JPH0952260A - Injection mold - Google Patents

Injection mold

Info

Publication number
JPH0952260A
JPH0952260A JP7206996A JP20699695A JPH0952260A JP H0952260 A JPH0952260 A JP H0952260A JP 7206996 A JP7206996 A JP 7206996A JP 20699695 A JP20699695 A JP 20699695A JP H0952260 A JPH0952260 A JP H0952260A
Authority
JP
Japan
Prior art keywords
sprue
mold
injection molding
injection
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7206996A
Other languages
Japanese (ja)
Inventor
Yuji Sakamoto
雄二 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7206996A priority Critical patent/JPH0952260A/en
Publication of JPH0952260A publication Critical patent/JPH0952260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the cooling time of a sprue, to shorten the molding cycle time and to reduce the injection molding pressure by disposing a metal member for forming a mold in the sprue. SOLUTION: When an injection molding operation is executed in the state that an injection mold is mounted in an injection molding machine, the melted resin in the cylinder of the machine is first introduced into the resin inlet 120 of the stationary side 199 of the mold. Then, the melted resin flows in a conical sprue 110 while being brought into contact with a metal member 108, and then flows in four runners 111. Thereafter, the melted resin is filled in a cavity via a secondary sprue 112 and a gate 113.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は射出成形用金型に関
し、特に、冷却時間の短縮が図れ、かつ低圧射出成形が
可能な射出成形用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding die, and more particularly to an injection molding die capable of shortening a cooling time and capable of low pressure injection molding.

【0002】[0002]

【従来の技術】射出成形時に形成されるスプルの形状は
一般に、断面が円である、テーパの付いた棒状であり、
その断面の円直径は、スプル部を溶融樹脂が流れる方向
に向かって増大するようになっている。
2. Description of the Related Art The shape of a sprue formed during injection molding is generally a tapered rod shape having a circular cross section,
The circular diameter of the cross section increases in the direction in which the molten resin flows through the sprue portion.

【0003】このテーパは、スプルを金型から離型する
ために必要であり、通常は2〜4°である。テーパが小
さすぎると金型からの離型に支障をきたし、テーパが大
きすぎると、スプルの最大直径が大きくなって、冷却時
間が多く必要となり、射出成形のための製造コストが増
大して不経済である。
This taper is necessary for releasing the sprue from the mold, and is usually 2 to 4 °. If the taper is too small, it will hinder the release from the mold, and if the taper is too large, the maximum diameter of the sprue will be large and cooling time will be long, increasing the manufacturing cost for injection molding and increasing It is an economy.

【0004】スプルの断面が一般に円である主たる理由
は、経済的な金型の機械加工性のためである。
The main reason for the generally circular cross section of the sprue is due to the economical machinability of the mold.

【0005】スプルの断面寸法は、射出成形機のノズル
と接触する部分においては、射出成形機のノズル径より
も若干大きいのが普通である。例えば、ノズル径が3mm
であれば、ノズルと接触する部分のスプル断面の直径は
3.5〜4.0mm が妥当である。この部分の直径は、スプル
全長において最も小さく、射出成形機のノズルと最も離
れたスプル部の直径が最も大きい。
The cross-sectional dimension of the sprue is usually slightly larger than the nozzle diameter of the injection molding machine at the portion that contacts the nozzle of the injection molding machine. For example, the nozzle diameter is 3mm
If so, the diameter of the sprue cross section of the part that contacts the nozzle is
3.5 to 4.0 mm is appropriate. The diameter of this portion is the smallest in the entire length of the sprue, and the diameter of the sprue portion farthest from the nozzle of the injection molding machine is the largest.

【0006】以下において、スプルの、射出成形機のノ
ズルと接触する部分をスプルの先端部、スプルの先端部
と反対側の、直径が最も大きい部分をスプルの根元部と
呼ぶことにすると、この、スプルの根元部をいかに速く
冷却させるかが、成形サイクル時間を短縮させる大きな
因子である。なぜならば、一般にこの部分の寸法は、金
型キャビティやゲート、ランナ等の、射出成形金型内の
溶融樹脂が流れる部分の断面寸法の中では最も大きく、
その結果、均等に金型を冷却した場合でも、スプルの根
元部は溶融樹脂が固化するのに最も長い時間を要するた
めである。後述の比較例においても、冷却時間を短縮さ
せると、スプルの根元での樹脂の固化が不充分となっ
て、成形作業が不可能となった。
In the following, the portion of the sprue that contacts the nozzle of the injection molding machine will be referred to as the sprue tip portion, and the portion opposite to the sprue tip portion and having the largest diameter will be referred to as the sprue root portion. How quickly the root portion of the sprue is cooled is a major factor that shortens the molding cycle time. This is because the size of this part is generally the largest in the cross-sectional size of the part where the molten resin flows in the injection mold, such as the mold cavity, gate, and runner.
As a result, even if the mold is evenly cooled, it takes the longest time for the molten resin to solidify at the root of the sprue. Also in the comparative example described later, when the cooling time was shortened, the solidification of the resin at the root of the sprue was insufficient and the molding operation was impossible.

【0007】これに対する対策としては、例えば、特開
平4−334419号公報にみられるように、スプルの根元部
の金型部材を熱伝導率の高い材質に置き換える方法があ
る。しかし、この方法では、金型の機械加工時間および
金型部材の材料費の面から、金型コストが高くなる欠点
がある。
As a countermeasure against this, for example, as disclosed in Japanese Patent Laid-Open No. 4-334419, there is a method of replacing the die member at the root of the sprue with a material having high thermal conductivity. However, this method has a drawback that the die cost becomes high in terms of the machining time of the die and the material cost of the die member.

【0008】さらに、2点以上のゲートを有する射出成
形用金型であって、かつ、スプルの根元部から複数のラ
ンナが配されている金型においては、複数のランナ部を
通過する溶融樹脂の合計量が金型のスプル部を通過する
ために、もしもここで、ランナの断面寸法とスプルの断
面寸法が同じであれば、スプル部での単位時間当たりの
流量は個々のランナ部での単位時間当たりの流量よりも
大きくなり、結果として、溶融樹脂が流動中の、スプル
部での圧力勾配はランナ部での圧力勾配に比べて大きく
なる。このことを、(1)式に示すような、ニュートニ
アン流体の場合の、円管内を流体が通過する際の圧力降
下の式により、もう少し詳しく説明する。
Further, in the case of an injection molding die having two or more gates and a plurality of runners arranged from the root of the sprue, the molten resin passing through the plurality of runners Since the total amount of water passes through the sprue part of the mold, if the cross-sectional dimension of the runner and the cross-sectional dimension of the sprue are the same, the flow rate per unit time at the sprue is The flow rate is larger than the flow rate per unit time, and as a result, the pressure gradient in the sprue portion while the molten resin is flowing becomes larger than the pressure gradient in the runner portion. This will be explained in a little more detail by the expression of the pressure drop when the fluid passes through the circular pipe in the case of the Newtonian fluid, as shown in the equation (1).

【0009】[0009]

【数1】 [Equation 1]

【0010】ここで、Pは圧力、ηは粘度、Lは円管の
長さ、Qは単位時間当たりの流量、rは円管断面の半径
を示す。
Here, P is pressure, η is viscosity, L is the length of the circular pipe, Q is the flow rate per unit time, and r is the radius of the circular pipe cross section.

【0011】今、スプルおよびランナが円断面であり、
その半径がすべてrであるとし、同一長さのランナがス
プルの根元部から放射状に4本設けられた金型を考えた
場合、スプルを流れる溶融樹脂の単位時間当たりの流量
がQであれば、1本のランナを流れる溶融樹脂の単位時
間当たりの流量はQ/4である。溶融樹脂の粘度は剪断
速度に依存するが、ここではそれを無視して一定値を示
すとすれば、スプルの単位長さ当たりの圧力降下量は、
ランナの場合の4倍になる。
Now, the sprue and runner are of circular cross section,
Assuming that all the radii are r, and considering a mold in which four runners of the same length are provided radially from the root of the sprue, if the flow rate of the molten resin flowing through the sprue per unit time is Q, The flow rate of the molten resin flowing through one runner per unit time is Q / 4. The viscosity of the molten resin depends on the shear rate, but if we ignore it and show a constant value, the pressure drop per unit length of the sprue is
It's four times that of a runner.

【0012】従って、2点以上のゲートを有する射出成
形用金型においては、従来技術である棒状のスプルで
は、スプル部での圧力損失は金型に溶融樹脂を完全充填
させるための圧力のかなりの部分を占める結果となる。
Therefore, in the case of the injection-molding die having two or more gates, the pressure loss in the sprue portion of the conventional rod-shaped sprue is much larger than the pressure for completely filling the die with the molten resin. Will result in occupying the part of.

【0013】[0013]

【発明が解決しようとする課題】以上のように、従来技
術である棒状のスプルでは、スプルの冷却時間、特に、
スプル根元の冷却時間が長くかかり、なおかつ、スプル
部の圧力損失も大きい。
As described above, in the conventional rod-shaped sprue, the cooling time of the sprue, in particular,
It takes a long time to cool the sprue root, and the pressure loss at the sprue part is large.

【0014】よって、本発明では、従来技術である棒状
のスプルの場合の冷却時間を短縮させ、なおかつ、スプ
ル部の圧力損失も低減できるようになり、従来技術であ
る棒状のスプルを有しないような、新規の射出成形金型
を提供することを目的とする。
Therefore, according to the present invention, the cooling time in the case of the rod-shaped sprue which is the conventional technique can be shortened, and the pressure loss of the sprue portion can be reduced, so that the rod-shaped sprue which is the conventional technique is not provided. Another object of the present invention is to provide a new injection mold.

【0015】[0015]

【課題を解決するための手段】本発明者等は、鋭意検討
の結果、プラスチックを射出成形するための金型におい
て、金型を構成する金属部材(A) をスプルの内部に配設
することによって、前記の課題を解決し、本発明を完成
するに至った。
DISCLOSURE OF THE INVENTION As a result of intensive studies, the inventors of the present invention have arranged a metal member (A) forming a mold inside a sprue in a mold for injection molding plastic. By the above, the above-mentioned problems were solved and the present invention was completed.

【0016】すなわち、本発明は、プラスチックを射出
成形するための金型において、金型を構成する金属部材
(A) がスプルの内部に配設され、スプルが金属部材(A)
の外表面と接触する流路を流動するようにしたことを特
徴とする射出成形用金型に関する。
That is, the present invention relates to a mold for injection-molding a plastic, and a metal member constituting the mold.
(A) is placed inside the sprue, and the sprue is a metal member (A)
The present invention relates to an injection molding die, characterized in that the flow path is adapted to flow in contact with the outer surface of the mold.

【0017】また、本発明は、金属部材(A) の形状が、
円錐又は角錐である上記の射出成形用金型に関する。
Further, according to the present invention, the shape of the metal member (A) is
The present invention relates to the injection molding die which is a cone or a pyramid.

【0018】さらに、本発明は、金属部材(A) 内に冷却
管が設けられた上記の射出成形用金型に関する。
Furthermore, the present invention relates to the above injection molding die in which a cooling pipe is provided in the metal member (A).

【0019】[0019]

【発明の実施の形態】図1は本発明品の概略図であり、
図2は従来品の概略図である。図1および図2はともに
射出成形用金型の固定側の断面図を示す。尚、図1およ
び図2中の斜線部は、金型内の溶融樹脂の流路を示す。
以下、これらにより、本発明の射出成形用金型について
説明する。
1 is a schematic view of the product of the present invention,
FIG. 2 is a schematic view of a conventional product. 1 and 2 both show a sectional view of the fixed side of the injection molding die. The shaded portions in FIGS. 1 and 2 indicate the flow paths of the molten resin in the mold.
The injection mold of the present invention will be described below with reference to these.

【0020】射出成形用金型は固定側と移動側とからな
るが、移動側には、キャビティがあり、この形状は容易
に推定できるため、図での説明は省略した。
The injection molding die has a fixed side and a moving side, but since there is a cavity on the moving side and this shape can be easily estimated, description thereof is omitted in the drawings.

【0021】図1の金型の場合、射出成形過程におい
て、射出成形用金型が射出成形機内に取り付けられた状
態で射出成形作業が実施された場合、射出成形機のシリ
ンダー内で溶融された樹脂は射出成形用金型の固定側(1
99) の、樹脂流入口(120) にまず流入される。その後、
溶融樹脂は金属部材(A)(108)に接触しながら、円錐状の
流路を流れ、次いで4本のランナ部(111) 内に流れてい
く。この円錐状の流路を円錐スプルと呼称することにす
る。本発明品における、円錐スプルの流路の厚さは3.5m
m である。その後、溶融樹脂は2次スプル部(112) およ
びゲート部(113)を通過してキャビティに充填される。
In the case of the mold shown in FIG. 1, in the injection molding process, when the injection molding work was carried out with the injection molding mold mounted in the injection molding machine, it was melted in the cylinder of the injection molding machine. Resin is the fixed side of the injection mold (1
First, the resin is introduced into the resin inlet (120) of 99). afterwards,
The molten resin flows through the conical flow path while contacting the metal members (A) (108), and then flows into the four runner portions (111). This conical flow path will be referred to as a conical sprue. The thickness of the conical sprue channel in the product of the present invention is 3.5 m.
m. Then, the molten resin passes through the secondary sprue part (112) and the gate part (113) and is filled in the cavity.

【0022】図2の金型の場合、射出成形過程におい
て、射出成形用金型が射出成形機に取り付けられた状態
で射出成形作業が実施された場合、射出成形機のシリン
ダー内で溶融された樹脂は射出成形用金型の固定側(29
9) の、樹脂流入口(220) にまず流入される。その後、
溶融樹脂は従来技術である1次スプル部(206) 、4本の
ランナ部(207) 、2次スプル部(208) およびゲート部(2
09) を通過してキャビティに充填される。
In the case of the mold shown in FIG. 2, in the injection molding process, when the injection molding work was carried out with the injection molding mold attached to the injection molding machine, it was melted in the cylinder of the injection molding machine. Resin is fixed on the fixed side of the injection molding die (29
First, the resin is introduced into the resin inlet port (220). afterwards,
The molten resin is the conventional technology, that is, the primary sprue part (206), the four runner parts (207), the secondary sprue part (208) and the gate part (2).
It passes through 09) and is filled into the cavity.

【0023】キャビティ寸法は、300mm ×300mm ×厚さ
2.0mm であり、ゲート数は4点である。
Cavity dimensions are 300mm x 300mm x thickness
The size is 2.0 mm and the number of gates is 4.

【0024】溶融樹脂が金型内に流入する空間の全容積
は、本発明品の場合、約 215cm3 であり、従来品の場
合、約 200cm3 である。それらのうち、キャビティの容
積は180cm3である。
The total volume of the space into which the molten resin flows into the mold is about 215 cm 3 in the case of the product of the present invention and about 200 cm 3 in the case of the conventional product. Among them, the cavity volume is 180 cm 3 .

【0025】本発明品と従来品を比べた場合、2次スプ
ル、ゲートおよびキャビティは全く同一であり、ランナ
は、断面の寸法形状は同一であるが、その長さは、図3
および図4からわかるように、本発明品のほうが短い。
このことにより、金型に溶融樹脂を流入させた場合の圧
力損失は、ランナ以降、すなわち、ランナ、2次スプ
ル、ゲートおよびキャビティでの圧力損失は、本発明品
と従来品では円錐スプルを有する本発明品の金型のほう
が小さいことは明白である。
When the product of the present invention and the conventional product are compared, the secondary sprue, the gate and the cavity are completely the same, and the runner has the same cross-sectional size and shape, but its length is as shown in FIG.
And as can be seen from FIG. 4, the product of the present invention is shorter.
As a result, the pressure loss when the molten resin flows into the mold is that after the runner, that is, the pressure loss in the runner, the secondary sprue, the gate, and the cavity has a conical sprue in the product of the present invention and the conventional product. It is clear that the inventive mold is smaller.

【0026】図1の本発明品では、金型に流入した直後
の溶融樹脂は円錐スプルの軸方向に、流動先端が拡大し
ながら流れる。したがって、流動先端の流速が徐々に低
下していくため、剪断速度も低下し、結果として、円錐
スプルを流動する際の粘性抵抗は、流動とともに徐々に
低下していく。
In the product of the present invention shown in FIG. 1, the molten resin immediately after flowing into the mold flows in the axial direction of the conical sprue while the flow front expands. Therefore, since the flow velocity at the flow front gradually decreases, the shear rate also decreases, and as a result, the viscous resistance when flowing through the conical sprue gradually decreases with the flow.

【0027】円錐スプルの頂点での角度は特に規定はし
ないが、30〜60°程度が好ましい。角度が小さすぎると
金型部材(A) が細くなりすぎてその強度面での問題が生
じ、かつ、金型部材(A) の内部に冷却管を設けることが
できなくなる。逆に、円錐の頂点での角度が大きすぎる
と、円錐スプルの容積が大きくなって樹脂を多く必要と
し、結果的に不経済である。
The angle at the apex of the conical sprue is not specified, but is preferably about 30 to 60 °. If the angle is too small, the die member (A) becomes too thin, causing a problem in its strength, and it becomes impossible to provide a cooling pipe inside the die member (A). On the contrary, if the angle at the apex of the cone is too large, the volume of the cone sprue becomes large and a large amount of resin is required, resulting in an uneconomical result.

【0028】以上では円錐スプルについて記述したが、
この形状は角錐でもかまわない。すなわち、四角錐や六
角錐のスプルでも円錐のスプルと同様の効果がある。
Although the conical sprue has been described above,
This shape may be a pyramid. In other words, a quadrangular pyramid or a hexagonal pyramid has the same effect as a conical sprue.

【0029】[0029]

【実施例】以下の実施例によって、本発明を詳細に説明
するが、本発明は、以下の実施例によってなんら限定さ
れるものではない。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited to the following examples.

【0030】図1および図2に示すような金型を製作し
た。なお、金型の移動側は1つ製作して、実施例および
比較例において共用した。金型の材質は、金属部材(A)
を含めて、すべて機械構造用炭素鋼材S55Cを用いた。実
施例においては、金属部材(A) 内に冷却管を設けた金型
とした。
A mold as shown in FIGS. 1 and 2 was manufactured. In addition, one moving side of the mold was manufactured and shared in the examples and comparative examples. The material of the mold is a metal member (A)
The carbon steel material S55C for machine structure was used in all cases including. In the examples, the metal member (A) was provided with a cooling pipe in the mold.

【0031】以上の実施例および比較例に示した金型を
射出成形機に取りつけて、ABS樹脂を射出成形した。
成形機および成形条件の設定は、実施例および比較例と
も同じであるが、樹脂の充填量が異なるため、計量値の
み設定が異なっている。
The molds shown in the above Examples and Comparative Examples were mounted on an injection molding machine, and ABS resin was injection molded.
The setting of the molding machine and the molding conditions is the same as that of the example and the comparative example, but only the measured value is different because the filling amount of the resin is different.

【0032】射出成形機は、三菱重工業株式会社の型式
が 550MG80である、型締力550tonの機器を使用した。樹
脂は、ダイセル化学工業株式会社のABS樹脂、品番が
セビアンV500を用いた。
The injection molding machine used was a model of 550 MG80 manufactured by Mitsubishi Heavy Industries, Ltd., with a mold clamping force of 550 tons. The resin used was ABS resin manufactured by Daicel Chemical Industries, Ltd., and the product number was Sebian V500.

【0033】成形条件において、成形機シリンダーの温
度設定は、最高の温度設定値を240℃とした。金型の冷
却は、金型温調機を使用し、冷却媒体として水を使用し
た。水温の設定は50℃とし、水の流量は約10リットル/
min とした。射出率は、約120cm3/秒となるように成形
機シリンダーの前進速度を設定し、射出率一定の定速充
填で射出した。この際に、最小の射出圧力を読み取って
おき、充填後の保持圧力としてこの最小の射出圧力に10
0kgf/cm2加えた圧力を設定し、時間は、充填時間と保圧
時間を加えて7秒間とした。その後、冷却時間を変更し
ながら、問題なく連続成形できる最小の冷却時間を求め
た。なお、金型開閉時間および成形品の取り出し時間と
して10秒を設定した。したがって、成形サイクル時間
は、この10秒間、充填および保圧のための7秒間、なら
びに成形作業で求めた最小の冷却時間の3つを加えた時
間となる。
Under the molding conditions, the maximum temperature set value of the molding machine cylinder was 240 ° C. A mold temperature controller was used for cooling the mold, and water was used as a cooling medium. The water temperature is set to 50 ° C and the water flow rate is approximately 10 liters /
min. The injection rate was set at a forward speed of the molding machine cylinder so that the injection rate was about 120 cm 3 / sec, and injection was performed at constant speed filling with a constant injection rate. At this time, read the minimum injection pressure and set the minimum injection pressure as the holding pressure after filling.
The applied pressure was set to 0 kgf / cm 2 , and the time was set to 7 seconds by adding the filling time and the pressure holding time. Then, while changing the cooling time, the minimum cooling time that allows continuous molding without problems was determined. The mold opening / closing time and the molded product take-out time were set to 10 seconds. Therefore, the molding cycle time is the sum of 10 seconds, 7 seconds for filling and holding, and the minimum cooling time obtained in the molding operation.

【0034】実施例および比較例における成形実験結果
を表1に示す。
Table 1 shows the results of molding experiments in Examples and Comparative Examples.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、実施例の金型で成形すれば比較
例の金型で成形するよりも 100kgf/cm2 低圧で成形でき
る。実施例および比較例において、最小の射出圧力に10
0kgf/cm2の差があるのは、実施例における円錐スプル(1
10) およびランナ(111) での、溶融樹脂が流動中の圧力
損失の和P1 と、比較例におけるスプル(206) およびラ
ンナ(207) での、溶融樹脂が流動中の圧力損失の和P2
との差である。低圧で成形可能であるため、本発明を産
業上で応用すれば、金型の寿命が延びることが期待でき
る。
From Table 1, it is possible to perform molding at a low pressure of 100 kgf / cm 2 when molding with the mold of the example, as compared with molding with the mold of the comparative example. In the examples and comparative examples, the minimum injection pressure was 10
The difference of 0 kgf / cm 2 is that the conical sprue (1
10) and the sum of pressure losses P 1 of the molten resin flowing in the runner (111) and the sum P 1 of pressure losses of the sprue (206) and runner (207) in the comparative example during the flowing molten resin. 2
Is the difference. Since it can be molded at a low pressure, if the present invention is applied industrially, it can be expected that the life of the mold is extended.

【0037】さらに、表1に示した最小の冷却時間より
もさらに短い時間を選択すれば、実施例および比較例と
も円錐スプル(110) またはスプル(206) の冷却が不充分
となって、安定した成形が不可能であった。したがっ
て、冷却時間はスプル(206) より円錐スプル(110) のほ
うが短いことは明らかである。このように、実施例の金
型で成形すれば比較例の金型で成形するよりも成形サイ
クル時間が5秒間短縮でき、本発明を産業上で応用すれ
ば、製造コストの短縮が図れる。
Further, if a time shorter than the minimum cooling time shown in Table 1 is selected, the conical sprue (110) or the sprue (206) will be insufficiently cooled in both Examples and Comparative Examples, resulting in stable stability. Molding was impossible. Therefore, it is clear that the cooling time is shorter for the conical sprue (110) than for the sprue (206). As described above, the molding cycle time can be shortened by 5 seconds when molding with the mold of the example as compared with molding with the mold of the comparative example, and the manufacturing cost can be shortened by industrially applying the present invention.

【0038】[0038]

【発明の効果】本発明の射出成形用金型によれば、従来
技術の金型に比べて、低圧で成形可能であり、かつ、成
形サイクル時間が短縮でき、産業上で応用すれば、経済
効果に優れた射出成形が可能である。
According to the injection molding die of the present invention, molding can be performed at a lower pressure and molding cycle time can be shortened as compared with the prior art mold, and if applied industrially, it is economical. Injection molding with excellent effects is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の射出成形用金型の固定側の断面図であ
る。
FIG. 1 is a sectional view of a fixed side of an injection molding die of the present invention.

【図2】従来の射出成形用金型の固定側の断面図であ
る。
FIG. 2 is a sectional view of a fixed side of a conventional injection molding die.

【図3】図1における断面B−Bを示す図である。3 is a diagram showing a cross section BB in FIG. 1. FIG.

【図4】図2における断面F−Fを示す図である。FIG. 4 is a diagram showing a cross section FF in FIG.

【図5】図1における断面A−Aを示す図である。5 is a diagram showing a cross section AA in FIG.

【図6】図1および図2における断面C−Cおよび断面
G−Gを示す図である。
FIG. 6 is a view showing a cross section CC and a cross section GG in FIGS. 1 and 2;

【図7】図1および図2における断面D−Dおよび断面
H−Hを示す図である。
FIG. 7 is a diagram showing a cross section DD and a cross section HH in FIGS. 1 and 2;

【図8】本発明及び従来の射出成形品の形状とゲート位
置を示す図である。
FIG. 8 is a diagram showing the shapes and gate positions of the injection molded products of the present invention and the related art.

【符号の説明】[Explanation of symbols]

100 ロケートリング 101 スプルブッシュ 102 固定側取付け板 103 ランナストリッパプレート 104 固定側型板-1 105 固定側型板-2 106 冷却管 107 邪魔板 108 金形部材(A) 109 圧力センサー 110 円錐スプル 111 ランナ 112 2次スプル 113 ゲート 120 溶融樹脂流入部 199 金型の固定側 200 ロケートリング 201 スプルプッシュ 202 固定側取付け板 203 ランナストリッパプレート 204 固定側型板-1 205 固定側型板-2 206 スプル 207 ランナ 208 2次スプル 209 ゲート 210 圧力センサー 220 溶融樹脂流入部 299 金型の固定側 300 平板状の射出成形品 301 平板状の射出成形品のゲート位置 100 Locate ring 101 Sprue bush 102 Fixed side mounting plate 103 Runner stripper plate 104 Fixed side mold plate-1 105 Fixed side mold plate-2 106 Cooling pipe 107 Baffle plate 108 Mold member (A) 109 Pressure sensor 110 Conical sprue 111 Runner 112 Secondary sprue 113 Gate 120 Molten resin inflow part 199 Mold fixed side 200 Locate ring 201 Sprue push 202 Fixed side mounting plate 203 Runner stripper plate 204 Fixed side template-1 205 Fixed side template-2 206 Sprue 207 Runner 208 Secondary sprue 209 Gate 210 Pressure sensor 220 Molten resin inflow part 299 Mold fixed side 300 Flat plate injection molded product 301 Flat plate injection molded product gate position

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックを射出成形するための金型
において、金型を構成する金属部材(A) がスプルの内部
に配設され、スプルが金属部材(A) の外表面と接触する
流路を流動するようにしたことを特徴とする射出成形用
金型。
1. A mold for injection-molding plastic, wherein a metal member (A) constituting the mold is disposed inside the sprue, and the sprue is in contact with an outer surface of the metal member (A). A mold for injection molding, characterized in that it is made to flow.
【請求項2】 金属部材(A) の形状が円錐又は角錐であ
る請求項1記載の射出成形用金型。
2. A mold for injection molding according to claim 1, wherein the shape of the metal member (A) is a cone or a pyramid.
【請求項3】 金属部材(A) 内に冷却管が設けられた請
求項1又は2記載の射出成形用金型。
3. The mold for injection molding according to claim 1, wherein a cooling pipe is provided in the metal member (A).
JP7206996A 1995-08-14 1995-08-14 Injection mold Pending JPH0952260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7206996A JPH0952260A (en) 1995-08-14 1995-08-14 Injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206996A JPH0952260A (en) 1995-08-14 1995-08-14 Injection mold

Publications (1)

Publication Number Publication Date
JPH0952260A true JPH0952260A (en) 1997-02-25

Family

ID=16532469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206996A Pending JPH0952260A (en) 1995-08-14 1995-08-14 Injection mold

Country Status (1)

Country Link
JP (1) JPH0952260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020244A1 (en) * 2000-09-04 2002-03-14 Perlos Oyj Injection moulding method, mould and die
JP2013095124A (en) * 2011-11-07 2013-05-20 Nissei Plastics Ind Co Injection mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020244A1 (en) * 2000-09-04 2002-03-14 Perlos Oyj Injection moulding method, mould and die
JP2013095124A (en) * 2011-11-07 2013-05-20 Nissei Plastics Ind Co Injection mold

Similar Documents

Publication Publication Date Title
JP3264615B2 (en) Plastic lens injection molding method
US6841114B2 (en) Molding method and apparatus for resin long body
CN111086153B (en) Automobile thick-wall automobile logo and injection molding process
CN108015989A (en) A kind of injection mold
CN102223994A (en) Optical element manufacturing method and molding die
CN103496125A (en) Mold opening method of three-way pipe mold
USRE38617E1 (en) Method of injection molding plastic lens
EP0955147B1 (en) Method of injection molding plastic lens
CN110126616B (en) Automobile bracket with inserts and die-casting die for forming bracket
JPH0952260A (en) Injection mold
JPH1190609A (en) Injection molding device
CN208584740U (en) A kind of injection mold
CN216096320U (en) Die casting die for water pump motor casing
CN113021773B (en) Forming method of plastic shell one-mold two-cavity multi-parting injection mold
JPH04307207A (en) Mold
CN214645411U (en) Micro-fluidic centrifugal test chuck mirror surface mould
CN205395017U (en) Easy demoulding rubber mould
JP2004284150A (en) Molded product having through-hole, mold for molding it and molding method using the mold
JP2003048047A (en) Casting method for thin die-casting product and its casting apparatus
JPH08118435A (en) Injection mold
CN215203299U (en) High heat-resistant corrosion-resistant automobile reflector injection mold
CN210908058U (en) Anti-oxidation magnesium anode casting die
US20210069952A1 (en) Method for producing an optical lens and optical lens produced by said method
CN217968161U (en) Injection mold capable of shortening length of main runner
JPH03294056A (en) Injection molding die and injection molding method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050720

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060221

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees