JPH0956792A - Production method for photoreactive granulated matter - Google Patents

Production method for photoreactive granulated matter

Info

Publication number
JPH0956792A
JPH0956792A JP7210270A JP21027095A JPH0956792A JP H0956792 A JPH0956792 A JP H0956792A JP 7210270 A JP7210270 A JP 7210270A JP 21027095 A JP21027095 A JP 21027095A JP H0956792 A JPH0956792 A JP H0956792A
Authority
JP
Japan
Prior art keywords
photoreactive
water
present
granulated
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7210270A
Other languages
Japanese (ja)
Inventor
Kazuchiyo Takaoka
和千代 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP7210270A priority Critical patent/JPH0956792A/en
Publication of JPH0956792A publication Critical patent/JPH0956792A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To supply a photoreactive granulated matter which are excellent in both treatability and photoreactivity. SOLUTION: Photoreactive generated matter is produced by making silicic acid alkali metal salt react with water-soluble salt of calcium, barium, aluminum, magnesium, zinc, titanium and zirconium, using it as a binder, granulating at least a photoreactive semiconductor and a carrier, and then, drying them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光反応性を利用して、
悪臭や水中の有害物質を分解除去することの出来る、光
反応性造粒物の製造方法に関するものである。
FIELD OF THE INVENTION The present invention utilizes photoreactivity to
The present invention relates to a method for producing a photoreactive granulated product, which can decompose and remove offensive odors and harmful substances in water.

【0002】[0002]

【従来の技術】近年、環境問題に対する関心の高まりに
伴い、工業排気及び排水等工業レベルでの低濃度有害物
質の除去だけでなく、日常生活の中に於ても悪臭除去の
要求が増加している。そして、従来この様な低濃度有害
物の除去には、特に日常生活に於ける悪臭除去材として
は、一般的に活性炭、シリカ、アルミナ、及びある種の
金属酸化物等の複合化された無機吸着剤等が使用されて
いる。この様な吸着剤は粉体のまま使用したり、特開昭
49−16056号公報に記載の如くシート状に加工し
て使用することが提案されている。
2. Description of the Related Art In recent years, with increasing concern about environmental problems, not only the removal of low-concentration harmful substances at industrial level such as industrial exhaust and drainage, but also the demand for removal of offensive odors in daily life has increased. ing. In the past, for the removal of such low-concentration harmful substances, especially as a malodor removing material in daily life, activated carbon, silica, alumina, and a complex inorganic compound such as a certain metal oxide are generally used. Adsorbents are used. It has been proposed to use such an adsorbent as it is as a powder or to process it into a sheet as described in JP-A-49-16056.

【0003】ところが、この様な吸着剤を用いた除去方
法では、吸着剤に有害物が吸着されるに従い、次第に吸
収能力が低下して行く。そこで、実用的吸着能力を喪失
した場合には、吸着材を取り替える必要があった。また
それがため、吸着能力が有効に働く期間を見極める必要
があるなど、使用上の数々の問題点があった。
However, in the removal method using such an adsorbent, the absorption capacity gradually decreases as the harmful substances are adsorbed by the adsorbent. Therefore, it was necessary to replace the adsorbent when the practical adsorption capacity was lost. Further, because of that, there were various problems in use, such as it was necessary to determine the period during which the adsorption capacity worked effectively.

【0004】これに対し、近年光反応性半導体を用いた
有害物の除去方法が注目を集めている。特開昭61−1
35669号公報には、酸化亜鉛等の光反応性半導体に
紫外光を照射して、悪臭物質である硫黄化合物を分解す
る方法が開示されている。また、特公平2−62297
号公報には、酸化チタンと活性炭混合物により低濃度窒
素酸化物を除去する方法が開示されている。酸化チタン
や酸化亜鉛等の光反応性半導体による悪臭物質等の分解
は、紫外線による接触悪臭物質の光触媒的酸化作用によ
るため、光反応性半導体は悪臭物質の分解で消費及び劣
化を被らず、その能力は光曝露されている限り基本的に
低下しないため、吸着剤のみを使用する場合に比べて大
きな利点を有する。
On the other hand, in recent years, a method for removing harmful substances using a photoreactive semiconductor has been attracting attention. JP-A-61-1
Japanese Patent No. 35669 discloses a method in which a photoreactive semiconductor such as zinc oxide is irradiated with ultraviolet light to decompose a sulfur compound that is a malodorous substance. In addition, Japanese Examined Patent Publication 2-62297
The publication discloses a method of removing low-concentration nitrogen oxides with a mixture of titanium oxide and activated carbon. Decomposition of malodorous substances etc. by photoreactive semiconductors such as titanium oxide and zinc oxide is due to photocatalytic oxidation of contact malodorous substances by ultraviolet rays, so photoreactive semiconductors do not suffer consumption and deterioration due to decomposition of malodorous substances, Its capacity is essentially unchanged as long as it is exposed to light, which is a great advantage over the case where only an adsorbent is used.

【0005】これら光反応性半導体による分解能力は、
被分解物である有害物質との接触の機会が多い程向上す
るから、最も効果的な使用形態は有害物質と接触する反
応面積の減ずることのない粉体の状態で使用することで
ある。しかしながら、実際には粉体を粉体のまま、例え
ば粉体をばらまいて使用する訳にはゆかず、これを取り
扱うためには何らかの加工が必要である。
The decomposing ability of these photoreactive semiconductors is
The more effective the contact with the harmful substance which is a substance to be decomposed is, the more improved it is. Therefore, the most effective use form is to use it in the form of powder which does not reduce the reaction area in contact with the harmful substance. However, in practice, it is not possible to use the powder as it is, for example, by scattering the powder, and some processing is required to handle this.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、光反
応性半導体の光反応性を利用した優れた光反応性有害物
除去能力を有する、取り扱いに優れた、光反応性造粒物
の製造方法を提供することにある。
The object of the present invention is to provide a photoreactive granulated product which has an excellent ability to remove photoreactive harmful substances utilizing the photoreactivity of a photoreactive semiconductor and is excellent in handling. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意検討した結果、珪酸アルカリ金属塩とカ
ルシウム、バリウム、アルミニウム、マグネシウム、亜
鉛、チタン、ジルコニウムの水溶性塩との反応物をバイ
ンダーとして、少なくとも光反応性半導体と担体とを造
粒した後、乾燥することによって上記課題を解決するこ
とを見いだした。本発明はこれらの知見により達成され
たものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a reaction between an alkali metal silicate and a water-soluble salt of calcium, barium, aluminum, magnesium, zinc, titanium or zirconium. It was found that the above problem can be solved by granulating at least the photoreactive semiconductor and the carrier using the product as a binder, and then drying. The present invention has been achieved based on these findings.

【0008】即ち本発明は、少なくとも光反応半導体と
担体よりなる光反応性造粒物の製造方法であって、珪酸
アルカリ金属塩とカルシウム、バリウム、アルミニウ
ム、マグネシウム、亜鉛、チタン、ジルコニウムの水溶
性塩との反応物をバインダーとして造粒した後、乾燥さ
れたことを特徴とする光反応性造粒物の製造方法であ
る。
That is, the present invention is a method for producing a photoreactive granulated product comprising at least a photoreactive semiconductor and a carrier, wherein an alkali metal silicate and calcium, barium, aluminum, magnesium, zinc, titanium and zirconium are water-soluble. This is a method for producing a photoreactive granulated product, which comprises granulating a reaction product with a salt as a binder and then drying.

【0009】以下に本発明の光反応性造粒物の製造方法
及び光反応性造粒物に係わる構成要素を詳細に説明す
る。本発明に係わる光反応性造粒物は、マグネシウム、
カルシウム、バリウム、亜鉛、アルミニウム、チタン、
及びジルコニウムから選ばれた少なくとも1種を含有す
る水溶性塩と珪酸アルカリ金属塩との反応物を、少なく
とも光反応性半導体及び担体と混合して造粒する。この
とき反応物は水不溶性となり、少なくとも光反応性半導
体及び担体の混合物の結着剤として用い事ができて、造
粒物の取り扱い性や水中で粒子が崩壊しないような耐水
性を付与することができる。
The method for producing the photoreactive granulated product of the present invention and the constituent elements relating to the photoreactive granulated product will be described in detail below. The photoreactive granules according to the present invention are magnesium,
Calcium, barium, zinc, aluminum, titanium,
And a reaction product of a water-soluble salt containing at least one selected from zirconium and zirconium and an alkali metal silicate is mixed with at least a photoreactive semiconductor and a carrier, and granulated. At this time, the reaction product becomes insoluble in water, and at least it can be used as a binder for a mixture of a photoreactive semiconductor and a carrier, and it should be easy to handle the granulated product and impart water resistance such that the particles do not disintegrate in water. You can

【0010】本発明の光反応性造粒物の製造方法は、ま
ずマグネシウム、カルシウム、バリウム、亜鉛、アルミ
ニウム、チタン、及びジルコニウムから選ばれた少なく
とも1種を含有する水溶性塩と珪酸アルカリ金属塩とか
ら水不溶性なる反応物を形成させる。本発明に係わるマ
グネシウム、カルシウム、バリウム、亜鉛、アルミニウ
ム、チタン、及びジルコニウムから選ばれた少なくとも
1種(カチオン)を含有する水溶性塩は、これらのカチ
オンと水溶性塩を形成するアニオンから形成されていれ
ば、何如なるアニオンでも差支えないが、アニオンが例
えば酢酸等の様に有機性であり、それが造粒粒子中に保
持されると光反応性半導体により分解され、その間有害
物質の分解が妨げられるために好ましくない。そこで、
本発明に係わる上記カチオンを含有する水溶性塩におけ
る対アニオンとしては、塩素及び臭素等のハロゲン、硝
酸、及び硫酸等が好ましい。
In the method for producing the photoreactive granulated product of the present invention, first, a water-soluble salt containing at least one selected from magnesium, calcium, barium, zinc, aluminum, titanium, and zirconium and an alkali metal silicate. To form a water-insoluble reaction product. The water-soluble salt containing at least one kind (cation) selected from magnesium, calcium, barium, zinc, aluminum, titanium, and zirconium according to the present invention is formed from these cations and an anion forming a water-soluble salt. If so, any anion may be used, but the anion is organic such as acetic acid, and when it is retained in the granulated particles, it is decomposed by the photoreactive semiconductor, and during that time, harmful substances are decomposed. It is not preferable because it is disturbed. Therefore,
The counter anion in the water-soluble salt containing the above cation according to the present invention is preferably halogen such as chlorine and bromine, nitric acid, sulfuric acid and the like.

【0011】本発明に係わるマグネシウム、カルシウ
ム、バリウム、亜鉛、アルミニウム、チタン、及びジル
コニウムから選ばれた少なくとも1種(カチオン)を含
有する水溶性塩の更なる例としては、酸塩化ジルコニル
の様な酸化物複合塩や、メタチタン酸及びポリ塩化アル
ミニウム[(Al2(OH)nCl6ーn)m]等の必ずしも水溶
性でなくとも良い酸等も挙げられる。
Further examples of water-soluble salts containing at least one (cation) selected from magnesium, calcium, barium, zinc, aluminum, titanium and zirconium according to the present invention are zirconyl oxychloride. Examples thereof also include oxide complex salts and acids that are not necessarily water-soluble, such as metatitanic acid and polyaluminum chloride [(Al 2 (OH) n Cl 6 -n ) m ].

【0012】また、本発明に係わる珪酸アルカリ金属塩
とは、一般にSiO2/M2O(Mはアルカリ金属塩を表
す)で表現される珪酸のリチウム塩、ナトリウム塩、及
びカリウム塩を指す。これら珪酸アルカリ金属塩は、塩
酸及び硝酸等と反応してゲル化するが、得えられたゲル
状物の乾燥強度は脆弱で、結着剤として少なくとも水中
での長期間の形態保持には不適当である。一方、本発明
に係わるマグネシウム、カルシウム、バリウム、亜鉛、
アルミニウム、チタン、及びジルコニウムから選ばれた
少なくとも1種を含有する水溶性塩と珪酸アルカリ金属
塩との水不溶性反応物は、光反応性半導体と担体とを結
着させることは勿論、再度水中に投入しても粒子の形状
を保持する強度を有する結着力を有する。
Further, the alkali metal silicate according to the present invention generally means lithium salt, sodium salt and potassium salt of silicic acid represented by SiO 2 / M 2 O (M represents an alkali metal salt). Although these alkali metal silicates react with hydrochloric acid, nitric acid and the like to form a gel, the obtained gel-like material has a weak dry strength and is not suitable as a binder for maintaining its shape for a long time at least in water. Appropriate. On the other hand, magnesium, calcium, barium, zinc according to the present invention,
The water-insoluble reaction product of the water-soluble salt containing at least one selected from aluminum, titanium, and zirconium and the alkali metal silicate is not only for binding the photoreactive semiconductor and the carrier, but also for re-immersing in water. It has a binding force that has the strength to maintain the shape of the particles even when charged.

【0013】本発明に係わる光反応性造粒物は、マグネ
シウム、カルシウム、バリウム、亜鉛、アルミニウム、
チタン、及びジルコニウムから選ばれた少なくとも1種
を含有する水溶性塩と珪酸アルカリ金属塩とからなる水
不溶性反応物を、これを結着剤として少なくとも光反応
性半導体及び担体の混合物と混合して造粒する。本発明
に係わる光反応性造粒物の造粒方法としては、まず少な
くとも光反応性半導体と担体を乾式または湿潤状態で混
合し、上記水不溶性反応物含有液を滴下しながらシェア
ーをかけ、撹拌造粒装置にて製造させる。この場合には
造粒後に乾燥工程が入る。更に別の方法では少なくとも
光反応性半導体と担体及び水不溶性反応物ーを混合し、
熱風を通過させながら、攪拌羽のついた連続流動造粒混
合造粒装置にて作製される。この場合には造粒と乾燥が
同一工程で行われる。
The photoreactive granules according to the present invention include magnesium, calcium, barium, zinc, aluminum,
A water-insoluble reaction product comprising a water-soluble salt containing at least one selected from titanium and zirconium and an alkali metal silicate is mixed with at least a mixture of a photoreactive semiconductor and a carrier by using this as a binder. Granulate. As the method for granulating the photoreactive granule according to the present invention, first, at least the photoreactive semiconductor and the carrier are mixed in a dry or wet state, and the water-insoluble reactant-containing liquid is added dropwise and sheared, followed by stirring. It is manufactured by a granulator. In this case, a drying step is performed after granulation. In yet another method, at least a photoreactive semiconductor is mixed with a carrier and a water-insoluble reactant,
It is produced by a continuous-flow granulation mixing granulator equipped with stirring blades while passing hot air. In this case, granulation and drying are performed in the same process.

【0014】この様にして製造される造粒粒子は、水不
溶性反応物の種類、光反応性半導体と担体の混合物に対
する水不溶性反応物の混合比、及び用いる攪拌造粒装置
(造粒方式)等により、造粒粒径は100μm程度から
数mmまで造粒することができる。これら光反応性造粒
物は、そのままの形態で光触媒として利用できるが、シ
ート状やハニカム状の支持体間に内包して用いても良
い。
The granulated particles produced in this manner include the type of the water-insoluble reaction product, the mixing ratio of the water-insoluble reaction product to the mixture of the photoreactive semiconductor and the carrier, and the stirring granulation apparatus (granulation system) used. As a result, the granulated particle size can be granulated from about 100 μm to several mm. These photoreactive granules can be used as they are as a photocatalyst, but they may be used by enclosing them between sheet-like or honeycomb-like supports.

【0015】本発明の光反応性造粒物の製造方法に於て
形成される水不溶性反応物は、脱水後多孔質体となり、
悪臭物質等の有害物が造粒粒子中に拡散するのを妨げな
い。また、本発明に係わる水不溶性反応物は、ある程度
の粒状性を有しているので、少なくとも光反応性半導体
表面を全て被覆することはなく、従って光反応性が大き
く阻害されることはない。更に、本発明の光反応性造粒
物の製造方法に於て形成される水不溶性反応物中には、
反応副生成物であるアルカリ金属を含有する水溶性塩を
含有しているため、有害物除去に際して予め本発明に係
わる造粒物を洗浄しておくことで、これら水溶性塩が溶
解除去され、造粒表面の細孔が増加して好ましい。
The water-insoluble reaction product formed in the method for producing a photoreactive granulated product of the present invention becomes a porous body after dehydration,
It does not prevent harmful substances such as malodorous substances from diffusing into the granulated particles. Further, since the water-insoluble reaction product according to the present invention has a certain degree of granularity, it does not cover at least the entire surface of the photoreactive semiconductor, and therefore the photoreactivity is not significantly hindered. Furthermore, in the water-insoluble reaction product formed in the method for producing a photoreactive granulated product of the present invention,
Since it contains a water-soluble salt containing an alkali metal that is a reaction by-product, by washing the granulated product according to the present invention in advance when removing harmful substances, these water-soluble salts are dissolved and removed, The number of pores on the granulation surface is increased, which is preferable.

【0016】次に本発明に係わる光反応性半導体及び担
体について説明する。本発明に係わる光反応性半導体と
は、0.5から5eV、好ましくは2から4eVの禁止
帯幅を有する光反応性を有する半導体である。本発明に
係わるこの様な特性を有する光反応性半導体としては、
酸化チタン、酸化亜鉛、酸化タングステン、酸化鉄、酸
化セリウム、酸化ニオブ、硫化カドミウム、及び硫化セ
レン等が挙げれられるが、殊に酸化チタンは光照射時の
構造安定性、毒性がないこと、及び優れた光反応性等の
観点から、実使用に対して非常に優れた光反応性半導体
である。
Next, the photoreactive semiconductor and carrier according to the present invention will be described. The photoreactive semiconductor according to the present invention is a photoreactive semiconductor having a bandgap of 0.5 to 5 eV, preferably 2 to 4 eV. As the photoreactive semiconductor having such characteristics according to the present invention,
Examples thereof include titanium oxide, zinc oxide, tungsten oxide, iron oxide, cerium oxide, niobium oxide, cadmium sulfide, and selenium sulfide. In particular, titanium oxide has structural stability upon irradiation with light, has no toxicity, and is excellent. It is a photoreactive semiconductor that is very excellent in actual use from the viewpoint of photoreactivity.

【0017】本発明に有利に用いられる酸化チタンに
は、金、銀、亜鉛、白金、及び酸化ルテニウム等が担持
されていても良い。特に、金、白金、及び銀は酸化チタ
ンに光照射した場合に還元点になるし、酸化ルテニウム
は酸化点になる。
The titanium oxide advantageously used in the present invention may carry gold, silver, zinc, platinum, ruthenium oxide and the like. In particular, gold, platinum, and silver become reduction points when titanium oxide is irradiated with light, and ruthenium oxide becomes oxidation points.

【0018】本発明に係わる光反応性半導体として用い
る酸化チタンの製法としては、硫酸チタニルを煮沸し、
加水分解して得る方法(硫酸法)、四塩化チタンを中和
して得る方法、四塩化チタンを酸素共存下にて焼成して
得る方法(塩酸法)、及び有機チタン化合物等を焼成す
る方法等がある。本発明に係わる光反応性半導体として
は、何れの製法によって得られたものも用いることがで
きる。
The titanium oxide used as the photoreactive semiconductor according to the present invention is produced by boiling titanyl sulfate,
Method obtained by hydrolysis (sulfuric acid method), method obtained by neutralizing titanium tetrachloride, method obtained by firing titanium tetrachloride in the presence of oxygen (hydrochloric acid method), and method obtained by firing organic titanium compound Etc. As the photoreactive semiconductor according to the present invention, those obtained by any manufacturing method can be used.

【0019】本発明の製造方法で得られる光反応成造粒
物に於ける実質的有害物除去剤である光反応性半導体
は、比表面積が大きくなると有害物除去能が向上するだ
けでなく、有害物との接触面積も増大することから、有
害物質を分解・除去するためには、光反応性半導体の比
表面積が大きいほど効果的である。本発明に係わる光反
応性半導体の比表面積は、100m2/g以上が好まし
い。また、この様な比表面積を有する光反応性半導体の
粒径は30nm以下が好ましく、更に好ましくは10n
m以下である。
The photoreactive semiconductor, which is a substantially harmful substance removing agent in the photoreactive granulation product obtained by the production method of the present invention, not only has the ability to remove harmful substances improved as the specific surface area increases, Since the contact area with harmful substances also increases, the larger the specific surface area of the photoreactive semiconductor, the more effective it is to decompose and remove the harmful substances. The specific surface area of the photoreactive semiconductor according to the present invention is preferably 100 m 2 / g or more. The particle size of the photoreactive semiconductor having such a specific surface area is preferably 30 nm or less, more preferably 10 n.
m or less.

【0020】しかしながら、上記光反応性半導体は総じ
て自己皮膜形成性が乏しく、また本発明に好ましく用い
られる比表面積の大きな光反応性半導体は、当然粒子径
が小さく、そのままでは取扱いが難しい。そこで、本発
明の光反応性造粒物の製造方法に於ては、光反応性半導
体の自己被覆による有害物除去能の悪化を抑制し、造粒
をより容易にするため、光反応性半導体に担体を併用す
る。
However, the above-mentioned photoreactive semiconductors generally have a poor self-film forming property, and the photoreactive semiconductors preferably used in the present invention having a large specific surface area naturally have a small particle size and are difficult to handle as they are. Therefore, in the method for producing a photoreactive granule of the present invention, in order to facilitate the granulation by suppressing the deterioration of the harmful substance removing ability due to the self-coating of the photoreactive semiconductor, the photoreactive semiconductor Together with a carrier.

【0021】本発明に係わる担体としては、活性白土、
ゼオライト、セピオライト、ハロイサイト、酸化亜鉛、
シリカ、アルミナ、活性炭、及びこれらの複合物等が挙
げられる。本発明に係わる担体の形状は、粉体状である
ことが好ましいが、担体の粒径は本発明に係わる光反応
性半導体より小さくなければ特に制限はない。また、本
発明に係わる担体の内、活性炭等の比表面積が極めて大
きく吸着能を有するものは、吸着能を有する担体により
有害物の濃度が造粒粒子内で増加し、結果として光反応
性半導体表面での有害物濃度が上昇して、有害物除去性
能が増大するために好適に用いられる。
As the carrier according to the present invention, activated clay,
Zeolite, sepiolite, halloysite, zinc oxide,
Examples thereof include silica, alumina, activated carbon, and composites thereof. The shape of the carrier according to the present invention is preferably a powder, but the particle size of the carrier is not particularly limited as long as it is smaller than the photoreactive semiconductor according to the present invention. Further, among the carriers according to the present invention, those having an extremely large specific surface area such as activated carbon and the like and having an adsorptive capacity increase the concentration of harmful substances in the granulated particles due to the carrier having an adsorptive capacity, resulting in a photoreactive semiconductor. It is preferably used because the harmful substance concentration on the surface increases and the harmful substance removing performance increases.

【0022】[0022]

【作用】本発明は、少なくとも光反応性半導体と担体を
含有する光反応性造粒物の製造方法であって、マグネシ
ウム、カルシウム、バリウム、アルミニウム、亜鉛、チ
タン、ジルコニウムから選ばれた少なくとも1種を含有
する水溶性塩または酸と珪酸アルカリ金属塩との水不溶
性反応物を、少なくとも光反応性半導体及び担体と混合
して造粒することを特徴とし、この水不溶性反応物は脱
水後多孔質体となって悪臭物質等の有害物が造粒粒子中
に拡散するのを妨げない。また、本発明に係わる水不溶
性反応物は、ある程度の粒状性を有しているので、少な
くとも光反応性半導体表面を全て被覆することはなく、
従って光反応性が大きく阻害されることはない。
The present invention relates to a method for producing a photoreactive granulated product containing at least a photoreactive semiconductor and a carrier, and at least one selected from magnesium, calcium, barium, aluminum, zinc, titanium and zirconium. A water-insoluble reaction product of a water-soluble salt or an acid and an alkali metal silicate containing, is mixed with at least a photoreactive semiconductor and a carrier and granulated, and the water-insoluble reaction product is porous after dehydration. It does not prevent the harmful substances such as malodorous substances from diffusing into the granulated particles as a body. Further, since the water-insoluble reactant according to the present invention has a certain degree of granularity, it does not cover at least the entire surface of the photoreactive semiconductor,
Therefore, the photoreactivity is not significantly impaired.

【0023】また、この水不溶性反応物は優れた結着性
を示し、これを結着剤として造粒した少なくとも光反応
性半導体及び担体を含有する光反応性造粒物は、乾燥状
態では勿論のこと、水中に於ても造粒体は形態を崩さな
いので、空気中の有害物の除去だけでなく、水中での細
菌の除去等に優れた効果を発揮することができる。
Further, the water-insoluble reaction product exhibits excellent binding properties, and the photoreactive granulated product containing at least the photoreactive semiconductor and the carrier granulated with this as a binder is, of course, in a dry state. Therefore, since the granule does not lose its shape even in water, it can exert an excellent effect not only in removing harmful substances in the air but also in removing bacteria in the water.

【0024】[0024]

【実施例】以下、実施例により更に本発明を詳細に説明
するが、本発明はその主旨を越えない限り、これらに限
定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these as long as the gist thereof is not exceeded.

【0025】実施例1 塩化アルミニウム1重量部と塩化亜鉛0.5重量部を水
20重量部に溶解させた。この溶液に珪酸リチウム1.
5重量部、珪酸ナトリム0.5重量部となるように30
%水溶液を撹拌しながら添加した。更にこの溶液に光反
応性半導体として酸化チタン(石原産業製;ST−3
1)0.5重量部を加え充分に撹拌し、バインダー水溶
液とした。
Example 1 1 part by weight of aluminum chloride and 0.5 part by weight of zinc chloride were dissolved in 20 parts by weight of water. Lithium silicate 1.
5 parts by weight, 30 parts by weight of sodium silicate 0.5 parts by weight
% Aqueous solution was added with stirring. Furthermore, titanium oxide (made by Ishihara Sangyo; ST-3
1) 0.5 part by weight was added and sufficiently stirred to obtain a binder aqueous solution.

【0026】一方活性炭(クラレケミカル製;PW−W
5 50%水分含有物)5重量部と酸化チタン(石原産
業製;ST−31)4.5重量部を、高速撹拌型混合造
粒機(奈良機械製;ヘビーデゥティー・マトリクス)に
投入し、先に作製バインダー溶液を滴下しながら、造粒
した。作製した造粒物は平均粒径が0.3mmであっ
た。この造粒物を120度にて30分乾燥させ、光反応
性造粒物を作製した。この造粒物を取り扱っても微細な
粉体は脱離せず、良好状態であった。
On the other hand, activated carbon (Kuraray Chemical; PW-W
5 parts by weight of 50% water content) and 4.5 parts by weight of titanium oxide (manufactured by Ishihara Sangyo; ST-31) were put into a high-speed agitation type mixing granulator (manufactured by Nara Machinery; heavy duty matrix). Granulation was performed while dropping the prepared binder solution first. The produced granulated product had an average particle size of 0.3 mm. This granulated product was dried at 120 ° C. for 30 minutes to prepare a photoreactive granulated product. Even if this granulated product was handled, fine powder was not released and was in a good state.

【0027】この光反応性造粒物1gずつを、5.6リ
ットルの密閉できる二つの容器に入れ、一方に6wのブ
ラックランプを約5cmの距離から照射できる様にし
た。これらの容器にアセトアルデヒド高濃度ガスを注入
して、容器内の濃度を15ppmとなる様に調整した。
ガスは60分ごとに4回注入し、4回目の注入後60分
後の容器内のガス濃度をFID検出器付きガスクロマト
グラフィーで測定した。その結果、光を照射し続けた容
器内の残留アセトアルデヒド濃度は2ppmまで低下し
ていたが、光を照射しなかった方は45ppmであっ
た。
1 g of each of the photoreactive granules was placed in two containers of 5.6 liters which could be sealed, and one of them was irradiated with a 6 w black lamp from a distance of about 5 cm. High-concentration acetaldehyde gas was injected into these containers to adjust the concentration in the containers to 15 ppm.
The gas was injected four times every 60 minutes, and the gas concentration in the container 60 minutes after the fourth injection was measured by gas chromatography with an FID detector. As a result, the residual acetaldehyde concentration in the container that continued to be irradiated with light was reduced to 2 ppm, but the concentration was 45 ppm for those not irradiated with light.

【0028】この光反応性造粒物1gをイソプロパノー
ル濃度50ppmの水溶液20ccに投入し、撹拌しな
がら6wのブラックランプの照射の有無で、60分後の
濃度を液体クロマトグラフィーにて測定した。結果、光
を照射した方は3ppmまで濃度が減少したが光を照射
しなかった方は20ppmまでしか減少しなかった。更
に水中にて光を照射しても、造粒の形態は崩れなかっ
た。
1 g of this photoreactive granulated product was placed in 20 cc of an aqueous solution having an isopropanol concentration of 50 ppm, and the concentration after 60 minutes was measured by liquid chromatography with and without irradiation of a 6 w black lamp while stirring. As a result, the concentration of the light-irradiated one decreased to 3 ppm, but that of the non-irradiated light decreased only to 20 ppm. Further, even when irradiated with light in water, the morphology of granulation did not collapse.

【0029】実施例2 硫酸亜鉛1.5重量部と硫酸チタニル0.5重量部を水
20重量部に溶解させた。この溶液に添加量が珪酸リチ
ウム1.5重量部、珪酸ナトリム0.5重量部となるよ
うに30%の水溶液を撹拌しながら添加しバインダー水
溶液を作製した。
Example 2 1.5 parts by weight of zinc sulfate and 0.5 parts by weight of titanyl sulfate were dissolved in 20 parts by weight of water. A 30% aqueous solution was added to this solution while stirring so that the addition amounts were 1.5 parts by weight of lithium silicate and 0.5 parts by weight of sodium silicate to prepare a binder aqueous solution.

【0030】このバインダー容器に活性炭(クラレケミ
カル製;PW−W5 50%水分含有物)5重量部と酸
化チタン(石原産業製;メタチタン酸)5重量部を加え
充分に混合し、連続流動造粒乾燥装置(大川原製作所
製;ミクスグラード)に投入し、光反応性造粒物を製造
した。使用した熱風は120度で、作製した造粒物は平
均粒径が0.15mmであった。
To this binder container, 5 parts by weight of activated carbon (Kuraray Chemical; PW-W5 50% water content) and 5 parts by weight of titanium oxide (Ishihara Sangyo; metatitanic acid) were added and mixed well, and continuous flow granulation. The mixture was put into a drying device (Okawara Seisakusho; Mixgrad) to produce a photoreactive granule. The hot air used was 120 degrees, and the produced granulated product had an average particle size of 0.15 mm.

【0031】この造粒物を実施例1と同様に気相中での
アセトアルデヒドの除去と水中でのイソプロパノールの
除去の実験を行った。この結果気相中では光照射側が
1.5ppm、照射しなかった側が46ppm、水中で
は光照射側が2ppm、照射しなかった方が20ppm
であり、いずれも実施例1と同様良好な光反応性を示し
た。また水中にて造粒体は崩壊しなかった。
The granules were tested in the same manner as in Example 1 for removing acetaldehyde in the gas phase and isopropanol in water. As a result, the light irradiation side was 1.5 ppm in the gas phase, the non-irradiation side was 46 ppm, the water irradiation side was 2 ppm in water, and the non-irradiation side was 20 ppm.
And all showed good photoreactivity as in Example 1. The granules did not collapse in water.

【0032】[0032]

【発明の効果】以上の結果から、本発明の光反応性造粒
物の製造方法によって、悪臭や水中の有害物を効率良く
除去できて、更に取り扱いに優れた造粒物を製造するこ
とができた。
From the above results, according to the method for producing a photoreactive granulated product of the present invention, it is possible to efficiently remove offensive odors and harmful substances in water and to produce a granulated product excellent in handling. did it.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも光反応性半導体と担体よりな
る光反応性造粒物の製造方法であって、珪酸アルカリ金
属塩とカルシウム、バリウム、アルミニウム、マグネシ
ウム、亜鉛、チタン、ジルコニウムの水溶性塩との反応
物をバインダーとして造粒し、乾燥させたことを特徴と
する光反応性造粒物の製造方法。
1. A method for producing a photoreactive granulated product comprising at least a photoreactive semiconductor and a carrier, comprising an alkali metal silicate and a water-soluble salt of calcium, barium, aluminum, magnesium, zinc, titanium or zirconium. The method for producing a photoreactive granulated product, which comprises granulating the reaction product of 1. as a binder and drying the granulated product.
JP7210270A 1995-08-18 1995-08-18 Production method for photoreactive granulated matter Pending JPH0956792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7210270A JPH0956792A (en) 1995-08-18 1995-08-18 Production method for photoreactive granulated matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7210270A JPH0956792A (en) 1995-08-18 1995-08-18 Production method for photoreactive granulated matter

Publications (1)

Publication Number Publication Date
JPH0956792A true JPH0956792A (en) 1997-03-04

Family

ID=16586619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7210270A Pending JPH0956792A (en) 1995-08-18 1995-08-18 Production method for photoreactive granulated matter

Country Status (1)

Country Link
JP (1) JPH0956792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2005296766A (en) * 2004-04-09 2005-10-27 Tohoku Ricoh Co Ltd Production method of photocatalytic functional material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
US6368668B1 (en) 1998-07-30 2002-04-09 Toto Ltd. Method and apparatus for producing a photocatalytic material
JP3852284B2 (en) * 1998-07-30 2006-11-29 東陶機器株式会社 Method for producing functional material having photocatalytic function and apparatus therefor
JP2005296766A (en) * 2004-04-09 2005-10-27 Tohoku Ricoh Co Ltd Production method of photocatalytic functional material
JP4573560B2 (en) * 2004-04-09 2010-11-04 東北リコー株式会社 Photocatalytic functional material production method and photocatalytic functional material produced by this method

Similar Documents

Publication Publication Date Title
Nagpal et al. Use of metal oxides for the adsorptive removal of toxic organic pollutants
Pandey et al. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite
Yang et al. Adsorption and photocatalytic degradation of sulfamethoxazole by a novel composite hydrogel with visible light irradiation
Ajoudanian et al. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin
US5480636A (en) Titanium oxide particles and method of scavenging noxious materials
US6090736A (en) Photocatalytic powder for environmental clarification and process for producing same, said powder-containing polymer composition, and shaped article of said composition and process for producing same
CN100336587C (en) Porous carbon adsorbing agent containing nano zinc oxide micropartical and its preparation process and application
Alikhani et al. Photocatalytic degradation and adsorption of herbicide 2, 4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light
Monsef Khoshhesab et al. Adsorptive removal of reactive dyes from aqueous solutions using zinc oxide nanoparticles
Bouyarmane et al. Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials
CN101522572A (en) Method for adsorption of fluid contaminants and regeneration of the adsorbent
US11033878B2 (en) Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
US5234884A (en) Adsorbent composition and method of producing same
JP3217101B2 (en) Method for producing air purifier
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Bozorgpanah Kharat et al. Removal of reactive black 5 dye from aqueous solutions by Fe3O4@ SiO2-APTES nanoparticles
JP3430188B2 (en) Immobilized photocatalyst and method for producing the same
JP2000140634A (en) Removing method of harmful substance in liquid
Joshi et al. Metal oxide nanocomposites for wastewater treatment
JP3247611B2 (en) Hazardous substance remover and harmful substance removal method using the same
US5624667A (en) Titanium oxide particles and method of producing same
JPH0956792A (en) Production method for photoreactive granulated matter
JP2000288405A (en) Photocatalyst body and removing method of harmful material using the same
EP1236510A1 (en) Catalyst for decomposing organic hazardous material and method for decomposing organic halides using the same
KR20090116846A (en) Functional materials manufacture methods for remove of sick house syndrome