
When a linearly polarized laser beam having a wavelength of 32 nm was made to enter and the magnitude of change in intensity of emitted light, that is, the magnitude of so-called extinction ratio was measured, an extinction ratio of 90% or more was obtained in each case. This is the same result as in the case of using a conventional KTP single crystal grown at a Curie temperature or lower. For comparison, a KTP single crystal grown at a Curie temperature or higher was not polarized, but a similar optical modulator was prepared. The extinction ratio was 8
About 80% of defective extinction products, which were less than 0%, were generated.

【0025】[0025]

【発明の効果】本発明に係る光学素子の製造方法によれ
ば、キュリー温度を通過する温度範囲にわたって電流注
入によって単分極化処理が施された単結晶の強誘電体材
料を用いるので低価格で量産性が優れた非線形光学素子
及び電気光学変調素子のような光学素子を製造できる。
According to the method of manufacturing an optical element of the present invention, a single crystal ferroelectric material that has been monopolarized by current injection over a temperature range passing through the Curie temperature is used, so that the cost is low. It is possible to manufacture an optical element such as a nonlinear optical element and an electro-optical modulation element which are excellent in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光学素子の製造方法の実施の形態
を説明するための模式図である。
FIG. 1 is a schematic diagram for explaining an embodiment of a method for manufacturing an optical element according to the present invention.

【図2】上記実施の形態により製造された内部レーザ共
振型光波長変換素子の概略構成を示す模式図である。
FIG. 2 is a schematic view showing a schematic configuration of an internal laser resonance type optical wavelength conversion element manufactured according to the above embodiment.

【図3】上記実施の形態により製造された光強度変調器
の概略構成を示す模式図である。
FIG. 3 is a schematic diagram showing a schematic configuration of a light intensity modulator manufactured according to the above embodiment.

【符号の説明】[Explanation of symbols]

11 チタン酸燐酸カリウム(KTiPO4、KTP)
単結晶 12、13 白金電極板 14、15 KTP粉末 16 定電流電源
11 Potassium titanate phosphate (KTiPO 4 , KTP)
Single crystal 12,13 Platinum electrode plate 14,15 KTP powder 16 Constant current power supply

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学特性や電気光学効果を応用し
た光学素子の製造方法において、 単結晶の強誘電体材料に電流注入によって単分極化処理
を施し、上記光学素子を製造することを特徴とする光学
素子の製造方法。
1. A method of manufacturing an optical element applying nonlinear optical characteristics or an electro-optical effect, wherein a single-polarized ferroelectric material is subjected to a single polarization treatment by current injection to manufacture the optical element. Optical element manufacturing method.
【請求項2】 上記単結晶の強誘電体材料のC面に板状
の金属電極を配することを特徴とする請求項1記載の光
学素子の製造方法。
2. The method of manufacturing an optical element according to claim 1, wherein a plate-shaped metal electrode is provided on the C surface of the single crystal ferroelectric material.
【請求項3】 上記単結晶の強誘電体材料と上記金属電
極との間に粉末状の強誘電体材料を配することを特徴と
する請求項1記載の光学素子の製造方法。
3. The method for manufacturing an optical element according to claim 1, wherein a powdery ferroelectric material is provided between the single crystal ferroelectric material and the metal electrode.
【請求項4】 上記単結晶の強誘電体材料のキュリー温
度を通過する温度範囲にわたって冷却を行いながら、上
記電極間に電流を注入して単分極化処理を施すことを特
徴とする請求項1記載の光学素子の製造方法。
4. A single polarization treatment is performed by injecting a current between the electrodes while cooling the single crystal ferroelectric material over a temperature range that passes the Curie temperature. A method for manufacturing the optical element according to claim 1.
【請求項5】 上記電流の密度を2〜25アンペア毎平
方メートルとすることを特徴とする請求項1記載の光学
素子の製造方法。
5. The method of manufacturing an optical element according to claim 1, wherein the current density is 2 to 25 amperes per square meter.
【請求項6】 上記単結晶の強誘電体材料は、チタン酸
燐酸カリウムKTiOPO4単結晶であることを特徴と
する請求項1記載の光学素子の製造方法。
6. The method of manufacturing an optical element according to claim 1, wherein the single crystal ferroelectric material is potassium titanate potassium phosphate KTiOPO 4 single crystal.
JP22406995A 1995-08-31 1995-08-31 Production of optical element Pending JPH0968731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22406995A JPH0968731A (en) 1995-08-31 1995-08-31 Production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22406995A JPH0968731A (en) 1995-08-31 1995-08-31 Production of optical element

Publications (1)

Publication Number Publication Date
JPH0968731A true JPH0968731A (en) 1997-03-11

Family

ID=16808085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22406995A Pending JPH0968731A (en) 1995-08-31 1995-08-31 Production of optical element

Country Status (1)

Country Link
JP (1) JPH0968731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550010A (en) * 1992-03-16 1996-08-27 Eastman Kodak Company Method for processing photographic products comprising a fine-grain top layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550010A (en) * 1992-03-16 1996-08-27 Eastman Kodak Company Method for processing photographic products comprising a fine-grain top layer

Similar Documents

Publication Publication Date Title
Roth et al. Oxide crystals for electro-optic Q-switching of lasers
Bierlein et al. Linear and nonlinear optical properties of flux‐grown KTiOAsO4
US4826283A (en) LiB3 O5 crystal and its nonlinear optical devices
AU733846B2 (en) Method and arrangement for poling of optical crystals
US3792287A (en) Non-linear optical crystal and devices
JP2000095600A (en) Manufacture of single crystal or polycrystal-containing amorphous material and this amorphous material
Adachi et al. High-quality organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystals for THz wave generation
Umemura et al. 90° phase-matching properties of YCa4O (BO3) 3 and GdxY1-xCa4O (BO3) 3
EP0378061B1 (en) Apparatus and method for producing blue-green light radiation
JP4553081B2 (en) Lithium niobate single crystal, optical element thereof, and manufacturing method thereof
US6747787B2 (en) Optically functional device, single crystal substrate for the device and method for its use
Bierlein Potassium titanyl phosphate (KTP): Properties, recent advances and new applications
JPH0968731A (en) Production of optical element
JP3050333B2 (en) Method for manufacturing second harmonic generation element
US6195197B1 (en) Lithium niobate single-crystal and photo-functional device
Lu et al. Growth of optical superlattice LiNbO3 with different modulating periods and its applications in second‐harmonic generation
JP2002072266A (en) Optical functionai, element using ferroelectric polarization inversion of lithium tantalate
Kubota et al. Recent progress in the quality of KTiOPO4 and Beta-BaB2O4 crystals used for the miniature integrated green SHG laser and 1.5 W of cw 266-nm generation
JP3213907B2 (en) Lithium niobate single crystal and optical functional device
Lu et al. Efficient continuous wave blue light generation in optical superlattice LiNbO3 by direct frequency doubling a 978 nm InGaAs diode laser
CN109659806B (en) Temperature-insensitive frequency doubling crystal device and application thereof
EP0382304A1 (en) Arrangement for and method of doubling the frequency of a light wave
JPH0792578B2 (en) Method of manufacturing wavelength conversion element and wavelength conversion element
RU2811419C2 (en) Nonlinear optical element with quasicontinuous circuit and method of its manufacture
JP3412901B2 (en) Laser oscillator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824