JPH0964904A - Optical output control system in pds transmission system - Google Patents

Optical output control system in pds transmission system

Info

Publication number
JPH0964904A
JPH0964904A JP7242502A JP24250295A JPH0964904A JP H0964904 A JPH0964904 A JP H0964904A JP 7242502 A JP7242502 A JP 7242502A JP 24250295 A JP24250295 A JP 24250295A JP H0964904 A JPH0964904 A JP H0964904A
Authority
JP
Japan
Prior art keywords
output
optical
circuit
intra
phase control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7242502A
Other languages
Japanese (ja)
Other versions
JP2921448B2 (en
Inventor
Yasuo Sato
靖夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7242502A priority Critical patent/JP2921448B2/en
Publication of JPH0964904A publication Critical patent/JPH0964904A/en
Application granted granted Critical
Publication of JP2921448B2 publication Critical patent/JP2921448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To relieve the load on maintenance by using phase control information used to prevent collision of signals from subscriber's equipments to an intra- station equipment for also optical output control of the subscriber's equipments. SOLUTION: A phase control information generating circuit 13 receives an output (distance information of a transmission line) of a distance measurement circuit 12 to generate phase control information used to control the output phase for each subscriber's equipment 3 so that signals outputted from each subscriber's equipment 3 to an intra-station equipment 1 are not collided with each other in the case of synthesis at an optical multiplexer 2. A phase control information extract circuit 33 extracts and provides an output of the phase control information extract circuit 33. An optical output control circuit 35 receives an output of the phase control information extract circuit 33 and provides an output a signal to control an optical output according to the extracted phase control information to a 2nd E-O conversion circuit 36. The optical output is controlled to be higher in power when the distance between the intra-station equipment 1 and the subscriber's equipment 1 is large and controlled to be lower when the distance is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明はPDS(パッシブダ
ブルスター)伝送方式に関し、特に局内装置と複数の加
入者装置との間の伝送距離が異なる場合に、局内装置の
光受信部分での光入力を均一化するために、加入者装置
の光出力を制御する方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PDS (passive double star) transmission system, and in particular, when a transmission distance between an intra-station device and a plurality of subscriber devices is different, an optical input at an optical receiving portion of the intra-station device. The present invention relates to a method of controlling an optical output of a subscriber device in order to equalize the above.

【0002】[0002]

【従来の技術】各装置間の信号を衝突させることなく伝
送させるように制御する従来の方法として、予め各加入
者装置に対して送信バースト信号の帯域を割り当ててお
き、加入者装置において情報の送信を必要とする時以外
の時点においては、局内装置からの制御により加入者装
置からの送信を停止し、他の加入者装置の利用時間を増
大させる多方向多重通信方式(TDMA:Time Divisio
n Multiple Access)がある(多方向多重通信方式につ
いては例えば特開昭61−24338号公報参照)。
2. Description of the Related Art As a conventional method for controlling transmission of signals between respective devices without collision, a band of a transmission burst signal is assigned to each of the subscriber devices in advance, and the information of each subscriber device is transmitted. At a time other than when transmission is required, a multidirectional communication system (TDMA: Time Divisio) that stops transmission from a subscriber device under the control of an in-station device and increases the usage time of another subscriber device.
n Multiple Access) (see, for example, Japanese Patent Laid-Open No. 61-24338 for a multi-directional multiple communication system).

【0003】従来のTDMA方式光伝送システムにおい
ては、局内装置と複数の加入者装置との間で双方向通信
を行う場合、各加入者装置と局内装置との間の距離は一
定ではない。
In the conventional TDMA optical transmission system, when two-way communication is performed between an in-station device and a plurality of subscriber devices, the distance between each subscriber device and the in-station device is not constant.

【0004】このように各加入者装置と局内装置との間
の各伝送路の距離が様々である場合にも、各加入者装置
の光出力は一定の出力で発光しているため、例えば、各
加入者装置(端末装置)よりスターカプラを介して局内
装置(親装置)が信号を受信する場合、受信データの振
幅が定まらず光受信回路が複雑になるという問題を有す
る。この問題を解消するため、例えば特開平5−276
144号公報には、局内装置の光受信部分への光入力を
可能な限り均一にすることを目的として、伝送路の距離
差を考慮し局内装置と加入者装置との間の各伝送路に配
置された光可変減衰器の減衰量を各距離差に従って自動
的に設定制御し、局内装置の光受信部に入力される光信
号を均一化させるようにしたTDMA方式光伝送システ
ムが提案されている。
Even when the distance of each transmission line between each subscriber device and the intra-station device varies as described above, the optical output of each subscriber device emits light at a constant output. When the intra-station device (parent device) receives a signal from each subscriber device (terminal device) via the star coupler, the amplitude of the received data is not fixed and the optical receiving circuit becomes complicated. In order to solve this problem, for example, Japanese Patent Laid-Open No. 5-276
In Japanese Patent Publication No. 144, for the purpose of making the optical input to the optical receiving portion of the intra-station device as uniform as possible, the transmission line between the intra-station device and the subscriber device is considered in consideration of the distance difference between the transmission lines. A TDMA optical transmission system has been proposed in which the attenuation amount of an arranged optical variable attenuator is automatically set and controlled according to each distance difference, and an optical signal input to an optical receiving unit of an in-station device is made uniform. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記特
開平5−276144号公報に記載された従来のTDM
A方式光伝送システムでは、本来、加入者線伝送路の数
を削減し経済的な光加入者システムを構築することを目
的とするPDS伝送方式において、伝送路の途中に光可
変減衰器を配置することが必要とされ、このためシステ
ム構築費用が高騰するという問題を有する。
However, the conventional TDM described in the above-mentioned Japanese Patent Laid-Open No. 5-276144.
In the A system optical transmission system, an optical variable attenuator is arranged in the middle of the transmission line in the PDS transmission system which is originally intended to reduce the number of subscriber line transmission lines and construct an economical optical subscriber system. Therefore, there is a problem that the system construction cost rises.

【0006】また、従来光ファイバ等の伝送路しか敷設
されていなかった区間に、保守対象となり得る光可変減
衰器を新たに配置するため、保守者の負担が増加すると
いう問題を有する。
Further, since a variable optical attenuator, which can be a maintenance target, is newly arranged in a section where only a transmission line such as an optical fiber has been conventionally laid, there is a problem that a burden on a maintenance person increases.

【0007】従って、本発明は、上記従来技術の問題点
を解消し、PDS伝送方式に好適に適用可能とされ、局
内装置の光受信部分での光入力レベル変動を抑えること
を可能とする光出力制御方式を提供することを目的とす
る。
Therefore, the present invention solves the above-mentioned problems of the prior art, can be suitably applied to the PDS transmission system, and can suppress the fluctuation of the optical input level in the optical receiving portion of the intra-station device. The purpose is to provide an output control method.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、局内装置に接続される伝送路から光分岐
を介して複数本の伝送路に分岐し各伝送路の終端に接続
された複数の加入者装置と前記局内装置との双方向通信
を行う伝送方式において、前記加入者装置から前記局内
装置へ出力される光信号が、前記光分岐で合成される時
に衝突することを互いに防ぐための位相制御情報に基づ
き、前記局内装置と前記加入者装置との間の伝送路の距
離に応じた光出力に設定されて出力されることを特徴と
する光出力制御方式を提供する。
In order to achieve the above-mentioned object, the present invention is to branch from a transmission line connected to an in-station device into a plurality of transmission lines via an optical branch and to connect to the end of each transmission line. In a transmission method for performing bidirectional communication between a plurality of subscriber devices and the intra-station device, the optical signals output from the subscriber device to the intra-station device may collide with each other when they are combined in the optical branch. There is provided an optical output control method characterized in that an optical output is set and output according to a distance of a transmission path between the intra-station device and the subscriber device based on phase control information for preventing.

【0009】本発明は、好ましくは、局内装置と複数の
加入者装置が、伝送路に配置されたスターカプラを介し
て双方向通信を行う構成とされるパッシブダブルスター
(PDS)伝送方式において、前記加入者装置をn台
(nは自然数)接続することが可能な局内装置が、伝送
路と接続している第1の波長多重分離器と、前記第1の
波長多重分離器の出力を入力とする第1の光−電気変換
回路(「O−E変換回路」という)と、前記第1のO−
E変換回路の出力を入力とする距離測定回路と、前記距
離測定回路の出力を入力とする位相制御情報生成回路
と、局内装置主信号と前記位相制御情報生成回路の出力
を入力とする挿入回路と、前記挿入回路の出力を入力と
し、その出力が前記第1の波長多重分離器に接続される
第1の電気−光変換回路(「E−O変換回路」という)
と、を備え、前記局内装置と伝送路で接続される光分岐
と、前記光分岐と伝送路で接続される加入者装置が、伝
送路と接続している第2の波長多重分離器と、前記第2
の波長多重分離器の出力を入力とする第2のO−E変換
回路と、前記第2のO−E変換回路の出力を入力とする
位相制御情報抽出回路と、前記位相制御情報抽出回路の
出力と加入者装置主信号を入力とする出力位相制御回路
と、前記位相制御情報抽出回路の出力を入力とする光出
力制御回路と、前記出力位相制御回路の出力と前記光出
力制御回路の出力とを入力とし、その出力が前記第2の
波長多重分離器に接続される第2のE−O変換回路と、
を備えることを特徴とするPDS伝送方式における光出
力制御方式を提供する。
The present invention is preferably a passive double star (PDS) transmission system in which an intra-station device and a plurality of subscriber devices perform bidirectional communication via a star coupler arranged in a transmission line, An intra-station device capable of connecting n subscriber devices (n is a natural number) inputs a first wavelength demultiplexer connected to a transmission line and an output of the first wavelength demultiplexer. And a first opto-electric conversion circuit (referred to as “OE conversion circuit”),
A distance measuring circuit having an output of the E conversion circuit as an input, a phase control information generating circuit having an output of the distance measuring circuit as an input, and an insertion circuit having an internal device main signal and an output of the phase control information generating circuit as an input And a first electro-optical conversion circuit (referred to as an "EO conversion circuit") having the output of the insertion circuit as an input and having its output connected to the first wavelength demultiplexer.
And an optical branch connected to the intra-station device via a transmission path, and a second wavelength demultiplexer in which the subscriber device connected to the optical branch via the transmission path is connected to the transmission path, The second
Of the second O-E conversion circuit having the output of the wavelength demultiplexer as an input, the phase control information extraction circuit having the output of the second O-E conversion circuit as an input, and the phase control information extraction circuit An output phase control circuit having an output and a subscriber unit main signal as an input, an optical output control circuit having an output of the phase control information extraction circuit as an input, an output of the output phase control circuit and an output of the optical output control circuit A second EO conversion circuit whose input is and whose output is connected to the second wavelength demultiplexer;
An optical output control method in a PDS transmission method is provided.

【0010】本発明によれば、位相制御情報に基づき加
入者装置から出力される光信号の光出力を制御するよう
にしたことにより、局内装置の光受信部分の光入力レベ
ルの均一化を達成している。特に、本発明は、前記従来
例と相違して、伝送路に光可変減衰器を新たに敷設する
ことを不要とし、保守負担の軽減、及びコストの低減を
達成しながら、局内装置における受信光入力のレベル変
動による光受信特性の劣化を抑止するものである。
According to the present invention, the optical output of the optical signal output from the subscriber unit is controlled based on the phase control information, so that the optical input level of the optical receiving portion of the intra-station device is made uniform. are doing. In particular, the present invention, unlike the above-mentioned conventional example, eliminates the need for newly laying an optical variable attenuator on the transmission path, reduces the maintenance load, and reduces the cost, while at the same time receiving optical signals at the station device. This is to prevent deterioration of optical reception characteristics due to input level fluctuations.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に説明する。図1は本発明の一実施形態の構成
を示すブロック図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention.

【0012】図1を参照して、本実施形態に係る伝送方
式における光出力制御方式は、局内装置1と複数の加入
者装置3が、伝送路に配置されたスターカプラ(光分
岐)2を介して双方向通信を行うパッシブダブルスター
(PDS)伝送方式に従うものである。なお、パッシブ
ダブルスター(PDS)伝送方式においては、受動型
(パッシブ)の光分岐2を用いて、スター状に複数の加
入者装置3に分岐すると共に、局内においても複数の局
内装置1が光分岐2からスター状に分岐接続されてなる
(すなわちダブルスター方式)。
Referring to FIG. 1, in the optical output control system in the transmission system according to the present embodiment, an intra-station device 1 and a plurality of subscriber devices 3 have a star coupler (optical branch) 2 arranged in a transmission line. It is based on a passive double star (PDS) transmission method in which two-way communication is performed via the same. In addition, in the passive double star (PDS) transmission system, a passive optical branch 2 is used to branch into a plurality of subscriber units 3 in a star shape, and a plurality of intra-station devices 1 are also used in a station. It is branched and connected in a star shape from the branch 2 (that is, a double star system).

【0013】加入者装置3をn個(nは自然数)接続す
ることが可能な局内装置1は、伝送路と接続している第
1の波長多重分離器10と、第1の波長多重分離器10
の出力を入力とする第1の光−電気変換回路(「O−E
変換回路」という)11と、第1のO−E変換回路11
の出力を入力とする距離測定回路12と、距離測定回路
12の出力を入力とする位相制御情報生成回路13と、
局内装置主信号100と位相制御情報生成回路13の出
力とを入力とする挿入回路14と、挿入回路14の出力
を入力とし、出力が第1の波長多重分離器10に接続さ
れる第1の電気−光変換回路(「E−O変換回路」とい
う)15と、を備えている。
The intra-station device 1 capable of connecting n (n is a natural number) subscriber devices 3 is a first wavelength demultiplexer 10 and a first wavelength demultiplexer 10 connected to a transmission line. 10
First optical-electrical conversion circuit (“O-E
"Conversion circuit") 11 and the first OE conversion circuit 11
A distance measurement circuit 12 that receives the output of the distance measurement circuit 12 as an input, a phase control information generation circuit 13 that receives the output of the distance measurement circuit 12 as an input,
The inserting circuit 14 that receives the intra-station device main signal 100 and the output of the phase control information generating circuit 13, and the first input that receives the output of the inserting circuit 14 and whose output is connected to the first wavelength demultiplexer 10. The electro-optical conversion circuit (hereinafter referred to as “EO conversion circuit”) 15 is provided.

【0014】局内装置1と伝送路を介して接続された光
分岐2から各伝送路を介して接続される加入者装置3
は、伝送路と接続している第2の波長多重分離器31
と、第2の波長多重分離器31の出力を入力とする第2
のO−E変換回路32と、第2のO−E変換回路32の
出力を入力とする位相制御情報抽出回路33と、位相制
御情報抽出回路33の出力と加入者装置主信号300を
入力とする出力位相制御回路34と、位相制御情報抽出
回路33の出力を入力とする光出力制御回路35と、出
力位相制御回路34の出力と光出力制御回路35の出力
とを入力とし、出力が第2の波長多重分離器31に接続
される第2のE−O変換回路36と、を備えている。
A subscriber unit 3 connected via each transmission line from an optical branch 2 connected to the intra-station device 1 via a transmission line.
Is the second wavelength demultiplexer 31 connected to the transmission line.
And a second wavelength demultiplexer 31 that receives the output of the second
O-E conversion circuit 32, a phase control information extraction circuit 33 that receives the output of the second O-E conversion circuit 32, an output of the phase control information extraction circuit 33, and a subscriber unit main signal 300. Output phase control circuit 34, an optical output control circuit 35 that receives the output of the phase control information extraction circuit 33 as an input, an output of the output phase control circuit 34 and an output of the optical output control circuit 35 as inputs, and the output is And a second E-O conversion circuit 36 connected to the second wavelength demultiplexer 31.

【0015】次に、本実施形態の動作を説明する。Next, the operation of this embodiment will be described.

【0016】局内装置1と加入者装置3との間の距離
は、通常の場合、一定ではないため、局内装置1は、加
入者装置3との伝送路の距離を認識するために伝送遅延
を測定する。
Since the distance between the intra-station device 1 and the subscriber device 3 is not constant in a normal case, the intra-station device 1 recognizes the transmission path distance from the subscriber device 3 and therefore a transmission delay is caused. taking measurement.

【0017】伝送遅延の測定において、局内装置1から
の距離測定要求に対する加入者装置3からの応答が光分
岐2を介して第1の波長多重分離器10に入力される。
第1のO−E変換回路11は、第1の波長多重分離器1
0の出力を入力し、入力した光信号を電気信号に変換し
て出力する。
In measuring the transmission delay, the response from the subscriber unit 3 to the distance measurement request from the intra-station device 1 is input to the first wavelength demultiplexer 10 via the optical branch 2.
The first O-E conversion circuit 11 includes the first wavelength demultiplexer 1
The output of 0 is input, and the input optical signal is converted into an electrical signal and output.

【0018】第1のO−E変換回路11の出力を入力す
る距離測定回路12では、距離測定要求に対する加入者
装置3からの応答の伝送遅延を認識することによって、
局内装置1と加入者装置3との間の伝送路の距離を知る
ことができる。
The distance measuring circuit 12, which receives the output of the first OE conversion circuit 11, recognizes the transmission delay of the response from the subscriber unit 3 to the distance measuring request.
It is possible to know the distance of the transmission path between the intra-station device 1 and the subscriber device 3.

【0019】そして、位相制御情報生成回路13は、距
離測定回路12の出力(伝送路の距離情報)を入力し、
各加入者装置3から局内装置1に対して出力された信号
が光分岐2で合成される際に互いに衝突しないように、
加入者装置3毎に出力位相を制御するための位相制御情
報を生成する。
Then, the phase control information generating circuit 13 inputs the output (distance information of the transmission path) of the distance measuring circuit 12,
In order that the signals output from each subscriber device 3 to the intra-station device 1 do not collide with each other when they are combined in the optical branch 2,
Phase control information for controlling the output phase is generated for each subscriber device 3.

【0020】挿入回路14は、位相制御情報生成回路1
3の出力(位相制御情報)と局内装置主信号100とを
入力し、主信号に位相制御情報を挿入して出力する。
The inserting circuit 14 is the phase control information generating circuit 1
The output of 3 (phase control information) and the intra-station device main signal 100 are input, and the phase control information is inserted into the main signal and output.

【0021】第1のE−O変換回路15は、挿入回路1
4の出力信号(電気信号)を入力し、入力した電気信号
を光信号に変換して出力する。
The first EO conversion circuit 15 includes the insertion circuit 1
The output signal (electrical signal) 4 is input, and the input electrical signal is converted into an optical signal and output.

【0022】第1の波長多重分離器10は、第1のE−
O変換回路15の出力を入力して波長多重を行い伝送路
に対して出力する。
The first wavelength demultiplexer 10 has a first E-
The output of the O conversion circuit 15 is input, wavelength division multiplexing is performed, and the result is output to the transmission line.

【0023】局内装置1と伝送路を介して接続されてい
る光分岐2は、局内装置1から出力された光信号を分岐
し加入者装置3側の伝送路に対して出力する。
The optical branch 2 connected to the intra-station device 1 via the transmission path branches the optical signal output from the intra-station apparatus 1 and outputs it to the transmission path on the side of the subscriber device 3.

【0024】加入者装置3では、第2の波長多重分離器
31が伝送路からの信号を入力し、波長分離して第2の
O−E変換回路32に対して出力する。
In the subscriber unit 3, the second wavelength demultiplexer 31 inputs the signal from the transmission line, demultiplexes the wavelength, and outputs it to the second OE conversion circuit 32.

【0025】位相制御情報抽出回路33は、第2のO−
E変換回路32の出力を入力し、局内装置1から送信さ
れてきた位相制御情報を抽出して出力する。
The phase control information extraction circuit 33 uses the second O-
The output of the E conversion circuit 32 is input, and the phase control information transmitted from the intra-station device 1 is extracted and output.

【0026】出力位相制御回路34は、位相制御情報抽
出回路33の出力と加入者装置主信号300とを入力
し、局内装置1に対して出力する信号の位相を、抽出し
た位相制御情報に従いその遅延を調整して出力する。そ
の際、局内装置1に対して出力する信号の位相(出力位
相)は、局内装置1と加入者装置3の距離が遠い場合に
は遅延を小さく設定し、近い場合は遅延を大きく設定す
る。
The output phase control circuit 34 receives the output of the phase control information extraction circuit 33 and the subscriber unit main signal 300 and outputs the phase of the signal output to the intra-station device 1 according to the extracted phase control information. Adjust the delay and output. At this time, the phase (output phase) of the signal output to the in-station device 1 is set to a small delay when the distance between the in-station device 1 and the subscriber device 3 is long, and set to a large delay when the distance is short.

【0027】また、光出力制御回路35は、位相制御情
報抽出回路33の出力を入力し、抽出された位相制御情
報に従って光出力を制御する信号を第2のE−O変換回
路36に対して出力する。光出力の制御は、局内装置1
と加入者装置3の距離が遠い場合は光出力(パワー)が
大きくなるように設定し、近い場合は光出力(パワー)
が小さくなるように設定する。局内装置1と加入者装置
3との間の伝送路の距離と光出力との関係は、例えば図
2に示すような関係に設定される。
Further, the optical output control circuit 35 inputs the output of the phase control information extraction circuit 33 and outputs a signal for controlling the optical output according to the extracted phase control information to the second EO conversion circuit 36. Output. The optical output is controlled by the intra-station device 1
When the distance between the subscriber unit 3 and the subscriber unit 3 is long, the optical output (power) is set to be large, and when the distance is short, the optical output (power) is set.
Is set to be small. The relationship between the transmission line distance between the intra-station device 1 and the subscriber device 3 and the optical output is set to the relationship shown in FIG. 2, for example.

【0028】第2のE−O変換回路36は、出力位相制
御回路34の出力と、光出力制御回路35の出力とを入
力し、出力位相制御回路34から出力された電気信号を
光信号に変換するが、その際、光出力を光出力制御回路
35からの出力信号で制御する。
The second EO conversion circuit 36 inputs the output of the output phase control circuit 34 and the output of the optical output control circuit 35, and converts the electric signal output from the output phase control circuit 34 into an optical signal. At the time of conversion, the optical output is controlled by the output signal from the optical output control circuit 35.

【0029】第2の波長多重分離器31は、第2のE−
O変換回路36の出力を入力し、波長多重を行い、伝送
路に対して出力する。
The second wavelength demultiplexer 31 has a second E-
The output of the O conversion circuit 36 is input, wavelength division multiplexing is performed, and the result is output to the transmission path.

【0030】[0030]

【発明の効果】以上説明したように、本発明は、加入者
装置から局内装置へ出力する信号の衝突を防ぐための位
相制御情報を、加入者装置の光出力制御にも用いるよう
にしたことにより、局内装置の光受信部分における光入
力レベルを前記従来例よりも均一化することを可能とす
るという効果を有する。このため、本発明によれば、前
記従来例のように、伝送路に光可変減衰器を新たに敷設
することを不要とし、保守負担を軽減を達成し、局内装
置における受信光入力のレベル変動による光受信特性の
劣化を軽減させることができるという効果を有する。
As described above, according to the present invention, the phase control information for preventing the collision of the signal output from the subscriber unit to the intra-station unit is also used for the optical output control of the subscriber unit. As a result, there is an effect that it is possible to make the optical input level in the optical receiving portion of the intra-station device more uniform than in the conventional example. Therefore, according to the present invention, it is not necessary to newly install an optical variable attenuator in the transmission line as in the conventional example, the maintenance load is reduced, and the level fluctuation of the received optical input in the in-station device is achieved. This has the effect of reducing the deterioration of the optical reception characteristics due to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】伝送距離と光出力制御の関係を示す図である。FIG. 2 is a diagram showing a relationship between transmission distance and optical output control.

【符号の説明】[Explanation of symbols]

1 局内装置 2 光分岐 3 加入者装置 10 第1の波長多重分離器 11 第1のO−E変換回路 12 距離測定回路 13 位相制御情報生成回路 14 挿入回路 15 第1のE−O変換回路 31 第2の波長多重分離器 32 第2のO−E変換回路 33 位相制御情報抽出回路 34 出力位相制御回路 35 光出力制御回路 36 第2のE−O変換回路 100 局内装置主信号 300 加入者装置主信号 DESCRIPTION OF SYMBOLS 1 Intra-station apparatus 2 Optical branching 3 Subscriber apparatus 10 1st wavelength demultiplexer 11 1st OE conversion circuit 12 Distance measurement circuit 13 Phase control information generation circuit 14 Insertion circuit 15 1st EO conversion circuit 31 Second wavelength demultiplexer 32 Second OE conversion circuit 33 Phase control information extraction circuit 34 Output phase control circuit 35 Optical output control circuit 36 Second EO conversion circuit 100 In-station device main signal 300 Subscriber device Main signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】局内装置に接続される伝送路から光分岐を
介して複数本の伝送路に分岐し各伝送路の終端に接続さ
れた複数の加入者装置と前記局内装置との双方向通信を
行う伝送方式において、 前記加入者装置から前記局内装置へ出力される光信号
が、前記光分岐で合成される時に衝突することを互いに
防ぐための位相制御情報に基づき、前記局内装置と前記
加入者装置との間の伝送路の距離に応じた光出力に設定
されて出力されることを特徴とする光出力制御方式。
1. A two-way communication between a plurality of subscriber devices branching from a transmission line connected to an intra-station device to a plurality of transmission lines via an optical branch and connected to the end of each transmission line, and the intra-station device. In the transmission method for performing the above-mentioned, the optical signal output from the subscriber unit to the intra-station device is based on the phase control information for preventing the optical signals from colliding with each other when they are combined in the optical branch, based on the phase control information. The optical output control method is characterized in that the optical output is set and output according to the distance of the transmission path to the user device.
【請求項2】前記加入者装置から前記局内装置へ出力さ
れる出力信号が、前記局内装置と前記加入者装置との間
の伝送路の距離に応じて位相遅延されるように制御され
ることを特徴とする請求項1記載の光出力制御方式。
2. An output signal output from the subscriber unit to the intra-station device is controlled so as to be phase-delayed according to a distance of a transmission path between the intra-station unit and the subscriber unit. The optical output control system according to claim 1, wherein:
【請求項3】前記加入者装置が、前記局内装置から伝送
された、前記局内装置と前記加入者装置との間の伝送路
の距離に対応する位相制御情報を抽出する手段と、前記
抽出した位相制御情報から前記局内装置と前記加入者装
置との間の伝送路の距離に応じて前記出力信号の位相及
び前記光出力を制御する手段と、を備えたことを特徴と
する請求項1又は2記載の光出力制御方式。
3. The means for the subscriber unit to extract the phase control information transmitted from the intra-station device and corresponding to the distance of the transmission path between the intra-station device and the subscriber unit, and the extracted means. 2. A means for controlling the phase of the output signal and the optical output according to the distance of the transmission line between the intra-station device and the subscriber device from the phase control information. 2. The light output control method described in 2.
【請求項4】局内装置と複数の加入者装置が、伝送路に
配置されたスターカプラを介して双方向通信を行う構成
とされるパッシブダブルスター(PDS)伝送方式にお
いて、 前記加入者装置をn台(nは自然数)接続することが可
能な局内装置が、 伝送路と接続している第1の波長多重分離器と、 前記第1の波長多重分離器の出力を入力とする第1の光
−電気変換回路(「O−E変換回路」という)と、 前記第1のO−E変換回路の出力を入力とする距離測定
回路と、 前記距離測定回路の出力を入力とする位相制御情報生成
回路と、 局内装置主信号と前記位相制御情報生成回路の出力を入
力とする挿入回路と、 前記挿入回路の出力を入力とし、その出力が前記第1の
波長多重分離器に接続される第1の電気−光変換回路
(「E−O変換回路」という)と、 を備え、 前記局内装置と伝送路で接続される光分岐と、 前記光分岐と伝送路で接続される加入者装置が、 伝送路と接続している第2の波長多重分離器と、 前記第2の波長多重分離器の出力を入力とする第2のO
−E変換回路と、 前記第2のO−E変換回路の出力を入力とする位相制御
情報抽出回路と、 前記位相制御情報抽出回路の出力と加入者装置主信号を
入力とする出力位相制御回路と、 前記位相制御情報抽出回路の出力を入力とする光出力制
御回路と、 前記出力位相制御回路の出力と前記光出力制御回路の出
力とを入力とし、その出力が前記第2の波長多重分離器
に接続される第2のE−O変換回路と、 を備えることを特徴とするPDS伝送方式における光出
力制御方式。
4. A passive double star (PDS) transmission system configured to perform bidirectional communication between an intra-station device and a plurality of subscriber devices via a star coupler arranged in a transmission path, wherein the subscriber device is An intra-station device capable of connecting n units (n is a natural number) is a first wavelength demultiplexer connected to a transmission line, and a first wavelength demultiplexer having an output as an input. An optical-electrical conversion circuit (referred to as "O-E conversion circuit"), a distance measurement circuit having the output of the first O-E conversion circuit as an input, and phase control information having an output of the distance measurement circuit as an input. A generation circuit; an insertion circuit having the internal device main signal and the output of the phase control information generation circuit as inputs; and an output of the insertion circuit as an input, the output of which is connected to the first wavelength demultiplexer. 1 electro-optical conversion circuit ("EO conversion times And a second wavelength division multiplexing device in which the optical branch connected to the intra-station device via the transmission path and the subscriber apparatus connected to the optical branch via the transmission path are connected to the transmission path. A separator and a second O 2 having an output of the second wavelength demultiplexer as an input
-E conversion circuit, phase control information extraction circuit having the output of the second OE conversion circuit as an input, and output phase control circuit having the output of the phase control information extraction circuit and a subscriber unit main signal as an input An optical output control circuit having an output of the phase control information extraction circuit as an input, and an output of the output phase control circuit and an output of the optical output control circuit having an output thereof as the second wavelength demultiplexer. A second E-O conversion circuit connected to the device, and an optical output control method in the PDS transmission method.
JP7242502A 1995-08-28 1995-08-28 Optical output control method in PDS transmission method Expired - Fee Related JP2921448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242502A JP2921448B2 (en) 1995-08-28 1995-08-28 Optical output control method in PDS transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7242502A JP2921448B2 (en) 1995-08-28 1995-08-28 Optical output control method in PDS transmission method

Publications (2)

Publication Number Publication Date
JPH0964904A true JPH0964904A (en) 1997-03-07
JP2921448B2 JP2921448B2 (en) 1999-07-19

Family

ID=17090057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242502A Expired - Fee Related JP2921448B2 (en) 1995-08-28 1995-08-28 Optical output control method in PDS transmission method

Country Status (1)

Country Link
JP (1) JP2921448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409164B2 (en) 2004-04-30 2008-08-05 Samsung Electronics Co., Ltd. Optical transceiver for compensating for loss due to transmission distance in passive optical network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276144A (en) * 1991-11-15 1993-10-22 Nec Corp Tdma system light transmission system
JPH05336143A (en) * 1992-06-01 1993-12-17 Nippon Telegr & Teleph Corp <Ntt> Burst signal multiplexing phase control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276144A (en) * 1991-11-15 1993-10-22 Nec Corp Tdma system light transmission system
JPH05336143A (en) * 1992-06-01 1993-12-17 Nippon Telegr & Teleph Corp <Ntt> Burst signal multiplexing phase control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7409164B2 (en) 2004-04-30 2008-08-05 Samsung Electronics Co., Ltd. Optical transceiver for compensating for loss due to transmission distance in passive optical network

Also Published As

Publication number Publication date
JP2921448B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US5912998A (en) Optical network with repeater at a split-level of the network
US5896213A (en) Optical fiber network system
US7672585B2 (en) Optical switch system
EP0262409B1 (en) An optical bus type communication system
JP4440343B2 (en) Light net
US7376355B2 (en) Optical transmission apparatus and optical transmission system
JP2921448B2 (en) Optical output control method in PDS transmission method
JP2002198984A (en) System and method for data communication
US5113276A (en) Optical communication network using redundant waveguides and two way operation
JP2906823B2 (en) Optical subscriber transmission system and subscriber time division two-way communication system
JPH0974423A (en) Optical bus, optical data bus and optical bus component
CA2205611C (en) Optical network
AU704465C (en) Optical network
JP2661584B2 (en) Optical branching system
JP3379683B2 (en) Optical transmission equipment
CN112054870A (en) Passive optical network access system and method
JP2002198905A (en) Subscriber local loop communication system for optical fiber network
JPH0310261B2 (en)
JP3351137B2 (en) Point / multipoint transmission method
JPS59119933A (en) Node device connected to optical fiber cable
JP2002064469A (en) Optical network
JPS60264139A (en) Optical data transmission system
JPS59214344A (en) Optical data transmitter
JPS61198936A (en) Control signal transmission system for catv optical transmission system
MXPA97003742A (en) Opt network

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees