JPH0959610A - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPH0959610A
JPH0959610A JP7218609A JP21860995A JPH0959610A JP H0959610 A JPH0959610 A JP H0959610A JP 7218609 A JP7218609 A JP 7218609A JP 21860995 A JP21860995 A JP 21860995A JP H0959610 A JPH0959610 A JP H0959610A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
boiling point
refrigerant composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7218609A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Norio Sawada
範雄 沢田
Yonezo Ikumi
米造 井汲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7218609A priority Critical patent/JPH0959610A/en
Publication of JPH0959610A publication Critical patent/JPH0959610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant composition being an azeotropic mixture comprising 1,1,1,2,3,3,3-heptafluoropropane and isobutane and having a boiling point lower than that of each constituent refrigerant. SOLUTION: This refrigerant composition is obtained by forming an azeotropic mixture comprising 90-70wt.% 1,1,1,2,3,3,3-heptafluoropropane and 10-30wt.% isobutane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置に用いら
れ、且つ、オゾン層を破壊する危険のない冷媒組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant composition used in a refrigeration system and having no danger of destroying the ozone layer.

【0002】[0002]

【従来の技術】従来、冷凍機の冷媒として用いられてい
るものにはR12(ジクロロフルオロメタン)とR50
0(R12とR152a(1,1−ジフルオロエタン)
との共沸混合物)が多い。R12の化学式はCCl2F2
である。又、その沸点は大気圧で−29.65℃で、R
500の沸点は−33.45℃であり通常の冷凍装置に
好適である。更に圧縮機への吸込温度が比較的高くても
吐出温度が圧縮機のオイルスラッジを引き起こす程高く
ならない性質を有している。更に又、R12は鉱物油や
アルキルベンゼン油等の従来の圧縮機のオイルと相溶性
が良く、冷媒回路中のオイルを圧縮機まで引き戻す役割
も果たす。
2. Description of the Related Art R12 (dichlorofluoromethane) and R50 are conventionally used as refrigerants for refrigerators.
0 (R12 and R152a (1,1-difluoroethane)
Azeotropic mixture with) is often found. The chemical formula of R12 is CCl2F2
It is. Also, its boiling point is -29.65 ° C at atmospheric pressure, and R
The boiling point of 500 is −33.45 ° C., which is suitable for ordinary refrigeration equipment. Further, even if the suction temperature into the compressor is relatively high, the discharge temperature does not become high enough to cause oil sludge of the compressor. Furthermore, R12 has good compatibility with oils of conventional compressors such as mineral oil and alkylbenzene oil, and also plays a role of returning oil in the refrigerant circuit to the compressor.

【0003】しかしながら上記各冷媒は、その高いオゾ
ン破壊潜在性により、大気中に放出されて地球上空のオ
ゾン層に到達すると、当該オゾン層を破壊する。このオ
ゾン層の破壊は冷媒中の塩素基(Cl)により引き起こ
されることは判っている。
However, each of the refrigerants, due to its high ozone depletion potential, destroys the ozone layer when it is released into the atmosphere and reaches the ozone layer above the earth. It is known that the destruction of the ozone layer is caused by the chlorine group (Cl) in the refrigerant.

【0004】そこで、この塩素基を含まない冷媒、例え
ばR125(ペンタフルオロエタン)やR134a
(1,1,1,2−テトラフルオロエタン)がこれらの
代替冷媒として考えられている。このR125の沸点は
大気圧で−48℃で、R134aの沸点は−26℃であ
る。
Therefore, this chlorine-free refrigerant, such as R125 (pentafluoroethane) or R134a, is used.
(1,1,1,2-Tetrafluoroethane) is considered as an alternative refrigerant for these. The boiling point of R125 is −48 ° C. at atmospheric pressure, and the boiling point of R134a is −26 ° C.

【0005】又、R22(クロロジフルオロメタン)は
塩素基(Cl)を含むものであるが、水素基(H)を有
しているため、オゾン層に到達する以前に活性分解され
るので、オゾン層を破壊する係数がR12に比べて小さ
い。このR22の沸点は大気圧で−40.75℃であ
る。
Further, R22 (chlorodifluoromethane) contains a chlorine group (Cl), but since it has a hydrogen group (H), it is actively decomposed before reaching the ozone layer. The coefficient of destruction is smaller than that of R12. The boiling point of R22 is −40.75 ° C. at atmospheric pressure.

【0006】これらは、先行する米国特許第48104
03号明細書においても述べられており、これらの冷媒
を使用したオゾン層を破壊しないブレンドの例がいくつ
か示されている。
These are described in the prior US Pat. No. 48104.
No. 03 is also mentioned and some examples of blends using these refrigerants which do not destroy the ozone layer are shown.

【0007】[0007]

【発明が解決しようとする課題】前記米国特許明細書に
は、オゾン層を破壊しない複数の冷媒のブレンドによっ
て前述のR12(ジクロロフルオロメタン)と同等の冷
凍能力を発揮する例がいくつか示されており、塩素基
(Cl)を含まないものとしては前述のR125他がま
た、塩素基(Cl)と水素基(H)を含む冷媒としてR
22やR142b他によるブレンドは示されている。
The above-mentioned U.S. Pat. No. 5,837,058 discloses some examples in which a refrigerating capacity equivalent to that of R12 (dichlorofluoromethane) is exhibited by blending a plurality of refrigerants that do not destroy the ozone layer. In addition, R125, etc., which do not contain a chlorine group (Cl), can also be used as a refrigerant containing a chlorine group (Cl) and a hydrogen group (H).
22 and blends by R142b et al. Are shown.

【0008】しかしながら、係る先行技術に示されるよ
うな冷媒ブレンドでは以下に示す不都合が生じる。即
ち、上記塩素基(Cl)を含まない冷媒、R125及び
R134aは冷凍サイクルの圧縮機に従来使用されてい
る鉱物油やアルキルベンゼン油等のオイルとの相溶性が
極度に悪い。これは、オイルとの相溶性が塩素基(C
l)の存在に依っているからである。又、R22も塩素
基(Cl)を有するもののオイルとの相溶性は良好では
ない。
However, the following disadvantages occur in the refrigerant blend as shown in the related art. That is, the refrigerants containing no chlorine group (Cl), R125 and R134a, have extremely poor compatibility with oils such as mineral oils and alkylbenzene oils conventionally used in compressors of refrigeration cycles. It has a chlorine group (C
This is because it depends on the existence of l). Further, although R22 also has a chlorine group (Cl), its compatibility with oil is not good.

【0009】圧縮機のオイルが冷媒に溶けない場合、冷
媒回路の蒸発器中で二相分離(オイルと冷媒の分離)が
発生し、圧縮機にオイルが戻されずに圧縮機の軸受摺動
部が焼付いてしまう危険性がある。
When the oil of the compressor does not dissolve in the refrigerant, two-phase separation (separation of oil and refrigerant) occurs in the evaporator of the refrigerant circuit, the oil is not returned to the compressor, and the bearing sliding portion of the compressor is not returned. There is a risk of burning.

【0010】本発明は係る先行技術が有する種々の課題
を解決することを目的とする。
An object of the present invention is to solve various problems of the prior art.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、1,
1,1,2,3,3,3−ヘプタフルオロプロパンとイ
ソブタンとの共沸混合物からなる冷媒組成物を構成し,
それぞれの単独の沸点より低い沸点にしたものである。
According to the invention of claim 1,
A refrigerant composition comprising an azeotropic mixture of 1,1,2,3,3,3-heptafluoropropane and isobutane,
The boiling point is lower than the boiling point of each of them.

【0012】請求項2の発明は、1,1,1,2,3,
3,3−ヘプタフルオロプロパンを70重量%から90
重量%とイソブタンを30重量%から10重量%との共
沸混合物からなる冷媒組成物を構成し、沸点を−19.
9℃にさせられ、R12の代替冷媒として十分な冷凍能
力を発揮できるとともに、従来の鉱物油やアルキルベン
ゼン油等を冷凍機油とした圧縮機にもそのまま使用でき
るようにしたものである。
The invention of claim 2 is 1, 1, 1, 2, 3,
90% by weight of 3,3-heptafluoropropane
Wt% and isobutane of 30 wt% to 10 wt% constitute an azeotropic mixture having a boiling point of -19.
It is made to be 9 ° C. and can exert a sufficient refrigerating capacity as an alternative refrigerant of R12, and can be used as it is in a compressor using conventional mineral oil or alkylbenzene oil as refrigerating machine oil.

【0013】[0013]

【発明の実施の形態】以下この発明を図に基づいて説明
する。図1は通常の冷凍サイクルの冷媒回路図である。
図2はこの発明の共沸冷媒混合物の特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a normal refrigeration cycle.
FIG. 2 is a characteristic diagram of the azeotropic refrigerant mixture of the present invention.

【0014】1は電動機によって駆動される圧縮機、2
は凝縮器、3はキャピラリチューブ、4は蒸発器であ
り、これらは順次接続されている。圧縮機1内には鉱物
油やアルキルベンゼン油等の従来の冷凍機油が充填され
ている。また、冷媒回路内には化学式に塩素基(Cl)
を含まない冷媒1,1,1,2,3,3,3−ヘプタフ
ルオロプロパン(以下R227eaという)とイソブタ
ン(以下R600aという)との共沸混合物が充填され
ている。その組成はR227eaが70重量%から90
重量%、R600aが30重量%から10重量%であ
る。
1 is a compressor driven by an electric motor, 2
Is a condenser, 3 is a capillary tube, 4 is an evaporator, and these are sequentially connected. The compressor 1 is filled with a conventional refrigerating machine oil such as mineral oil or alkylbenzene oil. In addition, the chemical formula in the refrigerant circuit is chlorine group (Cl)
An azeotropic mixture of 1,1,1,2,3,3,3-heptafluoropropane (hereinafter referred to as R227ea) and isobutane (hereinafter referred to as R600a), which does not include the refrigerant. Its composition is 70% by weight of R227ea to 90%
% By weight, R600a is 30 to 10% by weight.

【0015】図1における冷媒回路中の冷媒の動作を説
明する。圧縮機1から吐出された高温高圧ガス状の共沸
混合物は凝縮器2に流入して放熱し、キャピラリチュー
ブ3で減圧されて蒸発器4に流入し、そこで蒸発して冷
却能力を発揮し、圧縮機1に帰還する。共沸混合物を形
成するR227eaはHFC冷媒であるため、従来の冷
凍機油である鉱物油やアルキルベンゼン油と溶け合わな
いが、R600aは従来の冷凍機油と相溶性があり、圧
縮機1から吐出冷凍機油を溶け込ませてこの圧縮機1に
帰還させる。これによって冷媒回路中の冷凍機油は停滞
することなく圧縮機1へ回収される。
The operation of the refrigerant in the refrigerant circuit in FIG. 1 will be described. The high-temperature high-pressure gaseous azeotrope discharged from the compressor 1 flows into the condenser 2 to radiate heat, is decompressed by the capillary tube 3 and flows into the evaporator 4, where it evaporates and exerts cooling capacity, Return to the compressor 1. Since R227ea forming an azeotrope is an HFC refrigerant, it does not mix with the conventional refrigerating machine oil such as mineral oil or alkylbenzene oil, but R600a is compatible with the conventional refrigerating machine oil, and the compressor 1 discharges the refrigerating machine oil. Is melted and returned to the compressor 1. Thereby, the refrigerating machine oil in the refrigerant circuit is collected in the compressor 1 without stagnation.

【0016】また、HFC冷媒であるR227eaは従
来の冷凍機油に溶け合わないが、エステル油との相溶性
が良く、この冷媒R600aとの共沸混合物は鉱物油、
アルキルベンゼン油及びエステル油等の空調、冷凍用の
圧縮機の冷凍機油として使用できるようにされている。
The HFC refrigerant R227ea is insoluble in conventional refrigerating machine oil, but has good compatibility with ester oil, and the azeotropic mixture with the refrigerant R600a is mineral oil,
It is designed to be used as refrigerating machine oil for compressors for air conditioning and refrigeration of alkylbenzene oil and ester oil.

【0017】R227eaとR600aとの共沸混合物
は蒸発器4で得られる−19.9℃の冷却温度が得られ
るため、R12の代替冷媒として使用でき、通常の家庭
用冷凍冷蔵庫に使用できるようにされている。
The azeotropic mixture of R227ea and R600a can be used as a substitute refrigerant for R12 and can be used for ordinary household refrigerator / freezer because it can obtain the cooling temperature of -19.9 ° C obtained in the evaporator 4. Has been done.

【0018】また、R600aは沸点が高く、可燃性で
あるため、混合比が大き過ぎると蒸発器4において所要
の冷却温度が得られなくなり、且つ爆発の危険性が出て
くるが、逆に小さ過ぎればオイル戻しの機能が発揮でき
なくなる。実験によれば以上のいずれの場合にもR60
0aは全体の10から30重量%が好適であり、望まし
くは19重量%である。
Also, since R600a has a high boiling point and is flammable, if the mixing ratio is too large, the required cooling temperature cannot be obtained in the evaporator 4 and there is a risk of explosion, but on the contrary, it is small. If it passes, the oil return function will not work. Experiments show that R60
The amount of 0a is preferably 10 to 30% by weight, and is preferably 19% by weight.

【0019】[0019]

【発明の効果】本発明の冷媒組成物によればオゾン層を
破壊する危険性がなく、更に、鉱物油やアルキルベンゼ
ン油等の従来の圧縮機オイルとの相溶性の良いR600
aによって冷媒回路中のオイルが圧縮機に帰還せしめら
れるので、圧縮機の焼き付きを防止できる。
EFFECT OF THE INVENTION According to the refrigerant composition of the present invention, there is no risk of depleting the ozone layer, and the compatibility with conventional compressor oils such as mineral oil and alkylbenzene oil is excellent.
Since oil in the refrigerant circuit is returned to the compressor by a, it is possible to prevent seizure of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of the present invention.

【図2】この発明の共沸冷媒混合物の特性図である。FIG. 2 is a characteristic diagram of the azeotropic refrigerant mixture of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 キャピラリチューブ 4 蒸発器 1 Compressor 2 Condenser 3 Capillary tube 4 Evaporator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1,1,1,2,3,3,3−ヘプタフ
ルオロプロパンとイソブタンとの共沸混合物からなる冷
媒組成物。
1. A refrigerant composition comprising an azeotropic mixture of 1,1,1,2,3,3,3-heptafluoropropane and isobutane.
【請求項2】 1,1,1,2,3,3,3−ヘプタフ
ルオロプロパンを70重量%から90重量%とイソブタ
ンを30重量%から10重量%との共沸混合物からなる
冷媒組成物。
2. A refrigerant composition comprising an azeotropic mixture of 70 wt% to 90 wt% of 1,1,1,2,3,3,3-heptafluoropropane and 30 wt% to 10 wt% of isobutane. .
JP7218609A 1995-08-28 1995-08-28 Refrigerant composition Pending JPH0959610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7218609A JPH0959610A (en) 1995-08-28 1995-08-28 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218609A JPH0959610A (en) 1995-08-28 1995-08-28 Refrigerant composition

Publications (1)

Publication Number Publication Date
JPH0959610A true JPH0959610A (en) 1997-03-04

Family

ID=16722642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218609A Pending JPH0959610A (en) 1995-08-28 1995-08-28 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPH0959610A (en)

Similar Documents

Publication Publication Date Title
US6363741B2 (en) Refrigerant composition and refrigerating apparatus
US6606868B1 (en) R 22 replacement refrigerant
EP0509673A1 (en) Refrigerant compositions
JP2584337B2 (en) Refrigerant composition
JPH07173462A (en) Refrigerant composition
AU769199B2 (en) R 22 replacement refrigerant
JPH09208940A (en) Freezer
JPH0959611A (en) Refrigerant composition
US6649079B2 (en) Composition of refrigerant mixtures for low back pressure condition
JPH06220430A (en) Refrigerant composition
JPH09208939A (en) Difluoromethane/hydrocarbon-mixed refrigerant and refrigeration cycle apparatus using the same
JPH0418485A (en) Refrigerant composition
JPH0925480A (en) Hydraulic fluid
EP0507275B1 (en) Refrigerant composition
JPH07502774A (en) Compositions useful as refrigerants
JPH10306289A (en) Cycling refrigerator
JPH0959610A (en) Refrigerant composition
JPH0841448A (en) Freezing cycle using hfc-based non-azeotropic cooling medium mixture and freezing apparatus
JP2859154B2 (en) Refrigeration equipment
JP3433197B2 (en) Refrigerant circuit
JP2001072966A (en) Mixed coolant and refrigeration cycle device using it
JPH09221664A (en) Working fluid
JP2003139423A (en) Refrigerant circuit
JPH07173461A (en) Refrigerant composition
JPH09118879A (en) Cooling medium composition