JPH0960990A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH0960990A
JPH0960990A JP7221427A JP22142795A JPH0960990A JP H0960990 A JPH0960990 A JP H0960990A JP 7221427 A JP7221427 A JP 7221427A JP 22142795 A JP22142795 A JP 22142795A JP H0960990 A JPH0960990 A JP H0960990A
Authority
JP
Japan
Prior art keywords
compressor
working fluid
stopped
point
revolutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7221427A
Other languages
Japanese (ja)
Inventor
Shoji Takaku
昭二 高久
Hiroshi Kogure
博志 小暮
Makoto Ishii
誠 石井
Toshiyuki Terai
利行 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7221427A priority Critical patent/JPH0960990A/en
Publication of JPH0960990A publication Critical patent/JPH0960990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To smooth the flow of working fluid and to reduce incurring of the pressure loss of working fluid by a method wherein a check valve to prevent the reverse flow of the working fluid from the compressor side to the vaporizer side and control is executed in such a manner that the number of revolutions of a compressor is reduced by an inverter when operation of the compressor is stopped. SOLUTION: The operation state of a compressor is of a system wherein the number of revolutions of the compressor is reduced in such a manner that the reduction ratio of the number of revolutions of the compressor per unit time is kept at a constant value between a point A after the stop of air- conditioning operation and a point B wherein operation of the compressor is stopped. As noted above, by controlling the number of revolutions of a compressor, the reverse flow of working fluid during the stop of the compressor is prevented from occurring. Further, rupture of an electric circuit due to the reverse flow of working fluid and the generation of noise and vibration during the stop of the compressor can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主にスクロール圧縮機
(以下、圧縮機と略す)において、周波数制御により電
源周波数を変化させ圧縮機の回転数を制御することので
きる空気調和機に係り、特に圧縮機運転時および停止時
に作動流体が円滑に流れるようにして効率向上をはかる
ようにすると共に、圧縮機が停止する際の作動流体の逆
流現象を防止するための制御を備えた空気調和機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which is mainly used in a scroll compressor (hereinafter abbreviated as "compressor") to control the rotation speed of the compressor by changing the power supply frequency by frequency control. , Air conditioning with control to prevent the backflow phenomenon of the working fluid when the compressor is stopped, as well as to improve the efficiency by allowing the working fluid to flow smoothly during and after the compressor is stopped. Regarding the machine.

【0002】[0002]

【従来の技術】一般に空気調和機には、圧縮機が停止し
た際の作動流体の逆流を防止するために圧縮機の前の作
動流体流路や圧縮機本体内部の作動流体吸込口または吐
出口のいずれかに逆止弁が備えられている。
2. Description of the Related Art Generally, in an air conditioner, a working fluid flow path in front of the compressor or a working fluid suction port or discharge port inside the compressor body is provided in order to prevent backflow of the working fluid when the compressor is stopped. A check valve is provided on any of the above.

【0003】圧縮機内部に逆止弁を設けたものとして、
例えば特公平1−34312号に示されるものがあり、
図2および図3に示すような構成となっている。以下、
図2および図3を参照しながら従来例を説明する。
Assuming that a check valve is provided inside the compressor,
For example, there is one disclosed in Japanese Patent Publication No. 1-34312,
The configuration is as shown in FIGS. 2 and 3. Less than,
A conventional example will be described with reference to FIGS. 2 and 3.

【0004】図2は従来例に係るスクロール圧縮機の構
造を示し、図3は従来例に係る吸入通路孔と組み合わせ
た吸入弁を設けた旋回スクロールと固定スクロールの平
面断面図である。
FIG. 2 shows the structure of a scroll compressor according to a conventional example, and FIG. 3 is a plan sectional view of an orbiting scroll and a fixed scroll provided with an intake valve combined with an intake passage hole according to the conventional example.

【0005】吸入管1は固定スクロール2の巻終わり部
3でクランク軸4の軸方向に、Oリング5を介して固定
スクロール2と接続される。また吸入管1はフタチャン
バ6に溶接固定されている。前記固定スクロール2の巻
終わり部3の溝先端は半径Rの円弧形状に加工されてい
る。図3において旋回スクロール7の巻終わり部8は破
線9の円運動を行う。固定スクロール2内の吸入配管1
の接続は円筒部10の吸入通路孔の開口11を介して、
固定スクロール2の巻終わり部3のR部と連通してい
る。
The suction pipe 1 is connected to the fixed scroll 2 at an end portion 3 of the fixed scroll 2 in the axial direction of the crankshaft 4 via an O-ring 5. The suction pipe 1 is welded and fixed to the lid chamber 6. The groove tip of the winding end portion 3 of the fixed scroll 2 is processed into an arc shape having a radius R. In FIG. 3, the winding end portion 8 of the orbiting scroll 7 makes a circular movement indicated by a broken line 9. Intake pipe 1 in fixed scroll 2
Is connected through the opening 11 of the suction passage hole of the cylindrical portion 10,
It communicates with the R portion of the winding end portion 3 of the fixed scroll 2.

【0006】吸入通路孔は固定スクロールの渦巻ラップ
間の溝巾中心線上に位置し、吸入通路孔直径Dより小さ
い寸法幅Bの開口を得るよう前記円弧状部の一部を切り
欠く位置で交叉し、かつ鏡板に対して直行する方向に設
けられている。更に前記開口11を形成する両側の円弧
部の残り部の吸入通路孔の内壁は弁12の保持部を形成
し、弁12がスムースに移動できるようにすると共に、
弁12が圧縮室側へ飛ばないように保持されている。
The suction passage hole is located on the groove width center line between the spiral wraps of the fixed scroll, and intersects at a position where a part of the arcuate portion is cut out so as to obtain an opening having a dimension width B smaller than the suction passage hole diameter D. And is provided in a direction orthogonal to the end plate. Further, the inner wall of the suction passage hole which is the remaining part of the arcuate portions on both sides forming the opening 11 forms a holding portion for the valve 12 so that the valve 12 can move smoothly.
The valve 12 is held so as not to fly to the compression chamber side.

【0007】また円筒部10内の弁12はバネ13によ
り閉じる方向に附勢されており、吸入状態においては圧
力差によって弁12は下方に押し下げられる。また停止
時においてはバネ13によって弁12は上方に押し上げ
られ、吸入管1のシート面となってガスの逆流を防ぐ構
造となっている。
The valve 12 in the cylindrical portion 10 is biased by a spring 13 in a closing direction, and in the suction state, the valve 12 is pushed downward due to a pressure difference. Further, when stopped, the valve 12 is pushed upward by the spring 13 and becomes the seat surface of the suction pipe 1 to prevent the reverse flow of gas.

【0008】前記構造により圧縮機運転時にガスを吸入
すると、ガスの吸入圧力によってバネ力に打ち勝ってガ
ス吸入が十分に行われる深さまで押し下げられて弁12
は全開状態となる。また、圧縮機運転が停止すると、弁
12はバネ力によって押し上げられ吸入管1の端面に当
接して閉じられる。これにより差圧によって油が吸入側
へ逆流することもなく、旋回スクロールの逆転もないの
で、逆転音による騒音の発生もない。
With the above structure, when gas is sucked in during operation of the compressor, the suction pressure of the gas overcomes the spring force and pushes it down to a depth where the gas is sufficiently sucked.
Is fully open. When the operation of the compressor is stopped, the valve 12 is pushed up by the spring force and comes into contact with the end surface of the suction pipe 1 to be closed. As a result, the oil does not flow back to the suction side due to the differential pressure, and there is no reverse rotation of the orbiting scroll.

【0009】[0009]

【発明が解決しようとする課題】しかしながら前記構造
の圧縮機では、弁12及びバネ13が作動流体の流路抵
抗になることから作動流体の圧力損失が生じ、空気調和
機運転時の効率が低下するという問題があった。
However, in the compressor having the above-mentioned structure, the valve 12 and the spring 13 serve as flow resistance of the working fluid, so that the pressure loss of the working fluid occurs and the efficiency during the operation of the air conditioner decreases. There was a problem of doing.

【0010】また、従来の空気調和機において圧縮機の
前の作動流体流路あるいは圧縮機内部の吸入口または吐
出口に設置されている逆止弁を除去した場合、圧縮機を
停止することにより、圧縮された高圧の作動流体が圧縮
される前の低圧の作動流体の方向へ逆流するという現象
が生じる。この現象により、通常電流を流すことにより
電動モータを駆動させ作動流体を圧縮していた圧縮機
が、逆に作動流体の逆流する力により電動モータを駆動
させ、電動モータが駆動することにより電流を生じる。
すなわち、圧縮機が発電機になり電流を電気回路等に流
すため回路破壊を起す問題があった。
Further, in the conventional air conditioner, when the check valve installed in the working fluid passage in front of the compressor or the intake port or the discharge port inside the compressor is removed, the compressor is stopped. A phenomenon occurs in which the compressed high-pressure working fluid flows backward in the direction of the low-pressure working fluid before being compressed. Due to this phenomenon, the compressor that normally drives the electric motor to compress the working fluid by passing the current causes the electric motor to be driven by the force of the working fluid to flow backward, and the electric motor drives the current. Occurs.
That is, there is a problem that the compressor becomes a generator and a current is passed through an electric circuit or the like, which causes circuit breakage.

【0011】さらに、作動流体が高圧側から低圧側へ急
激に流れる場合、圧縮機が高回転になり激しい振動と騒
音を生じ、また、作動流体の流体音も生じるという問題
があった。
Further, when the working fluid rapidly flows from the high pressure side to the low pressure side, the compressor is rotated at a high speed, which causes violent vibration and noise, and also causes a fluid noise of the working fluid.

【0012】その他に、前記逆止弁を除去した場合、一
度圧縮された作動流体が圧縮機の停止のたびに低圧側に
逆流するため圧縮ロスが生じ、冷凍サイクルの効率を低
下させるという問題もあった。
In addition, when the check valve is removed, the working fluid once compressed flows backward to the low pressure side every time the compressor is stopped, which causes a compression loss and reduces the efficiency of the refrigeration cycle. there were.

【0013】[0013]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、圧縮機,蒸発器,凝縮器及び減圧装置を
備え、各機器を作動流体流路で接続することにより冷凍
サイクルを形成し、さらに電源周波数を変化させること
により圧縮機の回転数を制御できるインバータ制御機能
を備えた空気調和機において、圧縮機の前の作動流体流
路および圧縮機内部に作動流体が圧縮機側から蒸発器側
に逆流するのを防止するための逆止弁を具備しないこと
を特徴とし、前記圧縮機の運転を停止する際に前記イン
バータにより圧縮機の回転数を段階的あるいは継続的に
下げるような制御方法を行うことを特徴としたものであ
る。
In order to solve the above-mentioned problems, the present invention comprises a compressor, an evaporator, a condenser and a decompression device, and a refrigeration cycle is provided by connecting each device with a working fluid flow path. In an air conditioner that has an inverter control function that can control the rotation speed of the compressor by changing the power supply frequency, the working fluid flow path in front of the compressor and the working fluid inside the compressor Is not provided with a check valve for preventing backflow from the compressor to the evaporator side, and when the operation of the compressor is stopped, the rotation speed of the compressor is reduced stepwise or continuously by the inverter. It is characterized by performing such a control method.

【0014】[0014]

【作用】上記構成により、作動流体の流れを円滑にする
ことができ、作動流体の圧力損失を低減できることか
ら、空気調和機の運転効率の向上がはかれる。また前記
構成の空気調和機において、圧縮機の停止方法をインバ
ータにより制御し、回転数を段階的あるいは継続的に下
げることにより、圧縮機停止時における圧縮後の作動流
体と圧縮前の作動流体の圧力の差をなくすことができる
ことから、作動流体の逆流を防止することができる。し
たがって、作動流体の逆流によって生じる電気回路の破
壊や圧縮機停止時の騒音,振動を低減することができ
る。
With the above construction, the flow of the working fluid can be made smooth and the pressure loss of the working fluid can be reduced, so that the operating efficiency of the air conditioner can be improved. Further, in the air conditioner having the above-mentioned configuration, the method of stopping the compressor is controlled by an inverter, and the number of rotations is reduced stepwise or continuously, so that the working fluid after compression and the working fluid before compression when the compressor is stopped Since the pressure difference can be eliminated, the backflow of the working fluid can be prevented. Therefore, it is possible to reduce the breakdown of the electric circuit caused by the backflow of the working fluid and the noise and vibration when the compressor is stopped.

【0015】[0015]

【実施例】以下、本発明の一実施例を添付図面に基づき
説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】図1は本発明に係る一実施例であり、縦軸
に圧縮機の回転数を、横軸に経過時間をとり、圧縮機の
停止方法のパターンを示した図である。図1から圧縮機
の運転状態は空調運転停止後のA点から圧縮機運転停止
のB点まで単位時間当たりの圧縮機回転数の低下割合が
一定になるようにして、圧縮機の回転数を下げる方式と
している。このように圧縮機の回転数をインバータによ
り制御することで、圧縮機停止時における作動流体の逆
流を防止することができる。
FIG. 1 is an embodiment according to the present invention, and is a diagram showing a pattern of a method of stopping a compressor, in which the vertical axis represents the rotational speed of the compressor and the horizontal axis represents the elapsed time. From FIG. 1, the operation state of the compressor is shown in FIG. 1 from the point A after the air conditioning operation is stopped to the point B when the compressor operation is stopped so that the rate of decrease of the compressor rotation speed per unit time becomes constant and I am going to lower it. By controlling the rotation speed of the compressor by the inverter in this way, it is possible to prevent the backflow of the working fluid when the compressor is stopped.

【0017】図4は本発明に係る他の実施例であり、A
点からB点までの圧縮機回転数の変化を圧縮機回転数が
低くなるにしたがい単位時間当たりの圧縮機回転数の低
下割合が少なくなるように設定している。この制御をす
ることにより、圧縮機をスムーズに停止することがで
き、圧縮機停止時の騒音や振動を低減することができ
る。
FIG. 4 shows another embodiment according to the present invention.
The change in the compressor rotation speed from the point to the point B is set so that the reduction rate of the compressor rotation speed per unit time decreases as the compressor rotation speed decreases. By performing this control, the compressor can be stopped smoothly, and noise and vibration when the compressor is stopped can be reduced.

【0018】図5は本発明に係るさらに他の実施例であ
り、時間軸に対する圧縮機回転数の低下割合の傾きを段
階的に小さくなるように設定している。すなわち、A点
からC点における単位時間当たりの圧縮機回転数の低下
割合よりも、C点からB点における低下割合の方が小さ
くなるようにしている。これは空調停止時のA点から圧
縮機停止時のB点までの間に少なくとも一回以上の段階
を設定するようにする。このような制御をすることによ
り、空調停止から圧縮機停止までの時間を短縮すること
ができる。
FIG. 5 shows still another embodiment according to the present invention, in which the slope of the reduction rate of the compressor rotational speed with respect to the time axis is set to be gradually reduced. That is, the reduction rate from the C point to the B point is smaller than the reduction rate from the A point to the C point per unit time. This is to set at least one stage between point A when air conditioning is stopped and point B when the compressor is stopped. By performing such control, the time from the air conditioning stop to the compressor stop can be shortened.

【0019】図6は本発明に係るさらに他の実施例であ
り、圧縮機の回転数を段階的に下げる方法をとった例で
ある。すなわち、A点からC点までは前記実施例による
方法で圧縮機の回転数を低下させ、C点に到達した時点
で冷凍サイクルがある程度安定状態になるD点まで圧縮
機の回転数を一定に保ようにし、さらにD点からB点ま
で再び前記実施例による方法で圧縮機回転数を下げるよ
うにする。このとき、A点からB点までの間に圧縮機回
転数が一定になる課程は、少なくとも一回以上とする。
このような制御をすることにより、空調停止から圧縮機
停止までの時間を短縮することができ、さらに冷凍サイ
クルを安定させながら圧縮機を停止するため圧縮機にか
かる負荷を軽減することができ、圧縮機の寿命を伸ばす
ことができる。
FIG. 6 shows still another embodiment according to the present invention, which is an example in which a method of gradually reducing the rotational speed of the compressor is adopted. That is, the rotation speed of the compressor is reduced by the method according to the above-described embodiment from the point A to the point C, and the rotation speed of the compressor is kept constant until the point D at which the refrigeration cycle becomes stable to some extent when the point C is reached. Then, the compressor rotation speed is lowered again from the point D to the point B by the method according to the above embodiment. At this time, the process in which the number of revolutions of the compressor becomes constant between the points A and B is at least once.
By performing such control, it is possible to reduce the time from the air conditioning stop to the compressor stop, and further to reduce the load on the compressor because the compressor is stopped while stabilizing the refrigeration cycle, The life of the compressor can be extended.

【0020】図7は本発明に係るさらに他の実施例であ
り、A点からC点まで時間軸に対して上に凸の二次曲線
とし、C点からB点の間は時間軸に対して下に凸の二次
曲線とし、A点とB点の間で単位時間の圧縮機回転数の
低下割合が最大になる点をC点とする。このような制御
をすることにより、圧縮機の回転数をスムーズに低下さ
せることができることから圧縮機停止時の騒音や振動を
低減でき、また圧縮機の負荷を軽減できることから圧縮
機の寿命を伸ばすことができる。
FIG. 7 shows still another embodiment according to the present invention, in which a quadratic curve that is convex upward from the point A to the point C with respect to the time axis, and from the point C to the point B with respect to the time axis is shown. And a downwardly convex quadratic curve, and a point between the points A and B where the reduction rate of the compressor rotation speed per unit time is the maximum is designated as a point C. By performing such control, the number of revolutions of the compressor can be smoothly reduced, noise and vibration when the compressor is stopped can be reduced, and the load of the compressor can be reduced, so that the life of the compressor is extended. be able to.

【0021】[0021]

【発明の効果】以上説明したように本発明による効果
は、圧縮機,蒸発器,凝縮器及び減圧装置を備え、各機
器を作動流体流路で接続することにより冷凍サイクルを
形成し、さらに電源周波数を変化させることにより圧縮
機の回転数を制御できるインバータ制御機能を備えた空
気調和機において、圧縮機の前の作動流体流路および圧
縮機内部に作動流体が圧縮機側から蒸発器側に逆流する
のを防止するための逆止弁を具備しないことを特徴とす
ることにより、作動流体の流れを円滑にし、作動流体の
圧力損失を低減できることから、空気調和機の運転効率
の向上がはかれる。
As described above, the effects of the present invention include a compressor, an evaporator, a condenser, and a decompression device, and a refrigeration cycle is formed by connecting each device with a working fluid flow path, and further a power supply is provided. In an air conditioner equipped with an inverter control function that can control the rotation speed of the compressor by changing the frequency, the working fluid flows from the compressor side to the evaporator side in the working fluid flow path in front of the compressor and inside the compressor. By not having a check valve for preventing reverse flow, the flow of the working fluid can be made smooth and the pressure loss of the working fluid can be reduced, so that the operating efficiency of the air conditioner can be improved. .

【0022】また、圧縮機の運転を停止する際にインバ
ータにより圧縮機の回転数を段階的あるいは継続的に下
げるような制御方法を行うことにより、圧縮機停止時に
おける圧縮後の作動流体と圧縮前の作動流体の圧力の差
をなくすことができることから、作動流体の逆流を防止
することができ、作動流体の逆流によって生じる電気回
路の破壊や圧縮機停止時の騒音,振動を低減することが
できる。
Further, when the operation of the compressor is stopped, a control method is employed such that the rotation speed of the compressor is reduced stepwise or continuously by the inverter, so that the working fluid and the compressed fluid after the compression is stopped when the compressor is stopped. Since the pressure difference of the previous working fluid can be eliminated, it is possible to prevent the backflow of the working fluid and reduce the noise and vibration when the electric circuit is destroyed and the compressor is stopped due to the backflow of the working fluid. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るインバータ制御による圧縮機の停
止方法の一実施例の図。
FIG. 1 is a diagram of an embodiment of a method of stopping a compressor by inverter control according to the present invention.

【図2】本発明の従来例を示すスクロール圧縮機の構成
図。
FIG. 2 is a configuration diagram of a scroll compressor showing a conventional example of the present invention.

【図3】本発明の従来例に係る旋回スクロールと固定ス
クロールの平面断面図。
FIG. 3 is a plan cross-sectional view of an orbiting scroll and a fixed scroll according to a conventional example of the present invention.

【図4】本発明に係るインバータ制御による圧縮機の停
止方法の他の実施例の図。
FIG. 4 is a diagram of another embodiment of a method of stopping a compressor by inverter control according to the present invention.

【図5】本発明に係るインバータ制御による圧縮機の停
止方法のさらに他の実施例の図。
FIG. 5 is a diagram of yet another embodiment of a method of stopping a compressor by inverter control according to the present invention.

【図6】本発明に係るインバータ制御による圧縮機の停
止方法のさらに他の実施例の図。
FIG. 6 is a diagram of yet another embodiment of a method of stopping a compressor by inverter control according to the present invention.

【図7】本発明に係るインバータ制御による圧縮機の停
止方法のさらに他の実施例の図。
FIG. 7 is a diagram of yet another embodiment of a method of stopping a compressor by inverter control according to the present invention.

【符号の説明】[Explanation of symbols]

1…吸入管、2…固定スクロール、3…固定スクロール
の巻終わり部、4…クランク軸、5…Oリング、6…フ
タチャンバ、7…旋回スクロール、8…旋回スクロール
の巻終わり部、9…旋回スクロールの巻終わり部の軌
跡、10…円筒部、11…吸入通路孔の開口、12…
弁、13…バネ。
DESCRIPTION OF SYMBOLS 1 ... Suction pipe, 2 ... Fixed scroll, 3 ... Fixed scroll winding end, 4 ... Crank shaft, 5 ... O-ring, 6 ... Lid chamber, 7 ... Orbiting scroll, 8 ... Orbiting scroll winding end, 9 ... Orbiting Trajectory of scroll end part, 10 ... Cylindrical part, 11 ... Opening of suction passage hole, 12 ...
Valve, 13 ... spring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺井 利行 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所冷熱事業部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshiyuki Terai 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Hitachi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,蒸発器,凝縮器及び減圧装置を備
え、各機器を作動流体流路で接続することにより冷凍サ
イクルを形成し、さらに電源周波数を変化させることに
より圧縮機の回転数を制御できるインバータ制御手段を
備えた空気調和機において、前記圧縮機の前の作動流体
流路および圧縮機は、その内部に作動流体が圧縮機側か
ら蒸発器側に逆流するのを防止するための逆止弁を具備
せず、上記インバータ制御手段は、前記圧縮機の運転を
停止する際に圧縮機の回転数を段階的あるいは継続的に
下げて圧縮機を停止させることを特徴とする空気調和
機。
1. A compressor, an evaporator, a condenser, and a decompression device, wherein a refrigerating cycle is formed by connecting each device with a working fluid flow path, and the number of revolutions of the compressor is changed by changing the power supply frequency. In an air conditioner equipped with an inverter control means capable of controlling, the working fluid flow path in front of the compressor and the compressor are for preventing the working fluid from flowing backward from the compressor side to the evaporator side. No check valve is provided, and the inverter control means stops the compressor by gradually or continuously decreasing the rotation speed of the compressor when stopping the operation of the compressor. Harmony machine.
JP7221427A 1995-08-30 1995-08-30 Air-conditioner Pending JPH0960990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7221427A JPH0960990A (en) 1995-08-30 1995-08-30 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7221427A JPH0960990A (en) 1995-08-30 1995-08-30 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH0960990A true JPH0960990A (en) 1997-03-04

Family

ID=16766579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7221427A Pending JPH0960990A (en) 1995-08-30 1995-08-30 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH0960990A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090632A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Method for controlling air conditioner
JP2004232958A (en) * 2003-01-30 2004-08-19 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009052797A (en) * 2007-08-27 2009-03-12 Panasonic Corp Air conditioning device
CN103216915A (en) * 2013-04-24 2013-07-24 青岛海尔空调电子有限公司 Shutdown method of variable frequency air conditioner and variable frequency air conditioner
CN104422067A (en) * 2013-08-23 2015-03-18 广东美的制冷设备有限公司 Variable-frequency air conditioner control method and air conditioner
CN105698453A (en) * 2016-03-09 2016-06-22 广东美的制冷设备有限公司 Frequency conversion air conditioner and stop control method and stop control device for compressor of frequency conversion air conditioner
WO2018090775A1 (en) * 2016-11-18 2018-05-24 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner
WO2018095729A1 (en) * 2016-11-22 2018-05-31 BSH Hausgeräte GmbH Method for stopping a reciprocating compressor, and reciprocating compressor of a refrigeration device, of an air conditioning device, or of a heat pump, and refrigeration device, air conditioning device, or heat pump having said reciprocating compressor
JP2018105596A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system
JPWO2018138860A1 (en) * 2017-01-27 2019-06-27 株式会社日立産機システム Scroll compressor
CN113137702A (en) * 2021-05-14 2021-07-20 珠海格力电器股份有限公司 Method for adjusting frequency of air conditioner compressor and air conditioner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090632A (en) * 2001-09-20 2003-03-28 Fujitsu General Ltd Method for controlling air conditioner
JP2004232958A (en) * 2003-01-30 2004-08-19 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009052797A (en) * 2007-08-27 2009-03-12 Panasonic Corp Air conditioning device
CN103216915A (en) * 2013-04-24 2013-07-24 青岛海尔空调电子有限公司 Shutdown method of variable frequency air conditioner and variable frequency air conditioner
CN103216915B (en) * 2013-04-24 2015-09-02 青岛海尔空调电子有限公司 The closing method of convertible frequency air-conditioner and convertible frequency air-conditioner
CN104422067A (en) * 2013-08-23 2015-03-18 广东美的制冷设备有限公司 Variable-frequency air conditioner control method and air conditioner
CN104422067B (en) * 2013-08-23 2017-06-06 广东美的制冷设备有限公司 Control method for frequency conversion air conditioner and air-conditioner
CN105698453A (en) * 2016-03-09 2016-06-22 广东美的制冷设备有限公司 Frequency conversion air conditioner and stop control method and stop control device for compressor of frequency conversion air conditioner
WO2018090775A1 (en) * 2016-11-18 2018-05-24 珠海格力电器股份有限公司 Air conditioner control method and device and air conditioner
WO2018095729A1 (en) * 2016-11-22 2018-05-31 BSH Hausgeräte GmbH Method for stopping a reciprocating compressor, and reciprocating compressor of a refrigeration device, of an air conditioning device, or of a heat pump, and refrigeration device, air conditioning device, or heat pump having said reciprocating compressor
CN109964398A (en) * 2016-11-22 2019-07-02 Bsh家用电器有限公司 Stop the method and refrigerating appliance, the reciprocating-piston compressor of air-conditioning utensil or heat pump and refrigerating appliance, air-conditioning utensil or heat pump of reciprocating-piston compressor
JP2018105596A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system
JPWO2018138860A1 (en) * 2017-01-27 2019-06-27 株式会社日立産機システム Scroll compressor
EP3575604A4 (en) * 2017-01-27 2020-07-08 Hitachi Industrial Equipment Systems Co., Ltd. Scroll compressor
US11603839B2 (en) 2017-01-27 2023-03-14 Hitachi Industrial Equipment Systems Co., Ltd. Scroll compressor with two step inverter control
CN113137702A (en) * 2021-05-14 2021-07-20 珠海格力电器股份有限公司 Method for adjusting frequency of air conditioner compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP2007154761A (en) Scroll compressor
JPH0960990A (en) Air-conditioner
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
KR20060013221A (en) Capacity variable device for rotary compressor and driving method of airconditioner with this
JP2017150466A (en) High pressure compressor and refrigeration cycle device having the same
CN101514701B (en) Capacity varying device for a scroll compressor
KR20050012633A (en) Scroll compressor with volume regulating capability
JP2007077825A (en) Hermetic rotary compressor and refrigeration cycle device
JP2959457B2 (en) Scroll gas compressor
KR100971578B1 (en) Scroll compressor
WO2003081043A1 (en) Compressor
JP3942784B2 (en) Scroll compressor
JP2002295378A (en) Scroll compressor and refrigeration cycle
JP2010156245A (en) Refrigeration device
JP5141272B2 (en) Turbo refrigerator
JP2007071430A (en) Refrigeration cycle and compression auxiliary device
WO2023144953A1 (en) Compressor and refrigeration cycle device
KR100223437B1 (en) Check valve of a scroll compressor
JP2008280862A (en) Compressor
JP2002364938A (en) Method for controlling internal pressure of compressor during interruption of air conditioner
KR100223431B1 (en) Scroll compressor
WO2022244240A1 (en) Compressor
JP3560786B2 (en) Scroll compressor
WO2019043905A1 (en) Scroll compressor and refrigeration cycle device
WO2022208573A1 (en) Compressor