JPH0963574A - Manufacture of hydrogen storage alloy negative electrode for secondary battery - Google Patents

Manufacture of hydrogen storage alloy negative electrode for secondary battery

Info

Publication number
JPH0963574A
JPH0963574A JP7215060A JP21506095A JPH0963574A JP H0963574 A JPH0963574 A JP H0963574A JP 7215060 A JP7215060 A JP 7215060A JP 21506095 A JP21506095 A JP 21506095A JP H0963574 A JPH0963574 A JP H0963574A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
secondary battery
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7215060A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Takasumi Shimizu
孝純 清水
Kenji Kodama
健二 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7215060A priority Critical patent/JPH0963574A/en
Publication of JPH0963574A publication Critical patent/JPH0963574A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To make the manufacture of a wide electrode easy and reduce the dispersion of the amount of hydrogen storage alloy powder in the electrode by extruding the kneaded material of the hydrogen storage alloy powder with an extruding molding device, pressing the extruded material against a supporting body with a roller, then baking them in furnace. SOLUTION: A kneaded material 2 of hydrogen storage alloy powder and a binder is supplied to an extruding molding device 1, the kneaded material 2 is extruded from an extruding port 11 to form an extruded molding body 21 having the specified form such as a sheet-like mold body, then the extruded mold body 21 is supplied to a roller 3. In the roller 3, the extruded molding body 21 is integrally pressed against a supporting body separately supplied to form a press bonded body 22. The press bonded body 22 is introduced into a furnace 4 to heat and dry it. By this process, the specified hydrogen storage alloy negative electrode 23 for a secondary battery is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池用水素
吸蔵合金負極の製造方法に関するものである。さらに詳
しくは、この発明は、幅広電極の作製が容易で、品質、
性能が均一で、厚みの均一性も良好な、高放電容量を持
つ二次電池用水素吸蔵合金負極の新しい製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage alloy negative electrode for a secondary battery. More specifically, the present invention makes it easy to produce a wide electrode,
The present invention relates to a new method for producing a hydrogen storage alloy negative electrode for a secondary battery, which has a high discharge capacity and has uniform performance and good thickness uniformity.

【0002】[0002]

【従来の技術】近年、水素貯蔵合金を負極に用いた二次
電池が注目されており、この二次電池は、従来のニッケ
ル・カドミウム等の二次電池に比べて、比電荷容量、エ
ネルギー密度が大きく、高放電容量を備えた高性能な二
次電池を提供するものとして期待されている。
2. Description of the Related Art In recent years, a secondary battery using a hydrogen storage alloy as a negative electrode has been attracting attention. This secondary battery has a specific charge capacity and energy density higher than those of conventional nickel-cadmium secondary batteries. And is expected to provide a high-performance secondary battery with a large discharge capacity.

【0003】この水素吸蔵合金を負極とする二次電池に
ついては、負極に用いる材料の種類やその製造方法がそ
の特性、性能を大きく左右することが知られている。こ
れまでのところ、その材料の種類としては、例えば、ミ
ッシュメタル、ジルコニウム、チタン、バナジウム、ニ
ッケルなどの合金が検討されている。そしてまた、これ
らの合金は、一般的に延性が小さく比較的硬度が高いた
め、これらの種類の水素吸蔵合金を二次電池用の負極と
することは必ずしも容易でなく、負極製造のための方法
についての検討と工夫が様々な観点より試みられてきて
いる。
It is known that the characteristics and performance of the secondary battery having the hydrogen storage alloy as the negative electrode largely depend on the type of material used for the negative electrode and the manufacturing method thereof. So far, alloys such as misch metal, zirconium, titanium, vanadium and nickel have been studied as the types of the material. Also, since these alloys generally have low ductility and relatively high hardness, it is not always easy to use these types of hydrogen storage alloys as negative electrodes for secondary batteries, and a method for producing negative electrodes The examination and ingenuity have been tried from various viewpoints.

【0004】このような二次電池用負極の製造方法とし
て、粉末圧延法によって、水素吸蔵合金の粉末を、メッ
シュメタル、エキスパンドメタル等の支持体に圧延一体
化し、次いで焼結して二次電池用水素吸蔵合金負極を得
る方法が提案されてもいる(特開平1−286255号
公報)。この方法では、例えば、電磁フィーダより粉末
状の水素吸蔵合金を圧延ローラ部に供給し、別途供給さ
れた支持体に、この圧延ローラ部において水素吸蔵合金
の粉末を圧延しながら圧着し、次いで焼結炉内で焼結し
て、二次電池用水素吸蔵合金負極を製造している。
As a method for producing such a negative electrode for a secondary battery, a powder of a hydrogen storage alloy is rolled and integrated on a support such as mesh metal or expanded metal by a powder rolling method, and then sintered to obtain a secondary battery. A method for obtaining a hydrogen storage alloy negative electrode for use has also been proposed (Japanese Patent Laid-Open No. 1-286255). In this method, for example, a powdery hydrogen storage alloy is supplied from an electromagnetic feeder to the rolling roller portion, and the hydrogen storage alloy powder is pressure-bonded to the separately supplied support while rolling the rolling roller portion, and then baked. Sintering is performed in a binder to manufacture a hydrogen storage alloy negative electrode for a secondary battery.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この粉
末圧延法を用いる方法は、水素吸蔵合金負極の製造にと
って新しい可能性を拓くという意義が大きいものの、実
用上は、幅の広い電極の作製が非常に難しく、電極内の
水素吸蔵合金粉末量のばらつきが大きく、さらに、電極
厚みのばらつきが非常に大きいという大きな問題点があ
った。
However, although the method using the powder rolling method has great significance in opening new possibilities for the production of hydrogen storage alloy negative electrodes, practically, it is extremely difficult to produce a wide electrode. However, there is a large problem that the amount of hydrogen storage alloy powder in the electrode varies widely, and the thickness of the electrode also varies greatly.

【0006】そこでこの発明は、以上の通りの従来の技
術の問題を解消するためなされたものであり、広幅の電
極の作製が容易で、電極内の水素吸蔵合金粉末量のばら
つきが小さく、さらには電極厚みのばらつきが小さい、
高放電容量を有する二次電池用水素吸蔵合金負極の新し
い製造方法を提供することを目的としている。
Therefore, the present invention has been made to solve the problems of the conventional techniques as described above, and it is easy to manufacture a wide electrode, and the variation in the amount of hydrogen storage alloy powder in the electrode is small. Has a small variation in electrode thickness,
It is an object of the present invention to provide a new method for producing a hydrogen storage alloy negative electrode for a secondary battery having a high discharge capacity.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決するために、水素吸蔵合金粉末の混練物を押出し
成形装置より押出して圧延ローラ部に供給し、別途に供
給される支持体にこの圧延ローラ部において圧着し、次
いで焼結することを特徴とする二次電池用水素吸蔵合金
負極の製造方法(請求項1)を提供する。
In order to solve the above-mentioned problems, the present invention provides a support which is separately supplied by extruding a kneaded material of hydrogen storage alloy powder from an extrusion molding device and supplying it to a rolling roller part. Further, there is provided a method for producing a hydrogen storage alloy negative electrode for a secondary battery (claim 1), which comprises press-bonding at the rolling roller portion and then sintering.

【0008】そして、この発明は、上記方法において、
押出しおよび圧着を真空もしくは不活性ガスの雰囲気下
に行うこと(請求項2)や、焼結に先立って加熱乾燥処
理すること(請求項3)等をその態様としてもいる。
The present invention provides the above method,
The embodiments include performing extrusion and pressure bonding in a vacuum or in an atmosphere of an inert gas (claim 2), and performing heat drying treatment before sintering (claim 3).

【0009】[0009]

【発明の実施の形態】つまり、この発明の二次電池用水
素吸蔵合金負極の製造方法は、押し出し成形の手段を採
用し、圧着、焼結のプロセスと連続させたことに大きな
特徴がある。図面によって説明すると、たとえば図1に
例示することができるように、押出し成形装置(1)に
は、水素吸蔵合金粉末と結合剤およびこれとの混練物
(2)を供給し、この混練物(2)を、所定の押出し速
度で、押出口(11)よりシート状成形体等の所定の形
状の押出成形体(21)として押出して圧延ローラ部
(3)に供給する。
That is, the method of manufacturing a hydrogen storage alloy negative electrode for a secondary battery according to the present invention is characterized in that an extrusion molding method is adopted and the process of pressure bonding and sintering is continued. Explaining with reference to the drawings, as illustrated in FIG. 1, for example, an extrusion molding apparatus (1) is supplied with a hydrogen storage alloy powder, a binder and a kneaded material (2) thereof, and the kneaded material ( 2) is extruded from the extrusion port (11) at a predetermined extrusion speed as an extrusion molded body (21) having a predetermined shape such as a sheet-shaped molded body and supplied to the rolling roller section (3).

【0010】この圧延ローラ部(3)では、別途に供給
された支持体(4)に押出成形体(21)が圧着一体化
される。次いで、圧着体(22)は焼成炉(5)に導か
れ、ここで、加熱乾燥、焼結される。このプロセスによ
って所定の二次電池用水素吸蔵合金負極(23)が製造
されることになる。
In the rolling roller portion (3), the extrusion molded body (21) is pressure-bonded integrally with the support body (4) supplied separately. Next, the pressure-bonded body (22) is introduced into the firing furnace (5), where it is heated, dried, and sintered. By this process, a predetermined hydrogen storage alloy negative electrode (23) for a secondary battery is manufactured.

【0011】圧延ローラ部(3)における圧力は、材料
組成や厚み等により異なるが、およそ0.5〜3ton
/cm2 程度とすることができ、また、支持体にはニッ
ケルメッシュ、エキスパンドメタル、パンチングメタ
ル、発泡ニッケルなどの金属帯や無機物帯を用いること
ができる。水素吸蔵合金の組成については、AB2 型、
AB5 型等の各種のものが考慮される。そして、水素吸
蔵合金は、この発明では、前記の通り、粉末として結合
剤とともに混練されて押出し成形されることになる。
The pressure in the rolling roller section (3) varies depending on the material composition, thickness, etc., but is about 0.5 to 3 ton.
/ Cm 2 about and it is possible to, also, the support can be used nickel mesh, expanded metal, punching metal, a metal strip or inorganic band such as foamed nickel. Regarding the composition of the hydrogen storage alloy, AB 2 type,
Various types such as AB 5 type are considered. Then, in the present invention, the hydrogen storage alloy is kneaded as a powder together with the binder and extruded as described above.

【0012】粉末としては、その粒径は平均で10〜1
00μm、より好ましくは70μm以下とし、メチルセ
ルロース系、ポリオレフィン系、ポリエチレン系、アク
リル系、ポリビニルアルコール系等の結合剤と混練す
る。この場合、水素吸蔵合金粉末に対する結合剤の割合
は1〜20重量%程度とすることが好ましい。結合剤成
分は、焼結炉内で気化させることになる。そのために、
焼結炉内の温度は900℃程度とすることが望ましい。
焼結に先立って加熱乾燥する場合には、温度は400〜
500℃程度とする。
The average particle size of the powder is 10 to 1
It is made to be 100 μm or less, more preferably 70 μm or less, and kneaded with a binder such as methylcellulose-based, polyolefin-based, polyethylene-based, acrylic-based or polyvinyl alcohol-based. In this case, the ratio of the binder to the hydrogen storage alloy powder is preferably about 1 to 20% by weight. The binder component will be vaporized in the sintering furnace. for that reason,
It is desirable that the temperature in the sintering furnace be about 900 ° C.
When heating and drying prior to sintering, the temperature is 400-
The temperature is about 500 ° C.

【0013】押出し、圧着の工程は、各々、真空もしく
は不活性ガス(Ar、He、N2 等)雰囲気下に行うの
が好ましく、また、焼結炉内ではAr、He等の不活性
ガス雰囲気とするのが好ましい。微量のH2 を加えても
よい。以下、実施例を示し、さらに詳しくこの発明につ
いて説明する。
The steps of extrusion and pressure bonding are preferably carried out in a vacuum or in an atmosphere of an inert gas (Ar, He, N 2 etc.), and in an atmosphere of an inert gas such as Ar, He etc. in the sintering furnace. Is preferred. A small amount of H 2 may be added. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0014】[0014]

【実施例】実施例1〜6 組成がZr0.6 Ti0.4 (V0.335 Ni0.665 2 のラ
ーベス型AB2 の二次電池用水素吸蔵合金の粉末(平均
粒径55μm)を、メチルセルロース系結合剤と重量比
90/10で混合し、その総量100重量部に対して1
0重量部の水を混合して混練した。
Examples 1 to 6 Laves type AB 2 hydrogen storage alloy powder for secondary batteries (average particle diameter 55 μm) having a composition of Zr 0.6 Ti 0.4 (V 0.335 Ni 0.665 ) 2 and a methylcellulose-based binder were used. Mix in a weight ratio of 90/10, 1 for every 100 parts by weight
0 parts by weight of water was mixed and kneaded.

【0015】この混練物を真空押出成形装置(宮崎鉄工
(株)製FM−50E)により、寸法が幅100mm×
厚み0.5mmで連続的に押出し、図1の通りに圧延ロ
ーラ部に供給し、圧力1ton/cm2 によって表1に
示した通りの各種の支持体に圧延圧着した。支持体の種
類、および、電極の厚みが異なった二次電池用水素吸蔵
合金負極を用いて、その放電容量、並び製造時の諸要因
について評価した。
This kneaded product was measured by a vacuum extrusion molding device (FM-50E manufactured by Miyazaki Iron Works Co., Ltd.) to have a size of 100 mm × width.
It was continuously extruded with a thickness of 0.5 mm, supplied to the rolling roller section as shown in FIG. 1, and pressure-bonded to various supports as shown in Table 1 by pressure of 1 ton / cm 2 . Using the hydrogen storage alloy negative electrodes for secondary batteries having different kinds of supports and different electrode thicknesses, their discharge capacities and various factors during production were evaluated.

【0016】この時の条件は次の通りとした。 水素吸蔵合金組成:AB2 Zr0.6 Ti0.4 (V0.335 Ni0.665 2.0 押出し成形:真空押出し成形機(宮崎鉄工(株)製FM−50E) 放電容量:負極 水素吸蔵合金電極15×15mm 1枚 水素吸蔵合金量 約0.5g 正極 水酸化ニッケル 100部 CMC 0.4部 水 40部 リード線を取り付けた発泡ニッケル集電体に充填し、乾燥後 、ローラープレスによって一体化して、正極を作製。The conditions at this time were as follows. Hydrogen storage alloy composition: AB 2 Zr 0.6 Ti 0.4 (V 0.335 Ni 0.665 ) 2.0 Extrusion molding: Vacuum extrusion molding machine (FM-50E manufactured by Miyazaki Iron Works Co., Ltd.) Discharge capacity: Negative electrode Hydrogen storage alloy electrode 15 × 15 mm 1 sheet Hydrogen Storage alloy amount about 0.5 g Positive electrode Nickel hydroxide 100 parts CMC 0.4 part Water 40 parts A nickel foam collector with a lead wire attached was filled, dried and then integrated by a roller press to prepare a positive electrode.

【0017】 水酸化ニッケル極30×30mm 2枚 水酸化ニッケル量 約2g 負極規制で放電容量測定。 充・放電電流:17mA/g 放電終止電圧:0.6Vcut 測定結果は、表1に示した通りであるが、大きな放電容
量が得られていることがわかる。また、幅広電極の作製
が容易で、電極内の水素吸蔵合金粉末のバラツキは小さ
く、電極厚みも均一であった。比較例1〜2 粉末圧延法により、支持体としてエキスパンドメタルを
用いて、実施例と同様の組成の水素吸蔵合金負極を製造
した。また同様にしてその放電容量を測定し、表1の通
りの結果を得た。
Nickel hydroxide electrode 30 × 30 mm 2 sheets Nickel hydroxide amount about 2 g Discharge capacity measurement with negative electrode regulation. Charge / discharge current: 17 mA / g Discharge end voltage: 0.6 Vcut The measurement results are as shown in Table 1, but it can be seen that a large discharge capacity is obtained. In addition, a wide electrode was easily manufactured, the variation of the hydrogen storage alloy powder in the electrode was small, and the electrode thickness was uniform. Comparative Examples 1-2 A hydrogen storage alloy negative electrode having the same composition as that of the example was manufactured by the powder rolling method using the expanded metal as the support. The discharge capacity was measured in the same manner, and the results shown in Table 1 were obtained.

【0018】この粉末圧延法による場合には、負極内の
水素吸蔵合金の粉末量を均一にするのが難しく、また、
電極の厚みのバラツキも大きかった。形状不良が生じ
た。そして幅の広い電極の作製は困難であった。
In the case of this powder rolling method, it is difficult to make the amount of powder of the hydrogen storage alloy in the negative electrode uniform, and
The variation in the thickness of the electrodes was also large. A shape defect occurred. And it was difficult to manufacture a wide electrode.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上詳しく説明した通り、この発明によ
って、幅広の電極の作製が容易で、電極内の水素吸蔵合
金粉末量のばらつきが小さく、さらに、電極厚みのばら
つきが小さい、大きな放電容量の二次電池用水素吸蔵合
金負極の製造が可能となる。
As described in detail above, according to the present invention, it is easy to produce a wide electrode, the amount of hydrogen-absorbing alloy powder in the electrode is small, and the thickness of the electrode is small. It is possible to manufacture a hydrogen storage alloy negative electrode for a secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の二次電池用水素吸蔵合金負極の製造
プロセスを示した概略図である。
FIG. 1 is a schematic view showing a manufacturing process of a hydrogen storage alloy negative electrode for a secondary battery of the present invention.

【符号の説明】 1 押出し成形装置 11 押出し口 2 水素吸蔵合金粉末の混練物 21 押出し成形体 22 圧着体 23 二次電池用水素吸蔵合金負極 3 圧延ローラ部 4 支持体 5 焼成炉[Explanation of Codes] 1 Extrusion molding device 11 Extrusion port 2 Kneaded material of hydrogen storage alloy powder 21 Extrusion molded body 22 Crimping body 23 Hydrogen storage alloy negative electrode for secondary battery 3 Rolling roller section 4 Support 5 Baking furnace

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末の混練物を押出し成形
装置より押出して圧延ローラ部に供給し、別途に供給さ
れる支持体にこの圧延ローラ部において圧着し、次いで
焼結することを特徴とする二次電池用水素吸蔵合金負極
の製造方法。
1. A kneaded product of a hydrogen storage alloy powder is extruded from an extrusion molding device and supplied to a rolling roller part, and is pressed to a separately supplied support at this rolling roller part and then sintered. A method for producing a hydrogen storage alloy negative electrode for a secondary battery.
【請求項2】 押出しおよび圧着を真空もしくは不活性
ガス雰囲気下に行う請求項1の製造方法。
2. The manufacturing method according to claim 1, wherein the extrusion and pressure bonding are performed in a vacuum or in an inert gas atmosphere.
【請求項3】 焼結に先立って加熱乾燥処理する請求項
1または2の製造方法。
3. The manufacturing method according to claim 1, wherein a heat drying treatment is carried out prior to the sintering.
JP7215060A 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy negative electrode for secondary battery Pending JPH0963574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7215060A JPH0963574A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy negative electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7215060A JPH0963574A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy negative electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPH0963574A true JPH0963574A (en) 1997-03-07

Family

ID=16666095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7215060A Pending JPH0963574A (en) 1995-08-23 1995-08-23 Manufacture of hydrogen storage alloy negative electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPH0963574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003108A1 (en) * 2006-07-06 2008-01-10 Plansee Se Method for producing an extruded molding
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003108A1 (en) * 2006-07-06 2008-01-10 Plansee Se Method for producing an extruded molding
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal

Similar Documents

Publication Publication Date Title
JPH0644966A (en) Manufacture of hydrogen storage electrode
EP1088354B1 (en) Hydrogen storage alloy electrode, battery including the same and method for producing the both
JPH0963574A (en) Manufacture of hydrogen storage alloy negative electrode for secondary battery
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP3761763B2 (en) Hydrogen storage alloy electrode, battery using the same, and manufacturing method thereof
JPH097590A (en) Manufacture of hydrogen absorbing alloy powder for electrode
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JPH08148150A (en) Electrode using three-dimensional substrate and manufacture thereof
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH05205772A (en) Cylindrical nickel-zinc storage battery
JPS63266768A (en) Manufacture of hydrogen storage electrode
JPH06283162A (en) Metal hydride electrode, battery and production
JP3374995B2 (en) Manufacturing method of nickel electrode
JP3015455B2 (en) Electrode plate for battery
JP3331506B2 (en) Method of manufacturing spiral alkaline storage battery
JPH07114923A (en) Manufacture of negative electrode for nickel hydrogen storage battery
JPH01132048A (en) Manufacture of hydrogen storage alloy electrode
JPH09320577A (en) Manufacture of hydrogen absorbing alloy electrode
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPH05151964A (en) Manufacture of electrode
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JPH09147851A (en) Manufacture of hydrogen storage alloy electrode
JPH1012232A (en) Manufacture of nickel positive plate