JPH0960751A - Housing structure for high-temperature high-pressure fluid valve - Google Patents

Housing structure for high-temperature high-pressure fluid valve

Info

Publication number
JPH0960751A
JPH0960751A JP21327195A JP21327195A JPH0960751A JP H0960751 A JPH0960751 A JP H0960751A JP 21327195 A JP21327195 A JP 21327195A JP 21327195 A JP21327195 A JP 21327195A JP H0960751 A JPH0960751 A JP H0960751A
Authority
JP
Japan
Prior art keywords
valve
valve box
expansion
box
outer valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21327195A
Other languages
Japanese (ja)
Other versions
JP2852009B2 (en
Inventor
Akira Okada
章 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP21327195A priority Critical patent/JP2852009B2/en
Publication of JPH0960751A publication Critical patent/JPH0960751A/en
Application granted granted Critical
Publication of JP2852009B2 publication Critical patent/JP2852009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Valve Housings (AREA)
  • Lift Valve (AREA)

Abstract

PROBLEM TO BE SOLVED: To cut off an outer valve box from the thermal expansion of an inner valve box by interrupting the gas flow between the inner and outer valve boxes. SOLUTION: An outer valve box 10 and an inner valve box 20 are provided on the same axis, both valve boxes 10, 20 are penetrated by a valve shaft 30, and a valve is opened or closed by the rotation of a valve element 40. Both openings of the gap 60 between the outer and inner valve boxes 10, 20 are sealed by a truncated conical cylindrical plate spring 61 and cylindrical bellows 62. The expansion/shrinkage of the inner valve box 20 is absorbed by the expansion/shrinkage of the plate spring 61 and bellows 62, and its effect on the outer valve box 10 is cut off. The gas infiltrating into the gap 60 generates no more flow after it is filled by sealing, a heat insulating material 70 is not moved, and deterioration is suppressed. The inner valve box 20 and the outer valve box 10 are connected in the middle by the coupling of brackets 23, 16, and the movement of the inner valve box 20 in the flow direction is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ガスタービンの
ガス流路などに介設される高温高圧流体用弁のハウジン
グ構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a housing structure for a high temperature and high pressure fluid valve provided in a gas passage of a gas turbine.

【0002】[0002]

【従来の技術】弁(バルブ)Vは、図5に示すように、
流体、ガスなどの流路Aに介設し、その弁箱1、2を流
路Aの配管にボルト締めして取付け、弁軸3を回すこと
により、弁体4を実線のごとく弁座5に圧接して流路A
を閉じ、弁体4を鎖線のごとく位置して流路Aを開放す
るものである。
2. Description of the Related Art A valve (valve) V, as shown in FIG.
The valve body 4 is installed in the flow path A for fluid, gas, etc., the valve boxes 1 and 2 are attached to the piping of the flow path A by bolting, and the valve shaft 3 is rotated, so that the valve body 4 is moved to the valve seat 5 as shown by the solid line. Pressed against the flow path A
Is closed and the valve body 4 is positioned as shown by a chain line to open the flow path A.

【0003】このような弁Vを、例えば、ガスタービン
のガス流路Aに介設すると、そのガス温度は800℃前
後、ガス圧は10kgf/cm2 (0.98MPa)程
度であるため、その高温により弁Vも高温となる。弁V
が高温になると、周辺機器への熱影響が問題になるとと
もに、作業者が弁Vに触れて火傷する恐れもある。
When such a valve V is installed in, for example, the gas passage A of a gas turbine, the gas temperature is around 800 ° C. and the gas pressure is about 10 kgf / cm 2 (0.98 MPa). The valve V also becomes hot due to the high temperature. Valve V
When the temperature becomes high, there is a problem that the heat will affect the peripheral equipment, and the operator may touch the valve V and get burned.

【0004】このため、このような高温ガス流路Aに介
設する弁Vは、同図に示すように、円筒状の外弁箱1に
同じく円筒状の内弁箱2を所要の間隙6をもって同一軸
心で内装し、その内外弁箱1、2の間隙6内には断熱材
7を充填して、外弁箱1の内弁箱2からの断熱を図って
いるとともに、弁軸3内に冷却水を流して、弁V全体を
冷却(例えば外面温度で200℃程度)するようにして
いる(実施例参照)。
For this reason, the valve V provided in such a hot gas flow path A has a cylindrical inner valve box 2 and a cylindrical inner valve box 2 as shown in FIG. With the same axial center, and a gap 6 between the inner and outer valve casings 1 and 2 is filled with a heat insulating material 7 so as to insulate the outer valve casing 1 from the inner valve casing 2 and the valve stem 3 Cooling water is caused to flow inside to cool the entire valve V (for example, the outer surface temperature is about 200 ° C.) (see the embodiment).

【0005】そして、このような高温高圧流体用弁Vに
おいては、実開平6−6850号公報などで示されるよ
うに、図5、図6のごとく、外弁箱1内面と内弁箱2の
外面にそれぞれフランジ1a、2aを設け、この両フラ
ンジ1a、2aをボルト・ナット8で締結し、外弁箱1
に対する内弁箱2の流れ方向(図5のa矢印方向)の動
きを規制するようにしている。内弁箱2の熱膨張による
径方向の拡径は、フランジ2a内のボルト貫通孔2bが
径方向の長孔に形成され、この長孔2bの移動によって
吸収される。
In such a high-temperature high-pressure fluid valve V, as shown in Japanese Utility Model Laid-Open No. 6-6850, the inner surface of the outer valve casing 1 and the inner valve casing 2 are, as shown in FIGS. The outer surface is provided with flanges 1a and 2a, respectively, and the both flanges 1a and 2a are fastened with bolts and nuts 8.
The movement of the inner valve box 2 in the flow direction (the direction of arrow a in FIG. 5) is restricted. The radial expansion due to the thermal expansion of the inner valve housing 2 is absorbed by the movement of the elongated hole 2b because the bolt through hole 2b in the flange 2a is formed as an elongated hole in the radial direction.

【0006】[0006]

【発明が解決しようとする課題】この高温高圧流体用弁
Vにおいて、内弁箱2の弁軸貫通孔は、その壁面と弁軸
3の間に所要の隙間(実施例図2のクリアランスt参
照)を有しており、内弁箱2が流れ方向に熱膨張して
も、そのクリアランスtによって、内弁箱2の貫通孔の
壁面が弁軸3に圧接しないようにして、弁体4の開閉操
作に支障がないようにしてある。
In this valve V for high temperature and high pressure fluid, the valve shaft through hole of the inner valve casing 2 has a required clearance between the wall surface and the valve shaft 3 (see the clearance t in the embodiment FIG. 2). ), Even if the inner valve box 2 thermally expands in the flow direction, the clearance t prevents the wall surface of the through hole of the inner valve box 2 from being brought into pressure contact with the valve shaft 3, and The opening and closing operations are not disturbed.

【0007】このため、そのクリアランスtから高圧ガ
スが内外弁箱1、2の間隙6内に侵入することとなる。
このとき、弁Vが開放されたガス流通中は、弁Vの上流
側及び下流側はほぼ等圧のため、その侵入したガスは、
間隙6(断熱材7)内に留まることとなる。
For this reason, the high pressure gas enters the gap 6 between the inner and outer valve casings 1 and 2 from the clearance t.
At this time, since the upstream side and the downstream side of the valve V are almost at equal pressure during the gas circulation with the valve V opened, the invaded gas is
It will remain in the gap 6 (the heat insulating material 7).

【0008】一方、弁Vが閉じられると、弁Vの上流側
と下流側とでは、ほぼ10kgf/cm2 の差圧が生じ
ることとなり、その差圧により、ガスが前記クリアラン
スtを通って激しく間隙6(断熱材7)内にリークし、
差圧は解消されることがないため、そのリークは、弁V
が開放されるか、又はガスの送り込みが停止されるまで
続くこととなる。このため、断熱材7は、そのリークし
たガスの風圧に晒されることとなり、劣化が急速に進む
とともに、変形、損傷する。また、ガス風圧により、断
熱材7が本来の位置から移動し、断熱材7の欠如した部
分が発生し、断熱効果の低下や不良を招く。断熱材7の
劣化などによる断熱効果の低下及び不良は、外弁箱1の
温度上昇を招き、周辺機器及び作業者への熱影響の問題
が生じる。
On the other hand, when the valve V is closed, a pressure difference of about 10 kgf / cm 2 is generated between the upstream side and the downstream side of the valve V, and due to the pressure difference, the gas violently passes through the clearance t. Leak into the gap 6 (heat insulating material 7),
Since the differential pressure is not eliminated, the leak is caused by the valve V
Will be opened or the gas feed will be stopped. For this reason, the heat insulating material 7 is exposed to the wind pressure of the leaked gas, so that the heat insulating material 7 rapidly deteriorates and is deformed or damaged. Further, due to the gas wind pressure, the heat insulating material 7 moves from its original position, and a part where the heat insulating material 7 is lacking is generated, resulting in a decrease in heat insulating effect or a defect. The deterioration or failure of the heat insulating effect due to the deterioration of the heat insulating material 7 causes the temperature of the outer valve box 1 to rise, which causes a problem of thermal influence on peripheral devices and workers.

【0009】なお、この種の高温高圧流体用弁Vは、全
閉時、弁体4と弁座5の圧接部からもガスのリークは生
じるが、このリークは下流側の流路Aに流れるため、断
熱材7の効果劣化の面では問題とならない。
When the valve V for high-temperature high-pressure fluid of this type is fully closed, gas leaks also from the pressure contact portion between the valve body 4 and the valve seat 5, but this leak flows into the flow passage A on the downstream side. Therefore, there is no problem in terms of the effect deterioration of the heat insulating material 7.

【0010】この発明は、上記の実情の下、内弁箱の熱
膨張を吸収して、その熱膨張を外弁箱に影響を与えるこ
となく、断熱材の劣化を抑止し、断熱材の性能、効果を
長期的に維持するようにすることを課題とする。
Under the above-mentioned circumstances, the present invention absorbs the thermal expansion of the inner valve box, suppresses the thermal expansion of the outer valve box and suppresses the deterioration of the heat insulating material, and the performance of the heat insulating material. , The challenge is to maintain the effect in the long term.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1記載の発明にあっては、上述した高温高
圧流体用弁Vにおいて、上記内外弁箱の間隙両開口を、
その筒軸方向かつ径方向に伸縮可能な膨張吸収機構によ
って密封した構成としたものである。
In order to solve the above-mentioned problems, in the invention according to claim 1, in the above-mentioned high-temperature high-pressure fluid valve V, both gap openings of the inner and outer valve casings are
The structure is hermetically sealed by an expansion and absorption mechanism that can expand and contract in the cylinder axis direction and the radial direction.

【0012】この膨張吸収機構によって、内弁箱が熱膨
張しても、その膨張はこの機構によって吸収され、外弁
箱に影響を与えない。また、断熱材は膨張吸収機構によ
って密封されているため、弁の全閉時、上記弁軸貫通孔
のクリアランスtから流体が漏れ入っても(リークして
も)、流路内と同一圧になれば、それ以上の侵入はなく
なる。すなわち、断熱材内を流体が流通することはな
い。
By this expansion absorption mechanism, even if the inner valve box thermally expands, the expansion is absorbed by this mechanism and does not affect the outer valve box. In addition, since the heat insulating material is sealed by the expansion absorbing mechanism, even if the fluid leaks (or leaks) from the clearance t of the valve shaft through hole when the valve is fully closed, the same pressure as in the flow path is obtained. Once that happens, there is no further intrusion. That is, the fluid does not flow through the heat insulating material.

【0013】請求項2記載の発明は、請求項1記載の発
明において、その膨張吸収機構が、上記開口から内側に
向う上記同一軸心で円錐台筒状の内弁箱径方向に拡縮可
能な板ばねと、前記開口から内側に延びる前記同一軸心
の円筒状の内弁箱筒軸方向に伸縮可能な伸縮手段とから
なり、前記板ばねの小径端縁は内弁箱の外面に固定さ
れ、前記伸縮手段の外端縁は外弁箱の内面に固定され、
板ばねの大径端縁と伸縮手段の内端縁は連続して、その
連続縁が外弁箱内面に摺動自在に接している構成とした
ものである。
According to a second aspect of the present invention, in the first aspect of the invention, the expansion / absorption mechanism is expandable / contractible in the radial direction of the inner valve case of the truncated cone tubular shape having the same axis centering inward from the opening. A leaf spring and an expanding / contracting means extending inward from the opening and having a cylindrical inner valve box of the same axis and capable of expanding and contracting in the axial direction of the cylinder, and the small-diameter edge of the leaf spring is fixed to the outer surface of the inner valve box. , The outer edge of the expansion and contraction means is fixed to the inner surface of the outer valve box,
The large-diameter edge of the leaf spring and the inner edge of the expansion / contraction means are continuous, and the continuous edge is slidably in contact with the inner surface of the outer valve box.

【0014】請求項3記載の発明は、請求項1又は2記
載の発明において、上記内弁箱外面と外弁箱内面の間
に、内弁箱の径方向の伸縮を吸収し、内弁箱の筒軸方向
の移動を阻止する保持機構を設けた構成としたものであ
る。
According to a third aspect of the present invention, in the invention according to the first or second aspect, the radial expansion and contraction of the inner valve box is absorbed between the outer surface of the inner valve box and the inner surface of the outer valve box, and the inner valve box is absorbed. The holding mechanism is provided to prevent the movement in the cylinder axis direction.

【0015】請求項4記載の発明は、その保持機構が、
外弁箱の内周面又は内弁箱の外周面に、内外弁箱の筒軸
方向の間隔をあけて対のブラケットを設けるとともに、
内弁箱の外周面又は外弁箱の内周面に、前記対のブラケ
ット間に内外弁箱の径方向に摺動自在に嵌まる突起を設
けて成り、前記外弁箱のブラケット又は突起の内径面と
内弁箱の外周面との隙間、及び前記内弁箱の突起又はブ
ラケットの外径面と外弁箱の内周面との隙間は、内弁箱
の拡径に支障がないように設定し、かつ、保持機構は、
内外弁箱の周方向に少なくとも2個所設けた構成とした
ものである。
According to a fourth aspect of the invention, the holding mechanism is
On the inner peripheral surface of the outer valve box or the outer peripheral surface of the inner valve box, a pair of brackets are provided with a space in the cylinder axis direction of the inner and outer valve boxes.
On the outer peripheral surface of the inner valve housing or the inner peripheral surface of the outer valve housing, a protrusion is provided between the pair of brackets so as to be slidably fitted in the radial direction of the inner and outer valve housing. The gap between the inner diameter surface and the outer peripheral surface of the inner valve housing, and the gap between the outer diameter surface of the protrusion or bracket of the inner valve housing and the inner peripheral surface of the outer valve housing should not hinder the expansion of the inner valve housing. And the retention mechanism is
At least two places are provided in the circumferential direction of the inner and outer valve boxes.

【0016】上記保持機構は、上記膨張吸収機構では、
内弁箱の熱膨張などによる流れ方向の動きを阻止し得な
い場合、例えば、膨張吸収機構の抗力に対して、流体が
それ以上の高圧の場合に設けるものである。
The holding mechanism in the expansion absorbing mechanism is
This is provided when the movement in the flow direction due to thermal expansion of the inner valve box cannot be prevented, for example, when the fluid has a higher pressure than the resistance of the expansion absorption mechanism.

【0017】[0017]

【発明の実施の形態】この発明の一実施形態を図1乃至
図4に示し、円筒状の外弁箱10に、同じく円筒状の内
弁箱20が所要の間隙60をもって同一軸心で内装され
ており、両弁箱10、20を弁軸30が貫通している。
この弁軸30に円盤状の弁体40がスプライン結合され
ており、図3、図4実線のごとく弁体40を流れ方向
(a矢印)に向かすことにより、開弁され、矢印のごと
く回転して、鎖線のごとく、内弁箱20の弁座50に弁
体40の周縁を圧接することにより閉弁する。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the present invention is shown in FIGS. 1 to 4, in which a cylindrical outer valve casing 10 and a cylindrical inner valve casing 20 are internally provided with a required gap 60 and the same axial center. The valve shaft 30 passes through the valve boxes 10 and 20.
A disc-shaped valve body 40 is spline-coupled to the valve shaft 30, and the valve body 40 is opened by turning the valve body 40 in the flow direction (arrow a) as shown by the solid lines in FIGS. 3 and 4, and rotated as shown by the arrow. Then, as shown by the chain line, the valve seat 40 of the inner valve box 20 is pressed against the peripheral edge of the valve body 40 to close the valve.

【0018】外弁箱10は、そのフランジ11でもっ
て、流路Aの外配管A1にガスケットを介在してボルト
締めにより連結され、内弁箱20は、その端縁を流路A
の内配管A2の端縁に嵌め合わせにより連結される。こ
の嵌め合わせ部には流れ方向に間隙が形成されており、
この間隙によって、内弁箱20及び内配管A2の長さ方
向(流れ方向)の膨縮が相互に影響しない。内外配管A
1、A2間には断熱材が適宜に充填される。
The outer valve casing 10 is connected by its flange 11 to the outer pipe A1 of the flow passage A by bolting with a gasket interposed therebetween, and the inner valve casing 20 has its end edge connected to the flow passage A.
Is connected to the edge of the inner pipe A2 by fitting. A gap is formed in the fitting direction in the flow direction,
Due to this gap, the expansion and contraction of the inner valve box 20 and the inner pipe A2 in the length direction (flow direction) do not affect each other. Inner and outer piping A
A heat insulating material is appropriately filled between 1 and A2.

【0019】弁軸30は、軸受12、ブッシュ13等に
よって両端を外弁箱10に支持されている。その軸受1
2の外面開口はグランドパッキン14、パッキン押え1
5などによってシールされており、弁軸30を伝って流
体が外部に漏れないようになっている(リークしな
い)。また、図示していないが、軸受12と外弁箱10
間にも適宜なシールがなされて、外弁箱10内から流体
(ガス、液体等)が漏れないようになっている。
Both ends of the valve shaft 30 are supported by the outer valve casing 10 by bearings 12, bushes 13 and the like. Its bearing 1
The outer opening of 2 is gland packing 14, packing retainer 1
It is sealed by 5 or the like so that the fluid does not leak to the outside through the valve shaft 30 (it does not leak). Although not shown, the bearing 12 and the outer valve housing 10
Appropriate seals are also provided between them so that fluid (gas, liquid, etc.) does not leak from the inside of the outer valve box 10.

【0020】軸受12の内弁箱20の貫通部は少しクリ
アランスtが形成され、内弁箱20が熱膨張しても、こ
のクリアランスtにより、弁軸30が圧接されることも
なく、円滑な開閉作用を行い得る。弁軸30は中空とな
っており、この中空部に冷却水cが流通されて、弁Vを
冷却する。
A small clearance t is formed in the penetrating portion of the inner valve housing 20 of the bearing 12, and even if the inner valve housing 20 thermally expands, the clearance t does not cause the valve shaft 30 to be pressed into contact with the inner wall of the inner valve housing 20 and is smooth. It can open and close. The valve shaft 30 is hollow, and cooling water c is circulated in the hollow portion to cool the valve V.

【0021】内外弁箱10、20の間隙60の筒軸方向
中程(弁軸30と同一平面上)周囲に内弁箱20の保持
機構が設けられており、この機構は、外弁箱10の内面
周囲6等分位のブラケット16、16と内弁箱20の外
面周囲6等分位のブラケット23とから成り、前者のブ
ラケット16、16間の溝に後者のブラケット23が嵌
まることにより、内弁箱20の流れ方向の動きが阻止さ
れる。内弁箱20側を溝、外弁箱10側をその溝に嵌ま
る突起(ブラケット)とし得る。この両ブラケット1
6、23の嵌合構造は、半円周に1ヶ所以上、等間隔に
設ける。
A retaining mechanism for the inner valve casing 20 is provided around the middle of the gap 60 between the inner and outer valve casings 10, 20 in the cylinder axis direction (on the same plane as the valve shaft 30). Of the inner surface of the inner valve box 6 is divided into six brackets 16 and 16 and the outer periphery of the inner valve box 20 is divided into six brackets, and the latter bracket 23 is fitted in the groove between the former brackets 16 and 16. The movement of the inner valve box 20 in the flow direction is prevented. The inner valve box 20 side may be a groove and the outer valve box 10 side may be a protrusion (bracket) fitted in the groove. Both brackets 1
The fitting structures 6 and 23 are provided at one or more locations on the semicircle at equal intervals.

【0022】内弁箱側ブラケット23の適宜なものには
突片24が設けられて、この突片24の長孔25に外弁
箱側ブラケット16、16を貫通したピン17が嵌ま
り、内弁箱20の周方向への移動を阻止している。この
ピン17と長孔25の嵌合は組み立て時の内外弁箱1
0、20の位置決めの役目を果たす。また、内弁箱20
が径方向に熱膨張すると、ブラケット23がブラケット
16、16間を摺動するとともに、ピン17も長孔25
内を移動し、その膨張は外弁箱10に伝わらない。な
お、突片24と外弁箱10内面、ブラケット16と内弁
箱20内面のそれぞれの間隔は、内弁箱20の熱膨張に
よる拡径に支障がないように適宜に設定する。
A projection piece 24 is provided on a suitable one of the inner valve box side bracket 23, and a pin 17 penetrating the outer valve box side bracket 16, 16 is fitted into a long hole 25 of the projection piece 24 so that The movement of the valve box 20 in the circumferential direction is prevented. The fitting between the pin 17 and the long hole 25 is performed by assembling the inner / outer valve box 1 at the time of assembly.
It serves to position 0, 20. Also, the inner valve box 20
When the heat expands in the radial direction, the bracket 23 slides between the brackets 16 and 16, and the pin 17 also moves into the long hole 25.
It moves inside and its expansion is not transmitted to the outer valve casing 10. The intervals between the protrusion 24 and the inner surface of the outer valve housing 10 and between the bracket 16 and the inner surface of the inner valve housing 20 are appropriately set so as not to hinder the expansion of the inner valve housing 20 due to thermal expansion.

【0023】内外弁箱10、20の間隙60の両開口部
に内弁箱20の膨張吸収機構が設けられており、この両
機構間に、耐熱繊維などをマット状やネット状にした断
熱材70が、膨張吸収機構及び前記保持機構の動作に支
障が生じないように充填されている。なお、断熱材とし
て、外弁箱10内面に薄層の粒状等の断熱材をライニン
グしたキャスタブルとの組み合わせにすることもでき
る。
An expansion and absorption mechanism for the inner valve box 20 is provided at both openings of the gap 60 between the inner and outer valve boxes 10 and 20, and a heat insulating material such as mat-like or net-like heat-resistant fiber is provided between these mechanisms. 70 is filled so as not to hinder the operation of the expansion absorbing mechanism and the holding mechanism. The heat insulating material may be a combination with a castable in which the inner surface of the outer valve box 10 is lined with a heat insulating material such as a thin layer of granular material.

【0024】膨張吸収機構は、円錐台筒状の板ばね61
と、円筒状のベロース62とから成る。板ばね61の小
径端縁61a全周は内弁箱20の外周全面に溶接され、
ベロース62の外端縁62a全周は外弁箱10の内周全
面に溶接され、板ばね61の大径端縁61bとベロース
62の内端縁62bは全周に亘って溶接されており、こ
の板ばね61とベロース62によって間隙60の開口が
閉塞される。この閉塞によって断熱材70は外部から密
封状態となる。
The expansion / absorption mechanism is a frustoconical cylindrical leaf spring 61.
And a cylindrical bellows 62. The entire circumference of the small-diameter edge 61a of the leaf spring 61 is welded to the entire outer circumference of the inner valve box 20,
The entire outer edge 62a of the bellows 62 is welded to the entire inner circumference of the outer valve box 10, and the large-diameter edge 61b of the leaf spring 61 and the inner edge 62b of the bellows 62 are welded over the entire circumference. The leaf spring 61 and the bellows 62 close the opening of the gap 60. Due to this blockage, the heat insulating material 70 is sealed from the outside.

【0025】板ばね61の大径端縁61bは折り返され
て、外弁箱10内面の周方向の突条18に摺接してお
り、内弁箱20が膨縮し、板ばね61が拡縮径すると、
それに従って、その大径端縁61bが突条18を摺動し
てその動きに対応する。このとき、ベロース62も流れ
方向(筒軸方向)に伸縮してその摺動に対応する。この
伸縮は同一芯軸で行われ、曲げ方向のたわみは生じにく
い。ベロース62の襞には補強リング63が嵌められて
おり、このリング63によって、ベロース62の内側
(筒軸側)への変形が阻止される。因みに、ベローズ6
2外側には、後述のリークした流体が板ばね61と突条
18の摺接部を通って流入する。
The large-diameter edge 61b of the leaf spring 61 is folded back and is in sliding contact with the circumferential projection 18 on the inner surface of the outer valve casing 10, the inner valve casing 20 expands and contracts, and the leaf spring 61 expands and contracts. Then,
Accordingly, the large-diameter end edge 61b slides on the ridge 18 and responds to the movement. At this time, the bellows 62 also expands and contracts in the flow direction (cylinder axis direction) to correspond to the sliding. This expansion and contraction is performed with the same core shaft, and bending in the bending direction is unlikely to occur. A reinforcing ring 63 is fitted to the folds of the bellows 62, and the ring 63 prevents the bellows 62 from being deformed inward (toward the cylinder shaft). By the way, bellows 6
The leaked fluid, which will be described later, flows into the outside of the second passage 2 through the sliding contact portion between the leaf spring 61 and the protrusion 18.

【0026】なお、板ばね61、ベロース62は耐熱、
耐ガス等の材料を使用することは勿論であり、図4に示
すように、板ばね61は、小径端縁61aが内側となる
構成のものとし得ることができ、また、伸縮手段として
は、ベロース62に代えて、軸方向のみ伸縮できるも
の、例えば、板ばね61の大径端縁61bに固定した筒
体と外弁箱10に固定した筒体とをその筒軸方向に摺動
自在に嵌め、かつ、アスベストなどによって摺動面を気
密にした伸縮管とし得る。
The leaf spring 61 and the bellows 62 are heat resistant,
It goes without saying that a material such as gas resistance is used, and as shown in FIG. 4, the leaf spring 61 can be configured such that the small-diameter end edge 61a is on the inner side, and the expansion / contraction means is Instead of the bellows 62, one that can be expanded and contracted only in the axial direction, for example, a cylindrical body fixed to the large-diameter end edge 61b of the leaf spring 61 and a cylindrical body fixed to the outer valve box 10 are slidable in the cylindrical axial direction. A telescopic tube which is fitted and whose sliding surface is made airtight by asbestos can be used.

【0027】いま、閉弁状態において、弁軸30(軸受
12)と内弁箱20のクリアランスtから流体が図2矢
印のごとく間隙60(断熱材70)に侵入すると、その
流体は、断熱材70内に充満すると、それ以上の侵入は
なくなる。このとき、開弁時においてもクリアランスt
からのリークは生じているため、その侵入は少なく、断
熱材70内の流体流れは殆んど生じない。このため、断
熱材70の移動等は生じず、劣化も進まない。
Now, when the fluid enters the gap 60 (the heat insulating material 70) from the clearance t between the valve shaft 30 (the bearing 12) and the inner valve housing 20 in the valve closed state, as shown by the arrow in FIG. Once it fills 70, no further intrusions will occur. At this time, the clearance t is maintained even when the valve is opened.
Since there is a leak from the heat sink 70, the amount of the leak is small, and almost no fluid flow occurs in the heat insulating material 70. Therefore, the heat insulating material 70 does not move and the deterioration does not proceed.

【0028】内弁箱20が熱膨張すれば、弁軸30に対
して対称となる両側の膨張吸収機構によってその膨張が
バランスよく吸収され、すなわち、径方向の拡径は板ば
ね61によって、長さ方向(流れ方向)の伸びはベロー
ス62によってそれぞれスムースに吸収され、内弁箱2
0が変形することもなく、その膨張が外弁箱10に影響
を与えることもない。
When the inner valve box 20 thermally expands, its expansion is absorbed in a well-balanced manner by the expansion and absorption mechanisms on both sides which are symmetrical with respect to the valve shaft 30, that is, the radial expansion is caused by the leaf spring 61. The expansion in the vertical direction (flow direction) is smoothly absorbed by the bellows 62, and the inner valve box 2
0 does not deform, and its expansion does not affect the outer valve housing 10.

【0029】なお、前述の実施形態は、バタフライ弁で
あったが、ボール弁を含む回転弁にこの発明のハウジン
グ構造は採用し得ることは勿論である。
Although the above-mentioned embodiment is a butterfly valve, it is a matter of course that the housing structure of the present invention can be applied to a rotary valve including a ball valve.

【0030】[0030]

【発明の効果】この発明は以上のように構成したので、
内弁箱の熱膨張を吸収して、その熱膨張を外弁箱に影響
を与えることがなく、断熱材の劣化を抑制して、その性
能・効果を長期的に維持し得る。また、この断熱材にリ
ーク流体の影響が少ないことは、断熱材の種類や充填方
法の選定が広く行えることとなる。
Since the present invention is constructed as described above,
The thermal expansion of the inner valve box is absorbed, the thermal expansion does not affect the outer valve box, the deterioration of the heat insulating material is suppressed, and its performance and effect can be maintained for a long time. In addition, the fact that the leakage fluid has little influence on the heat insulating material allows a wide selection of the heat insulating material and the filling method.

【0031】また、外弁箱に内弁箱の熱膨張が影響しな
いことは、両弁箱相互の変形差異による両弁箱の変形や
損傷が発生しないこととなる。これは、結果として、弁
(弁軸)の操作がスムースとなり、前記変形や損傷に伴
う気密性能(弁座漏れ量)の低下も招きにくい。
Further, the fact that the outer valve box is not affected by the thermal expansion of the inner valve box means that neither the two valve boxes are deformed nor damaged due to the deformation difference between the two valve boxes. As a result, the operation of the valve (valve shaft) becomes smooth, and the airtight performance (valve seat leakage amount) due to the deformation or damage is less likely to decrease.

【0032】高圧時などには、保持機構を設けることに
より、膨張吸収機構への過大な負荷をなくすることがで
き、弁の使用条件に対応した弁選定ができる。
By providing the holding mechanism at the time of high pressure, it is possible to eliminate an excessive load on the expansion and absorption mechanism, and it is possible to select a valve corresponding to the usage condition of the valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施形態の一部切欠き斜視図FIG. 1 is a partially cutaway perspective view of an embodiment.

【図2】同実施形態の切断側面図FIG. 2 is a cut side view of the same embodiment.

【図3】同実施形態の切断平面図FIG. 3 is a cutaway plan view of the same embodiment.

【図4】他の実施形態の切断平面図FIG. 4 is a cutaway plan view of another embodiment.

【図5】従来例の概略切断平面図FIG. 5 is a schematic sectional plan view of a conventional example.

【図6】同従来例の要部拡大図FIG. 6 is an enlarged view of a main part of the conventional example.

【符号の説明】[Explanation of symbols]

1、10 外弁箱 2、20 内弁箱 3、30 弁軸 4、40 弁体 5、50 弁座 6、60 内外弁箱の間隙 7、70 断熱材 11 外弁箱のフランジ 12 軸受 13 ブッシュ 14 グランドパッキン 15 パッキン押え 16 外弁箱側ブラケット 17 ピン 18 突条 23 内弁箱側ブラケット 24 突片 25 長孔 61 板ばね 61a 板ばね小径端縁 61b 板ばね大径端縁 62 伸縮手段(ベロース) 62a 伸縮手段(ベロース)外端縁 62b 伸縮手段(ベロース)内端縁 1, 10 Outer valve box 2, 20 Inner valve box 3, 30 Valve shaft 4, 40 Valve body 5, 50 Valve seat 6, 60 Gap between inner and outer valve boxes 7, 70 Insulation material 11 Outer valve box flange 12 Bearing 13 Bush 14 gland packing 15 packing retainer 16 outer valve box side bracket 17 pin 18 ridge 23 inner valve box side bracket 24 projecting piece 25 long hole 61 leaf spring 61a leaf spring small-diameter edge 61b leaf spring large-diameter edge 62 expansion means (bellows) ) 62a Expansion / contraction means (bellows) outer edge 62b Expansion / contraction means (bellose) inner edge

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の外弁箱10に円筒状の内弁箱2
0を所要の間隙60をもって同一軸心で内装し、その内
外弁箱20、10の前記間隙60内には断熱材70を充
填し、内外弁箱20、10を貫通する弁軸30に設けた
弁体40により、前記内弁箱20内の筒軸方向を開閉す
る高温高圧流体用弁であって、 上記内外弁箱20、10の間隙60両開口を、その筒軸
方向かつ径方向に伸縮可能な膨張吸収機構によって密封
したことを特徴とする高温高圧流体用弁のハウジング構
造。
1. A cylindrical inner valve box 2 is attached to a cylindrical outer valve box 10.
0 is internally installed with a required gap 60 at the same axis, and the gap 60 of the inner and outer valve casings 20 and 10 is filled with a heat insulating material 70, which is provided on the valve shaft 30 penetrating the inner and outer valve casings 20 and 10. A high-temperature high-pressure fluid valve that opens and closes a cylinder axis direction in the inner valve box 20 by a valve body 40, wherein both openings 60 of the gaps of the inner and outer valve boxes 20, 10 expand and contract in the cylinder axis direction and the radial direction. A housing structure for a valve for high-temperature high-pressure fluid, characterized by being sealed by a possible expansion and absorption mechanism.
【請求項2】 請求項1記載の高温高圧流体用弁のハウ
ジング構造において、 上記膨張吸収機構が、前記開口から内側に向う上記同一
軸心で円錐台筒状の内弁箱径方向に拡縮可能な板ばね6
1と、前記開口から内側に延びる前記同一軸心の円筒状
の内弁箱筒軸方向に伸縮可能な伸縮手段62とからな
り、前記板ばね61の小径端縁61aは内弁箱20の外
面に固定され、前記伸縮手段62の外端縁62aは外弁
箱10の内面に固定され、板ばね61の大径端縁61b
と伸縮手段62の内端縁62bは連続して、その連続縁
が外弁箱10内面に摺動自在に接していることを特徴と
するもの。
2. The housing structure for a high temperature and high pressure fluid valve according to claim 1, wherein the expansion and absorption mechanism is expandable and contractable in a radial direction of a truncated cone-shaped inner valve box with the same axis centering inward from the opening. Leaf spring 6
1 and an expansion / contraction means 62 extending inward from the opening and having a cylindrical inner valve box of the same axis and capable of expanding and contracting in the axial direction of the cylinder. The small-diameter edge 61a of the leaf spring 61 is the outer surface of the inner valve box 20. The outer end edge 62a of the expansion / contraction means 62 is fixed to the inner surface of the outer valve box 10, and the large-diameter end edge 61b of the leaf spring 61 is fixed.
And the inner end edge 62b of the expansion / contraction means 62 is continuous, and the continuous edge slidably contacts the inner surface of the outer valve box 10.
【請求項3】 請求項1又は2記載の高温高圧流体用弁
のハウジング構造において、 上記内弁箱20外面と外弁箱10内面の間に、内弁箱2
0の径方向の伸縮を吸収し、内弁箱20の筒軸方向の移
動を阻止する保持機構を設けたことを特徴とするもの。
3. The housing structure for a valve for high temperature and high pressure fluid according to claim 1, wherein the inner valve box 2 is provided between the outer surface of the inner valve box 20 and the inner surface of the outer valve box 10.
A holding mechanism that absorbs the radial expansion and contraction of 0 and prevents the inner valve box 20 from moving in the cylinder axis direction is provided.
【請求項4】 請求項3記載の高温高圧流体用弁のハウ
ジング構造において、 上記保持機構が、外弁箱10の内周面又は内弁箱20の
外周面に、内外弁箱20、10の筒軸方向の間隔をあけ
て対のブラケット16、16を設けるとともに、内弁箱
20の外周面又は外弁箱10の内周面に、前記対のブラ
ケット16、16間に内外弁箱20、10の径方向に摺
動自在に嵌まる突起23を設けて成り、 上記外弁箱10のブラケット16又は突起の内径面と内
弁箱20の外周面との隙間、及び前記内弁箱20の突起
23又はブラケットの外径面と外弁箱10の内周面との
隙間は、内弁箱20の拡径に支障がないように設定し、
かつ、保持機構は、内外弁箱20、10の周方向に少な
くとも2個所設けたことを特徴とするもの。
4. The housing structure for a high-temperature high-pressure fluid valve according to claim 3, wherein the holding mechanism is provided on the inner peripheral surface of the outer valve casing 10 or the outer peripheral surface of the inner valve casing 20 so as to cover the inner and outer valve casings 20 and 10. The pair of brackets 16 and 16 are provided with a space in the cylinder axis direction, and the inner and outer valve casings 20 are provided between the pair of brackets 16 and 16 on the outer peripheral surface of the inner valve casing 20 or the inner peripheral surface of the outer valve casing 10. 10 is provided with a protrusion 23 that is slidably fitted in the radial direction, and a gap between the inner diameter surface of the bracket 16 or the protrusion of the outer valve box 10 and the outer peripheral surface of the inner valve box 20, and the inner valve box 20 The clearance between the outer diameter surface of the projection 23 or the bracket and the inner peripheral surface of the outer valve housing 10 is set so as not to hinder the diameter expansion of the inner valve housing 20.
Further, the holding mechanism is characterized in that it is provided at least at two positions in the circumferential direction of the inner and outer valve boxes 20, 10.
JP21327195A 1995-08-22 1995-08-22 Housing structure of high temperature and high pressure fluid valve Expired - Fee Related JP2852009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21327195A JP2852009B2 (en) 1995-08-22 1995-08-22 Housing structure of high temperature and high pressure fluid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21327195A JP2852009B2 (en) 1995-08-22 1995-08-22 Housing structure of high temperature and high pressure fluid valve

Publications (2)

Publication Number Publication Date
JPH0960751A true JPH0960751A (en) 1997-03-04
JP2852009B2 JP2852009B2 (en) 1999-01-27

Family

ID=16636348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21327195A Expired - Fee Related JP2852009B2 (en) 1995-08-22 1995-08-22 Housing structure of high temperature and high pressure fluid valve

Country Status (1)

Country Link
JP (1) JP2852009B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960736A (en) * 1995-08-24 1997-03-04 Mitsubishi Heavy Ind Ltd High temperature valve
CN102844598A (en) * 2010-04-13 2012-12-26 株式会社巴技术研究所 Valve element of butterfly valve
CN107289140A (en) * 2017-07-10 2017-10-24 上海累富阀门科技有限公司 90 degree of revolution Bellows valves
JP2019049218A (en) * 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 Seal device of steam turbine and steam turbine having the seal device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960736A (en) * 1995-08-24 1997-03-04 Mitsubishi Heavy Ind Ltd High temperature valve
CN102844598A (en) * 2010-04-13 2012-12-26 株式会社巴技术研究所 Valve element of butterfly valve
CN107289140A (en) * 2017-07-10 2017-10-24 上海累富阀门科技有限公司 90 degree of revolution Bellows valves
JP2019049218A (en) * 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 Seal device of steam turbine and steam turbine having the seal device

Also Published As

Publication number Publication date
JP2852009B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JPS6224721Y2 (en)
US4353388A (en) Butterfly valve
US20080100059A1 (en) Axial and Radial Play and Angle Compensation of a Tolerating Pipe Connection
US3469862A (en) Expansion joints with frozen seals
JP2852009B2 (en) Housing structure of high temperature and high pressure fluid valve
JPS6030869B2 (en) High temperature duplex butterfly valve
KR102310215B1 (en) Bellows having cooling chamber blocking high atmosphere gas of annealing furnace
US3036812A (en) Butterfly valves
JP2546392Y2 (en) Butterfly valve
JP3529239B2 (en) High temperature valve
JP3119808B2 (en) Butterfly valve
JP2581543Y2 (en) Butterfly valve
KR101821142B1 (en) Control valve for main disc's concentric circle
IT202100004703A1 (en) MOTORIZED BUTTERFLY VALVE FOR AN EXHAUST LINE
JP2514713Y2 (en) Butterfly valve for hot gas pipeline
FR3078133A1 (en) DILATATION COMPENSATOR FOR CONDUITS WITH EMERGENCY ASSEMBLY AND CORRESPONDING METHOD.
EP3736479B1 (en) Expansion-compensating element
KR200357248Y1 (en) Bellows single-body type damper
JPH0536170U (en) Butterfly valve stem cooling system
JPH0536168U (en) Butterfly valve
JPH0960736A (en) High temperature valve
JPH11304085A (en) High-temperature fluid piping structure
JP3049637B2 (en) High temperature butterfly valve
JP2003185033A (en) Valve casing seat structure of butterfly valve
CN118008576A (en) Pipeline connection structure of through multilayer casing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees