JPH0950991A - Device and method for manufacturing insulating film - Google Patents

Device and method for manufacturing insulating film

Info

Publication number
JPH0950991A
JPH0950991A JP7200000A JP20000095A JPH0950991A JP H0950991 A JPH0950991 A JP H0950991A JP 7200000 A JP7200000 A JP 7200000A JP 20000095 A JP20000095 A JP 20000095A JP H0950991 A JPH0950991 A JP H0950991A
Authority
JP
Japan
Prior art keywords
magnetic field
substrate
vacuum container
solenoid coil
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7200000A
Other languages
Japanese (ja)
Inventor
Akio Shimizu
明夫 清水
Yasushi Sakakibara
康史 榊原
Makoto Koguchi
信 虎口
Genichi Katagiri
源一 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7200000A priority Critical patent/JPH0950991A/en
Publication of JPH0950991A publication Critical patent/JPH0950991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ECR plasma CVD device which can form an insulating oxide film coating an MOS gate while impressing an RF bias upon a substrate without deteriorating the insulating property of a gate oxide film during the formation of the insulating oxide film so as to improve the yield of an LSI. SOLUTION: An insulating film manufacturing device is constituted so that the diametral component of a magnetic field on a substrate 10 can be reduced to 30 Gauss and the voltage stress applied to a gate oxide film is reduced by making a potential distribution smaller by eliminating the density distribution of plasma in the diametral direction by reducing the peripheral acceleration of electrons in a plasma ion sheath near the surface of the substrate 10 by reducing the peripheral force caused by the vector product of the surface electric field and diametral component of a magnetic field generated when an RF bias is impressed upon the substrate 10. To be concrete, the device is constituted by coaxially arranging, for example, a solenoid 13 for forming mirror magnetic field, magnetic shield near the substrate 10, and the ECR magnetic field generating solenoid of a demagnetizing coil on the substrate 10 side, flattening the ECR magnetic field generating solenoid, and so forth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体集積回
路、特にIC等、微細加工によるLSI製造時に絶縁膜
製造工程で使用する絶縁膜製造装置および製造方法に関
し、より詳しくは、マイクロ波発生用電源からマイクロ
波伝達手段を介してマイクロ波が導入される真空容器
と、該真空容器を包囲し、真空容器内にマイクロ波との
電子サイクロトロン共鳴磁界領域を形成して該真空容器
内へ導入されたガスのマイクロ波によるプラズマ化作用
を助けるソレノイドコイルと、真空容器内の基板台上に
置かれた被処理基板にRFバイアスを印加するためのR
F電源と、真空容器内の排気を行う排気手段とを備えて
なり、真空容器内にN2 OまたはO2 、およびSiH4
またはSi26 を導入して基板台上の半導体基板表面
にSiO2 膜を成長させる絶縁膜製造装置および製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating film manufacturing apparatus and manufacturing method used in an insulating film manufacturing process during manufacturing of an LSI by fine processing such as a semiconductor integrated circuit, particularly an IC, and more particularly, to a microwave generation power source. A vacuum container into which microwaves are introduced via microwave transmission means, and the vacuum container is surrounded, and an electron cyclotron resonance magnetic field region with microwaves is formed in the vacuum container to be introduced into the vacuum container. Solenoid coil for assisting plasmaization by gas microwave and R for applying RF bias to the substrate to be processed placed on the substrate table in the vacuum container
An F power source and an exhaust means for exhausting the inside of the vacuum container are provided, and N 2 O or O 2 and SiH 4 are contained in the vacuum container.
Alternatively, the present invention relates to an insulating film manufacturing apparatus and a manufacturing method for introducing Si 2 H 6 to grow a SiO 2 film on the surface of a semiconductor substrate on a substrate table.

【0002】[0002]

【従来の技術】この種絶縁膜製造装置として従来から用
いられている装置の構成例を図8に示す。
2. Description of the Related Art FIG. 8 shows a structural example of an apparatus conventionally used as this type of insulating film manufacturing apparatus.

【0003】装置本体は、図示されないマイクロ波発生
用電源から導波管1内を通し導波窓2を通過させてマイ
クロ波が導入される第1の真空容器3と、第1の真空容
器3を囲む主ソレノイド4と、プラズマ引出し窓6を介
して第1の真空容器3と連通する第2の真空容器7と、
真空容器7内に収容される基板台9と、基板台9を介し
て基板台9上に置かれた被処理基板10にRFバイアス
を印加するためのRF電源14と、第1の真空容器3内
へSiO2 膜の原料ガスのうちのN2 OまたはO2 を導
入するための第1ガス導入路5と、第2の真空容器7へ
SiO2 膜の残りの原料ガスSiH4 またはSi26
を導入するための第2ガス導入路8とを主要構成要素と
して構成されている。ここには特に図示していないが、
第2ガス導入路8を通ったSiH4 またはSi26
の反応ガスは、第2の真空容器7内に配設された、基板
10近傍に均一な密度のガス流をつくるためのガスシャ
ワー内へ導入される。
The main body of the apparatus is a first vacuum container 3 into which a microwave is introduced from a microwave generating power source (not shown) through the waveguide 1 and the waveguide window 2, and the first vacuum container 3 A main solenoid 4 that surrounds the first vacuum container 3 and a second vacuum container 7 that communicates with the first vacuum container 3 through a plasma drawing window 6.
The substrate stage 9 housed in the vacuum vessel 7, the RF power source 14 for applying an RF bias to the substrate 10 to be processed placed on the substrate stage 9 via the substrate stage 9, and the first vacuum vessel 3 A first gas introduction path 5 for introducing N 2 O or O 2 of the source gas of the SiO 2 film into the inside, and the remaining source gas SiH 4 or Si 2 of the SiO 2 film into the second vacuum container 7. H 6
And a second gas introduction passage 8 for introducing the gas. Although not shown here,
The reaction gas such as SiH 4 or Si 2 H 6 that has passed through the second gas introduction passage 8 is a gas that is disposed in the second vacuum container 7 and is used to create a gas flow of uniform density in the vicinity of the substrate 10. It is introduced into the shower.

【0004】このように構成されるECRプラズマCV
D装置によるSiO2 膜形成は以下のように行われる。
第1ガス導入路5からN2 OまたはO2 等のプラズマ原
料ガスを第1の真空容器3内へ、また第2ガス導入路8
からSiH4 またはSi26 等の反応ガスを第2の真
空容器7内へ導入しつつ排気孔12から排気を行い、第
1,第2の真空容器内のガス圧が安定したところでマイ
クロ波発生用電源からマイクロ波を第1の真空容器3内
へ導入するとともに主ソレノイド4に通電して、第1の
真空容器1内の導波窓2近傍にマイクロ波との電子サイ
クロトロン共鳴(ECR)磁界領域を形成させると、第
1の真空容器3内のN2 OあるいはO2はこのECR磁
界領域で効率よく電離されてプラズマ化し、主ソレノイ
ド4が形成する軸対称の磁場に沿って第2の真空容器7
内へ入り、第2の真空容器7内のSiH4 またはSi2
6 等の反応ガスを活性化しつつ基板10へ向かい、基
板10の表面にSiO2 膜を形成する。このとき、基板
10には、RF電源14から基板台9を介してRFバイ
アスが印加されており、基板10表面が対地(対真空容
器)負極性に帯電し、基板10表面に接近したプラズマ
中のイオンを加速し、基板表面に緻密なSiO2 膜を形
成する。
ECR plasma CV having such a structure
The SiO 2 film is formed by the D device as follows.
A plasma source gas such as N 2 O or O 2 is introduced into the first vacuum container 3 from the first gas introduction passage 5, and a second gas introduction passage 8 is provided.
While introducing a reaction gas such as SiH 4 or Si 2 H 6 into the second vacuum container 7 and evacuating through the exhaust hole 12, and when the gas pressure in the first and second vacuum containers becomes stable Electron cyclotron resonance (ECR) with microwaves near the waveguide window 2 in the first vacuum container 1 by introducing microwaves from the power source for generation into the first vacuum container 3 and energizing the main solenoid 4. When the magnetic field region is formed, N 2 O or O 2 in the first vacuum container 3 is efficiently ionized into plasma in this ECR magnetic field region, and the second magnetic field is formed along the axially symmetric magnetic field formed by the main solenoid 4. Vacuum container 7
Into the second vacuum chamber 7 and SiH 4 or Si 2
The SiO 2 film is formed on the surface of the substrate 10 toward the substrate 10 while activating the reaction gas such as H 6 . At this time, an RF bias is applied to the substrate 10 from the RF power source 14 via the substrate stand 9, and the surface of the substrate 10 is negatively charged with respect to the ground (to the vacuum container). Ions are accelerated to form a dense SiO 2 film on the substrate surface.

【0005】[0005]

【発明が解決しようとする課題】近年、基板表面につく
り込まれる半導体デバイスのより高集積化のため、例え
ばMOSゲート酸化膜の厚さが110Å以下と薄膜化さ
れてきている。しかし、酸化膜の厚さがこのように薄い
場合、ゲートを覆う層間絶縁膜(SiO2 膜)をプラズ
マCVD法で形成するとゲートに絶縁不良が発生するこ
とがある。このため、例えばゲート酸化膜の厚さが11
0Å程度ではゲート間に発生する電圧が10〜15V程
度で容易に破壊する。
In recent years, for higher integration of semiconductor devices formed on the surface of a substrate, for example, the thickness of a MOS gate oxide film has been reduced to 110 Å or less. However, when the thickness of the oxide film is such thin, when the interlayer insulating film (SiO 2 film) that covers the gate is formed by the plasma CVD method, insulation failure may occur in the gate. Therefore, for example, the thickness of the gate oxide film is 11
When the voltage is about 0Å, the voltage generated between the gates is about 10 to 15 V, and the gate is easily destroyed.

【0006】図9(a)に前記破壊電圧を求めるために
行ったゲート酸化膜絶縁強度評価試験のためのゲート構
成を示す。Si基板上にSiO2 膜を形成した後、Si
2膜をエッチングして約1μm角の平坦な凹部を形成
し、ここにゲート電極を成膜し、Si基板とゲート電極
とを対向電極、SiO2 膜を誘電体としてキャパシタが
形成されている。このゲート構成で対向電極間の酸化膜
の厚さを110Å〜70Åの範囲内で変化させて評価を
行った。また、アンテナ比(ゲート電極面積/ゲート領
域面積)は大きいほど厳しい試験になるといわれている
ため、実デバイスでは1万程度であるが、評価試験では
アンテナ比100万まで評価試験を行った。
FIG. 9 (a) shows a gate structure for a gate oxide film insulation strength evaluation test conducted to obtain the breakdown voltage. After forming the SiO 2 film on the Si substrate,
The O 2 film is etched to form a flat recess of about 1 μm square, a gate electrode is formed thereon, the Si substrate and the gate electrode are opposed electrodes, and the SiO 2 film is used as a dielectric to form a capacitor. . With this gate structure, the thickness of the oxide film between the opposing electrodes was varied within the range of 110Å to 70Å for evaluation. Further, it is said that the larger the antenna ratio (gate electrode area / gate region area), the more severe the test is. Therefore, the actual device has about 10,000, but in the evaluation test, the evaluation test was performed up to the antenna ratio of 1,000,000.

【0007】このような構成のゲートをプラズマCVD
法によりSiO2 膜で覆う過程でゲート酸化膜が破壊す
ると、プラズマ中の電子がSi基板側へ抜ける。従っ
て、同図(b)のように、基板上にMOSゲートを多数
形成し、かつこれを覆う層間絶縁膜形成時のプラズマ密
度に分布をもたせると、まず、プラズマ密度が高い領域
のゲートが絶縁破壊を生じ、これによりゲートを通り抜
けた電子が多数プラズマ密度の低い方のゲートへ向か
い、ゲートを反対側から破壊する。このことから、層間
絶縁膜形成時のプラズマ密度に分布があれば、プラズマ
密度が低い領域でも絶縁破壊が生じうることが分かる。
Plasma CVD is used for the gate having such a structure.
When the gate oxide film is destroyed in the process of covering with the SiO 2 film by the method, electrons in plasma escape to the Si substrate side. Therefore, if a large number of MOS gates are formed on the substrate and the plasma density at the time of forming the interlayer insulating film that covers the MOS gates is distributed as shown in FIG. A large number of electrons that pass through the gate are destroyed toward the gate having the lower plasma density, and the gate is destroyed from the opposite side. From this, it is understood that if the plasma density during the formation of the interlayer insulating film has a distribution, dielectric breakdown can occur even in a region where the plasma density is low.

【0008】近年、成膜装置の生産性を上げるために高
速成膜が行われるようになり、図8に示した装置構成に
おいて、第1の真空容器3の高さを低くして導波窓2を
主ソレノイド4の幾何学的中心より下方に位置させ、こ
れにより、第1の真空容器3内で発生したプラズマが導
波窓2方向へ進むのを阻止するとともに、ECR磁界領
域をソレノイドコイル4の下端面位置近傍に形成し、こ
れにより、第2の真空容器7内へ導入されたSiH4
Si26 等の反応ガスに第1の真空容器3内に導入さ
れたN2 OやO2 の高密度プラズマを作用させるととも
に半導体基板10をECR磁界(マイクロ波周波数が
2.45GHzのとき875ガウス)領域に近接させ、
これにより成膜速度として2000Å/min以上が得
られるようになっている。この場合、膜厚分布や膜質も
要求値を満足させる必要から、成膜時には基板に高パワ
ーのRFバイアスが印加される。高パワーのRFバイア
スを基板に印加すると、基板表面に対真空容器負極性の
強い電界が現れ、かつこの電界の面分布が、基板周縁側
で強い分布となり、RFバイアス印加のない場合にソレ
ノイドコイル4による磁界分布のみに支配されて膜厚が
基板中央部で厚く周縁側で薄くなる膜厚分布が補正され
て膜厚分布と密度がともに均一化されるとともに、プラ
ズマ中のイオンが基板面へ向けて加速され、基板表面の
膜を叩くので膜が緻密となり、耐酸性等の膜質が向上す
る。しかし、高速成膜時には、前述のように、基板がE
CR磁界領域に近接して置かれるため、基板上での磁界
の径方向成分が基板周辺ほど強くなる。この径方向成分
と、RFバイアス印加による基板表面の交流電界とのベ
クトル積による周方向の力が基板表面近傍プラズマイオ
ンシース中の電子に作用し、基板周辺のプラズマ密度が
上がり、プラズマと基板との接触によって基板表面近傍
プラズマ内に生じる正,負電荷量の不均衡に基づく径方
向の電位分布が大きくなり、これによりMOSゲート酸
化膜が電圧ストレスを受けて絶縁が不良化し、LSIの
歩留りが低下する。
In recent years, high-speed film formation has been carried out in order to increase the productivity of the film forming apparatus. In the apparatus structure shown in FIG. 8, the height of the first vacuum container 3 is lowered and the waveguide window is formed. 2 is positioned below the geometric center of the main solenoid 4 to prevent the plasma generated in the first vacuum container 3 from proceeding toward the waveguide window 2 and to set the ECR magnetic field region to the solenoid coil. formed on the lower end face near the position of the 4, thereby, the second N 2 O introduced into the first vacuum container 3 in the reaction gas of SiH 4 or the like and Si 2 H 6 introduced into the vacuum container 7 And a high density plasma of O 2 are made to act, and the semiconductor substrate 10 is brought close to the ECR magnetic field (875 gauss when the microwave frequency is 2.45 GHz) region,
As a result, a film forming rate of 2000 Å / min or more can be obtained. In this case, a high-power RF bias is applied to the substrate during film formation, because the film thickness distribution and film quality must satisfy the required values. When a high-power RF bias is applied to the substrate, a strong negative electric field appears in the substrate surface against the vacuum vessel, and the surface distribution of this electric field becomes strong on the peripheral side of the substrate. When no RF bias is applied, the solenoid coil is applied. The film thickness distribution in which the film thickness is thicker at the center of the substrate and thinner at the peripheral side is controlled by only the magnetic field distribution due to 4 and the film thickness distribution and the density are both uniformed, and the ions in the plasma reach the substrate surface. Since the film is accelerated toward the substrate and hits the film on the substrate surface, the film becomes dense and the film quality such as acid resistance is improved. However, during high-speed film formation, the substrate is
Since it is placed close to the CR magnetic field region, the radial component of the magnetic field on the substrate becomes stronger near the substrate. The circumferential force due to the vector product of this radial component and the AC electric field on the substrate surface due to the RF bias application acts on the electrons in the plasma ion sheath near the substrate surface, and the plasma density around the substrate increases, and the plasma and the substrate Of the positive and negative charges generated in the plasma near the surface of the substrate due to the contact with each other, the potential distribution in the radial direction becomes large. As a result, the MOS gate oxide film receives voltage stress, resulting in poor insulation, resulting in a high LSI yield. descend.

【0009】また、RFバイアスが無い場合でも磁界の
径方向成分(Br)分布があると
Even when there is no RF bias, if there is a radial component (Br) distribution of the magnetic field.

【0010】[0010]

【外1】 [Outside 1]

【0011】プラズマフローティング電位分布が生じる
ため、LSIの不良が発生する。
Since the plasma floating potential distribution is generated, a defect of the LSI occurs.

【0012】本発明の目的は、LSIの歩留りが高い高
速成膜を可能にするECR型絶縁膜製造装置および絶縁
膜製造方法を提供することである。
An object of the present invention is to provide an ECR type insulating film manufacturing apparatus and an insulating film manufacturing method which enable high-speed film formation with high yield of LSI.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明による絶縁膜製造装置は、マイクロ波発生用
電源からマイクロ波伝達手段を介してマイクロ波が導入
される真空容器と、該真空容器を包囲し、真空容器内に
マイクロ波との電子サイクロトロン共鳴磁界領域を形成
して該真空容器内へ導入されたガスのマイクロ波による
プラズマ化作用を助けるソレノイドコイルと、真空容器
内の基板台上に置かれた被処理基板にRFバイアスを印
加するためのRF電源と、真空容器内の排気を行う排気
手段とを備えてなり、真空容器内にN2 OまたはO2
およびSiH4 またはSi26を導入して基板台上の
半導体基板表面にSiO2 膜を成長させる絶縁膜製造装
置において、成膜時に半導体基板上での磁界の径方向成
分が30ガウス以下となる磁界を形成する手段を有する
ことを特徴とする。
In order to solve the above-mentioned problems, an insulating film manufacturing apparatus according to the present invention comprises a vacuum container into which microwaves are introduced from a microwave generation power source via microwave transmission means, and A solenoid coil that surrounds the vacuum container, forms an electron cyclotron resonance magnetic field region with microwaves in the vacuum container to assist the plasmaization action of the gas introduced into the vacuum container by the microwave, and the substrate in the vacuum container An RF power source for applying an RF bias to the substrate to be processed placed on the table, and an exhaust means for exhausting the inside of the vacuum container are provided, and N 2 O or O 2 in the vacuum container,
In an insulating film manufacturing apparatus in which SiH 4 or Si 2 H 6 is introduced to grow a SiO 2 film on the surface of a semiconductor substrate on a substrate table, the radial component of the magnetic field on the semiconductor substrate is 30 Gauss or less during film formation. It is characterized by having means for forming a magnetic field.

【0014】ここで、絶縁膜製造装置は前記真空容器内
に前記N2 OまたはO2 、およびSiH4 またはSi2
6 と共にArを導入する手段を有してもよい。
Here, the insulating film manufacturing apparatus uses the N 2 O or O 2 and the SiH 4 or Si 2 in the vacuum chamber.
A means for introducing Ar together with H 6 may be included.

【0015】前記成膜時に半導体基板上での磁界の径方
向成分が30ガウス以下となる磁界を形成する手段が、
前記基板台を基準にして前記ソレノイドコイルと反対側
にかつ該ソレノイドコイルと同軸に配設された第2のソ
レノイドコイルであってもよい。
Means for forming a magnetic field having a radial component of 30 Gauss or less on the semiconductor substrate during the film formation is
A second solenoid coil may be provided on the opposite side of the substrate coil from the solenoid coil and coaxially with the solenoid coil.

【0016】前記成膜時に半導体基板上での磁界の径方
向成分が30ガウス以下となる磁界を形成する手段が、
前記ソレノイドコイルと前記基板台の基板載置面との間
に基板載置面に到達する磁束量を減少させるために配置
された強磁性材からなる磁気シールドであってもよい。
Means for forming a magnetic field in which the radial component of the magnetic field on the semiconductor substrate is 30 Gauss or less during the film formation is
A magnetic shield made of a ferromagnetic material may be disposed between the solenoid coil and the substrate mounting surface of the substrate table to reduce the amount of magnetic flux reaching the substrate mounting surface.

【0017】前記成膜時に半導体基板上での磁界の径方
向成分が30ガウス以下となる磁界を形成する手段が、
前記ソレノイドコイルの軸方向で前記基板台の基板載置
面側に該ソレノイドコイルと同軸に配置された減磁コイ
ルであってもよい。
Means for forming a magnetic field in which the radial component of the magnetic field on the semiconductor substrate during the film formation is 30 Gauss or less,
A demagnetizing coil may be arranged coaxially with the solenoid coil on the substrate mounting surface side of the substrate table in the axial direction of the solenoid coil.

【0018】前記成膜時に半導体基板上での磁界の径方
向成分が30ガウス以下となる磁界を形成する手段が、
前記ソレノイドコイルであり、該ソレノイドコイルは軸
方向高さが内径の3/4より小さい形状であってもよ
い。
Means for forming a magnetic field such that the radial component of the magnetic field on the semiconductor substrate during the film formation is 30 Gauss or less,
The solenoid coil may have a shape in which the axial height is smaller than 3/4 of the inner diameter.

【0019】さらに、本発明による絶縁膜製造方法は、
マイクロ波発生用電源からマイクロ波伝達手段を介して
真空容器にマイクロ波を導入し、該真空容器を包囲する
ソレノイドコイルによって真空容器内にマイクロ波との
電子サイクロトロン共鳴磁界領域を形成して該真空容器
内へ導入されたガスのマイクロ波によるプラズマ化作用
を助長し、真空容器内にN2 OまたはO2 、およびSi
4 またはSi26を導入して基板台上の半導体基板
表面にSiO2 膜を成長させる絶縁膜製造方法におい
て、前記半導体基板上での磁界の径方向成分を30ガウ
ス以下に維持しながら成膜を行うことを特徴とする。
Furthermore, the method for producing an insulating film according to the present invention is
A microwave is introduced from a microwave generating power source into the vacuum container through a microwave transmission means, and a solenoid coil surrounding the vacuum container forms an electron cyclotron resonance magnetic field region with the microwave in the vacuum container to form the vacuum. The plasma introduced by the microwave introduced into the container is promoted, and N 2 O or O 2 and Si
In an insulating film manufacturing method in which H 4 or Si 2 H 6 is introduced to grow a SiO 2 film on the surface of a semiconductor substrate on a substrate table, the radial component of the magnetic field on the semiconductor substrate is maintained at 30 Gauss or less. A feature is that film formation is performed.

【0020】ここで前記真空容器内に前記N2 Oまたは
2 およびSiH4 またはSi26 と共にArを導入
してもよい。
Here, Ar may be introduced into the vacuum vessel together with the N 2 O or O 2 and SiH 4 or Si 2 H 6 .

【0021】[0021]

【発明の実施の形態】本発明者らの研究によれば、高R
Fバイアス印加の下でも、基板上での磁界の径方向成分
が30ガウス以下であれば、
BEST MODE FOR CARRYING OUT THE INVENTION According to the studies by the present inventors, a high R
Even if the F bias is applied, if the radial component of the magnetic field on the substrate is 30 Gauss or less,

【0022】[0022]

【外2】 [Outside 2]

【0023】径方向のプラズマ電位分布が大きくなり得
ず、ゲート酸化膜の絶縁不良化が防止され、LSIの歩
留りが向上することが確認された。従って、基板がEC
R磁界領域に近接する高速成膜時に、基板上での磁界の
径方向成分を小さくすることができれば、MOSゲート
酸化膜の絶縁不良化を防止しつつ、基板に高パワーのR
Fバイアスを印加して、膜厚分布,膜質の良好な絶縁酸
化膜を成膜することができる。
It was confirmed that the plasma potential distribution in the radial direction could not be increased, the insulation failure of the gate oxide film was prevented, and the yield of LSI was improved. Therefore, the substrate is EC
If the radial component of the magnetic field on the substrate can be reduced during high-speed film formation close to the R magnetic field region, it is possible to prevent the insulation failure of the MOS gate oxide film and prevent the high power R
An F bias can be applied to form an insulating oxide film having a good film thickness distribution and film quality.

【0024】図1に本発明による装置の一実施例を示
す。この装置が図5に示した従来のものと異なるところ
は、第2の真空容器7底面の外側にサブソレノイド13
を主ソレノイド(図8においてソレノイドコイルと称し
たもの)4と同軸に配設した点である。主ソレノイド4
が形成する磁界と、サブソレノイド13が形成する磁界
とが軸線上で同方向となるように両ソレノイドに通電す
ると、基板位置の広い軸方向範囲で基板近傍にミラー磁
界を形成することができる。ミラー磁界は同軸に間隔を
おいて配された2個のコイルが同方向に形成する磁界を
重畳して2個のコイルの中間位置に形成される磁界であ
るから、両ソレノイドの中間位置では軸方向の磁界が重
畳され、径方向の磁界が互いに打ち消し合うので、中間
位置にある基板上では径方向磁界が小さくなる。
FIG. 1 shows an embodiment of the device according to the present invention. This device is different from the conventional device shown in FIG. 5 in that the sub-solenoid 13 is provided outside the bottom surface of the second vacuum container 7.
Is disposed coaxially with the main solenoid (referred to as a solenoid coil in FIG. 8) 4. Main solenoid 4
By energizing both solenoids so that the magnetic field formed by the sub solenoid 13 and the magnetic field formed by the sub-solenoid 13 are in the same direction on the axis, a mirror magnetic field can be formed in the vicinity of the substrate in a wide axial range of the substrate position. The mirror magnetic field is a magnetic field that is formed at the intermediate position between the two coils by superposing the magnetic fields formed by the two coils that are coaxially arranged at a distance in the same direction. Since the magnetic fields in the directions are superposed and the magnetic fields in the radial direction cancel each other, the radial magnetic field becomes small on the substrate at the intermediate position.

【0025】基板表面位置における磁界の径方向成分の
分布は両ソレノイドに流す電流を変化させながら予め測
定しておいても良いし、あるいは、両ソレノイドの形
状,巻線密度,電流および位置をパラメータとして計算
によって求めることもできる。図2に計算結果の一例を
示す。図2は主ソレノイドの形状、巻線密度および電
流、サブソレノイドの形状、巻線密度、位置を固定し、
後者の電流をパラメータとして計算した例である。
The distribution of the radial component of the magnetic field at the substrate surface position may be measured in advance while changing the currents flowing through both solenoids, or the shape, winding density, current and position of both solenoids can be used as parameters. Can also be calculated as FIG. 2 shows an example of the calculation result. Figure 2 shows the shape of main solenoid, winding density and current, the shape of sub solenoid, winding density and position,
In this example, the latter current is calculated as a parameter.

【0026】基板台9の高さ方向の位置を調節可能とす
ることが好ましい。
It is preferable that the position of the substrate table 9 in the height direction can be adjusted.

【0027】高速成膜のためにECR磁界領域に基板1
0を近接させる際には、主ソレノイド4とサブソレノイ
ド13との軸方向磁界を重畳させてECR磁界領域を形
成すれば、基板上での磁界の径方向成分を30ガウス以
下に保って高速成膜を行うことができる。
Substrate 1 in the ECR magnetic field region for high speed film formation
When 0 is brought close to each other, the magnetic fields in the axial direction of the main solenoid 4 and the sub-solenoid 13 are superposed to form the ECR magnetic field region, so that the radial component of the magnetic field on the substrate is kept at 30 Gauss or less and high speed formation is achieved. Membranes can be made.

【0028】図3に本発明による装置の他の実施例を示
す。円筒状の第2の真空容器7の外周面の主ソレノイド
4と基板台10の基板載置面との間の部分が強磁性材か
らなる円筒状磁気シールド20により密に囲まれてい
る。磁束はできるだけ磁気抵抗の小さい磁路を通ろうと
するので、主ソレノイド4が作る磁界のうち、軸線近傍
の磁界を除いては磁界が基板10まで延びにくくし、基
板10を通る軸方向磁束密度の面分布を均一にしながら
基板10上での径方向の磁界成分を小さくしている。さ
らに、本実施例では、主ソレノイド4は、内周面を除き
上面,下面,外周面ともに強磁性材で覆われ、主ソレノ
イド4まわり磁路の磁気抵抗を小さくして磁気シールド
20の磁束吸収効果を高めるとともに、装置内を通る磁
束量が増すようにし、これにより、ECR磁界領域形成
に必要な通電電流を減らすようにしている。
FIG. 3 shows another embodiment of the device according to the present invention. A portion of the outer peripheral surface of the cylindrical second vacuum container 7 between the main solenoid 4 and the substrate mounting surface of the substrate table 10 is densely surrounded by a cylindrical magnetic shield 20 made of a ferromagnetic material. Since the magnetic flux tries to pass through the magnetic path having the smallest magnetic resistance as much as possible, among the magnetic fields generated by the main solenoid 4, it is difficult to extend the magnetic field to the substrate 10 except for the magnetic field near the axis, and the magnetic flux density in the axial direction passing through the substrate 10 is reduced. The magnetic field component in the radial direction on the substrate 10 is reduced while making the surface distribution uniform. Further, in the present embodiment, the main solenoid 4 is covered with ferromagnetic materials on the upper surface, the lower surface and the outer peripheral surface except the inner peripheral surface, and the magnetic resistance of the magnetic path around the main solenoid 4 is reduced to absorb the magnetic flux of the magnetic shield 20. In addition to enhancing the effect, the amount of magnetic flux passing through the device is increased, thereby reducing the energizing current required for forming the ECR magnetic field region.

【0029】図4に本発明による装置のさらに他の実施
例を示す。主ソレノイド4の下面側に主ソレノイド4と
同軸に減磁コイル21が配され、この減磁コイル21に
は主ソレノイド4と軸線上で逆方向の磁界が形成される
ように通電が行われる。減磁コイルの通電電流の大きさ
により、ソレノイドコイルが作る磁束の打消し量を変え
ることができ、さらに、減磁コイル21は軸方向の高さ
が低く、扁平な磁界を作るので、コイルの断面形状、設
置する軸方向の位置を適宜に選定することにより、主ソ
レノイド4が基板10上に作る磁界の径方向成分を効果
的に打ち消すことができる。なお、基板上での磁界の径
方向成分をさらに小さくできるよう、円筒状の第2の真
空容器7の外周面は、図3の場合と同様に減磁コイル2
1と一体となって強磁性材で覆われている。減磁コイル
21は通電電流により装置内に形成する磁界の大きさが
変わり、かつ磁界の強さは軸線上で最も強くなるので、
基板上での径方向磁界成分を30ガウス以下に保ちなが
ら、ECR磁界領域側からのプラズマ密度を中央部で小
さくする方向に作用してプラズマ密度を均一化する作用
をもち、膜厚分布の改善に寄与する。
FIG. 4 shows a further embodiment of the device according to the present invention. A demagnetization coil 21 is arranged coaxially with the main solenoid 4 on the lower surface side of the main solenoid 4, and the demagnetization coil 21 is energized so that a magnetic field in the direction opposite to the axis of the main solenoid 4 is formed. The amount of current flowing through the demagnetizing coil can change the amount of cancellation of the magnetic flux created by the solenoid coil. Further, the demagnetizing coil 21 has a low axial height and creates a flat magnetic field. By appropriately selecting the cross-sectional shape and the axial position for installation, the radial component of the magnetic field produced by the main solenoid 4 on the substrate 10 can be effectively canceled. In order to further reduce the radial component of the magnetic field on the substrate, the outer peripheral surface of the cylindrical second vacuum container 7 is the same as in the case of FIG.
It is covered with ferromagnetic material together with 1. In the demagnetization coil 21, the magnitude of the magnetic field formed in the device changes depending on the applied current, and the strength of the magnetic field becomes the strongest on the axis.
While maintaining the radial magnetic field component on the substrate to be 30 Gauss or less, it acts to reduce the plasma density from the ECR magnetic field region in the central part to uniformize the plasma density and improve the film thickness distribution. Contribute to.

【0030】図5に本発明による装置のさらに他の実施
例を示す。この実施例は、従来の装置に対して何ものも
付加することなく基板上での磁界の径方向成分30ガウ
ス以下が可能な装置を得ようとするもので、図のよう
に、主ソレノイド4の軸方向高さを内径の3/4以下と
低くして磁界を扁平に形成し、基板に到達する磁束量を
減少させ、これにより、主ソレノイド4の軸方向下方に
位置する基板上での径方向磁界成分を30ガウス以下と
している。基板上での径方向磁界成分をより小さくする
ために、主ソレノイド4の内周面を除き、上面,外周
面,下面はともに強磁性材で覆ってある。なお、主ソレ
ノイド4は高さが低いので、ECR磁界領域で形成され
たプラズマの基板10への進行は、主ソレノイド4が形
成する磁界によるよりも、第2の真空容器7側での排気
に伴う気流に助けられた拡散により行われ、膜厚分布に
対する磁界分布の影響が小さくなり、第2の真空容器7
側の排気路の構成により膜厚分布を向上させることがで
きる。
FIG. 5 shows still another embodiment of the device according to the present invention. This embodiment is intended to obtain a device capable of reducing the radial component of the magnetic field on the substrate to 30 Gauss or less without adding anything to the conventional device. The axial height of is reduced to 3/4 or less of the inner diameter to form a flat magnetic field and reduce the amount of magnetic flux that reaches the substrate. The radial magnetic field component is set to 30 Gauss or less. In order to reduce the radial magnetic field component on the substrate, the upper surface, the outer peripheral surface, and the lower surface of the main solenoid 4 are covered with a ferromagnetic material except for the inner peripheral surface. Since the main solenoid 4 is low in height, the plasma formed in the ECR magnetic field region progresses toward the substrate 10 more in the exhaust on the second vacuum container 7 side than in the magnetic field formed by the main solenoid 4. It is performed by the accompanying air flow-assisted diffusion, and the influence of the magnetic field distribution on the film thickness distribution is reduced.
The film thickness distribution can be improved by the configuration of the exhaust passage on the side.

【0031】[0031]

【実施例】【Example】

実施例1 図1に示した様に、主ソレノイド4およびサブソレノイ
ド13を有するECRプラズマCVD装置を用い、サブ
ソレノイドに流す電流を変化して、半導体基板表面上の
磁界の径方向分布を変化させて絶縁膜を形成し、径方向
磁界のプラズマダメージ特性への影響を調べた。
Example 1 As shown in FIG. 1, an ECR plasma CVD apparatus having a main solenoid 4 and a sub-solenoid 13 was used to change the current passed through the sub-solenoid to change the radial distribution of the magnetic field on the surface of the semiconductor substrate. Then, an insulating film was formed on the substrate, and the effect of the radial magnetic field on the plasma damage characteristics was investigated.

【0032】ただし、本実施例では0.35μmルール
の4層配線の層間絶縁膜の成長装置で、配線段差の埋め
込み用として、作られた装置を使用した。
However, in this embodiment, an apparatus for growing an interlayer insulating film of a four-layer wiring of a rule of 0.35 μm, which is made for filling wiring steps, is used.

【0033】図示されていないマイクロ波電源より、マ
ッチング機構を介して2.45GHzのマイクロ波を導
波管1とAlN製のマイクロ波透過窓2を伝達し、第1
真空容器(マイクロ波プラズマ生成室)3に導入した。
また、マイクロ波プラズマ生成室には、マイクロ波窓近
傍に875Gauss以上の磁界を印加可能な主ソレノ
イド4により、磁界を加え、マイクロ波プラズマの発生
を補助した。プラズマ生成室には第1のガス導入路5よ
り、O2 およびArガスを導入した。第2の真空容器
(反応室)7を図示されていない排気手段、3台並列さ
れた1800l/secのターボ分子ポンプ、によって
排気した。最大有効排気速度は、半導体基板近傍で25
00l/secである。また、プラズマ生成室内の内圧
は、圧力制御機構により0.5mTorr〜3.5To
rrまで制御可能である。
From a microwave power source (not shown), a microwave of 2.45 GHz is transmitted through the matching mechanism to the waveguide 1 and the microwave transmission window 2 made of AlN, and the first
It was introduced into a vacuum container (microwave plasma generation chamber) 3.
A magnetic field was applied to the microwave plasma generation chamber by the main solenoid 4 capable of applying a magnetic field of 875 Gauss or more near the microwave window to assist the generation of microwave plasma. O 2 and Ar gas were introduced into the plasma generation chamber through the first gas introduction passage 5. The second vacuum container (reaction chamber) 7 was evacuated by an unillustrated evacuation means, three 1800 l / sec turbo molecular pumps arranged in parallel. The maximum effective pumping speed is 25 near the semiconductor substrate.
It is 001 / sec. Further, the internal pressure in the plasma generation chamber is 0.5 mTorr to 3.5 To due to the pressure control mechanism.
It is possible to control up to rr.

【0034】生成されたマイクロ波プラズマを、プラズ
マ引き出し窓6をへて、RF・マイクロ波プラズマ反応
室7(反応室内径440mm)に導入し、第2のガス導
入路8及び図示されていないガス均一吹き出しシャワー
より放出されたSiH4 ガスを活性化した。活性化され
たSiH4 ガスは、半導体基板10にその他のガスと反
応しながら吸着され、絶縁膜を形成した。
The generated microwave plasma is introduced into the RF / microwave plasma reaction chamber 7 (the diameter of the reaction chamber is 440 mm) through the plasma extraction window 6, and the second gas introduction passage 8 and the gas (not shown) are introduced. The SiH 4 gas released from the uniform shower was activated. The activated SiH 4 gas was adsorbed on the semiconductor substrate 10 while reacting with other gases to form an insulating film.

【0035】サブソレノイド13に主ソレノイド4と同
じ軸方向磁界を形成するように通電して基板表面近傍に
ミラー磁界を形成した。サブソレノイド13に流す電流
を変えて径方向の磁界成分(Br)を変化させ、各径方
向磁界成分(Br)条件下で絶縁膜を形成した。
The sub-solenoid 13 was energized to form the same axial magnetic field as the main solenoid 4 to form a mirror magnetic field near the substrate surface. The current flowing through the sub-solenoid 13 was changed to change the radial magnetic field component (Br), and the insulating film was formed under each radial magnetic field component (Br) condition.

【0036】成膜パラメーターは以下の通りである。The film forming parameters are as follows.

【0037】 SiH4 80SCCM O2 96SCCM Ar 200SCCM 反応時の圧力 1.5mTorr マイクロ波パワー 2300W RFパワー 2300W 成膜温度 110℃〜180℃(成長と共に上昇) この時の代表的な膜質は以下の通りであった。SiH 4 80SCCM O 2 96SCCM Ar 200SCCM Pressure during reaction 1.5 mTorr Microwave power 2300 W RF power 2300 W Film formation temperature 110 ° C. to 180 ° C. (increased with growth) Typical film quality at this time is as follows. there were.

【0038】 成長速度 4000Å/min 成長時間 4分 膜厚分布 ±4.8% 屈折率 1.50 応力 −1.2×109 dyn/cm2 ダメージ評価用の試料は図6(a)に平面図を、図6
(b)に断面図を示すような電極構造のものである。よ
り詳しくはダメージ評価用のサンプルは、容量構造で絶
縁膜厚さが80Åであり、アンテナは、櫛歯構造をした
アンテナ比100万倍のポリシリコン電極の構造をも
ち、6インチウェハ当たり約100個程測定部位を持つ
ものである。
Growth rate 4000 Å / min Growth time 4 minutes Film thickness distribution ± 4.8% Refractive index 1.50 Stress −1.2 × 10 9 dyn / cm 2 The sample for damage evaluation has a flat surface in FIG. 6 (a). Figure 6
It has an electrode structure as shown in the sectional view of FIG. More specifically, the sample for damage evaluation has a capacitive structure and an insulating film thickness of 80Å, and the antenna has a comb-tooth structure and a polysilicon electrode structure that is 1 million times that of the antenna, and a 100-inch wafer is used for each 6-inch wafer. It has more measurement parts.

【0039】ウェハ面内の最大径方向磁界Brとプラズ
マダメージの関係は、以下の表1に示すとおりであっ
た。
The relationship between the maximum radial magnetic field Br in the wafer surface and plasma damage was as shown in Table 1 below.

【0040】[0040]

【表1】 [Table 1]

【0041】但し、Brの符号が正は、磁界方向が外向
き、負符号は、内向きをしめす。
However, if the sign of Br is positive, the magnetic field direction is outward, and if the sign is negative, it is inward.

【0042】以上説明したように、サブコイルの電流を
制御することで、ダメージの無い磁界条件を見つけるこ
とができた。
As described above, it was possible to find a magnetic field condition without damage by controlling the current of the sub coil.

【0043】この様に、RF電力が2000Wとより大
きく、櫛歯型アンテナ部の電極高さが1μmと高い部位
の平坦化埋め込み成膜でも、Brを30ガウス以下、特
に10ガウス程度とすることで歩留りを落とすことな
く、処理することができた。
As described above, Br is set to 30 gausses or less, particularly about 10 gausses even in the flattening and embedding film formation where the RF power is 2000 W and the electrode height of the comb-teeth type antenna part is as high as 1 μm. It was possible to process without lowering the yield.

【0044】実施例2 実施例1と同様の装置を用い、磁界の径方向成分のプラ
ズマダメージに与える影響を調べた。ただし、本実施例
では、0.5μmルールの4層配線の層間絶縁膜の成長
装置で、配線段差に0.1〜0.4μm程度のカバー膜
を成長し、この膜の上につける膜からの水分をブロック
し、下地デバイスの性能低下を防止する為に用いる装置
を使用した。実施例1で使用した装置との主要な差は、
排気手段が、500l/secのターボ分子ポンプを2
台並列に構成し、最大有効排気速度は、500l/se
c(半導体基板近傍)であること、プラズマ生成室内の
圧力が2.0mTorr〜3.5Torrまで制御可能
なこと、第2真空容器(反応室)7の内径が350mm
であること、である。
Example 2 Using the same apparatus as in Example 1, the effect of the radial component of the magnetic field on plasma damage was investigated. However, in this embodiment, a cover film of about 0.1 to 0.4 μm is grown in the step of the wiring with a growth apparatus for an interlayer insulating film of a four-layer wiring of 0.5 μm rule, and the film is formed on the cover film. A device used to block the moisture of the substrate and prevent the deterioration of the performance of the underlying device was used. The main difference from the device used in Example 1 is:
Exhaust means is a 500 l / sec turbo molecular pump 2
The units are arranged in parallel and the maximum effective pumping speed is 500 l / se
c (near the semiconductor substrate), the pressure inside the plasma generation chamber can be controlled from 2.0 mTorr to 3.5 Torr, and the inner diameter of the second vacuum container (reaction chamber) 7 is 350 mm.
That is,

【0045】また、本実施例は配線をカバーするための
プロセスのため、平坦化のためのArガスは使用してい
ない。
Further, since the present embodiment is a process for covering the wiring, Ar gas for flattening is not used.

【0046】成膜パラメーターは以下の通りである。The film forming parameters are as follows.

【0047】 SiH4 70SCCM O2 98SCCM 反応時の圧力 7mTorr マイクロ波パワー 300W RFパワー 1200W 成膜温度 180℃〜240℃(成長と共に上昇) 代表的な膜質は以下の通りであった。SiH 4 70SCCM O 2 98SCCM Pressure during reaction 7 mTorr Microwave power 300 W RF power 1200 W Film formation temperature 180 ° C. to 240 ° C. (increased with growth) Typical film quality was as follows.

【0048】 成長速度 2000Å/min 成長時間 2分、30秒 膜厚分布 ±4.0% 屈折率 1.50 応力 −1.3×109 dyn/cm2 図7(a)に測定用試料の電極構造の平面図を、図7
(b)に断面図を示す。測定に用いた、ダメージ評価用
の試料は、容量構造で絶縁膜厚さが90Åであり、アン
テナは、方形構造をしたアンテナ比100万倍のポリシ
リコン電極の構造をもち、6インチウェハ当たり約10
0個程測定部位を持つものである。
Growth rate 2000 Å / min Growth time 2 minutes, 30 seconds Film thickness distribution ± 4.0% Refractive index 1.50 Stress −1.3 × 10 9 dyn / cm 2 FIG. A plan view of the electrode structure is shown in FIG.
(B) shows a cross-sectional view. The sample for damage evaluation used for the measurement has a capacitance structure and an insulating film thickness of 90Å, and the antenna has a rectangular structure and a polysilicon electrode structure that is 1 million times that of the antenna. 10
It has about 0 measuring parts.

【0049】ウェハ面内の最大Brとプラズマダメージ
の関係は表2に示すとおりであった。
The relationship between the maximum Br in the wafer surface and the plasma damage was as shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】但し、Brの符号が正は、磁界方向が外向
き、負符号は、内向きをしめす。
However, when the sign of Br is positive, the magnetic field direction is outward, and when the sign is negative, it is inward.

【0052】このように、サブコイルの電流を制御する
ことで径方向磁界成分を制御し、膜厚が0.5μm程度
で、方形型アンテナ部の電極高さが0.5μmと低い場
合のカバー膜の成膜では、Brを30ガウス程度とする
ことで歩留りを落とすことなく、処理することができ
た。
As described above, the radial direction magnetic field component is controlled by controlling the current of the sub-coil, and the cover film is used when the film thickness is about 0.5 μm and the electrode height of the rectangular antenna part is as low as 0.5 μm. In the film formation of (3), by setting Br to about 30 Gauss, the processing could be performed without lowering the yield.

【0053】[0053]

【発明の効果】以上に述べたように、本発明において
は、RFバイアス印加の下で絶縁酸化膜形成を行うEC
RプラズマCVD装置を、基板上での磁界の径方向成分
を30ガウス以下となし得る装置とし、そのような条件
で成膜するので、RFバイアス印加による基板の表面電
界と磁界の径方向成分とのベクトル積による電子に働く
周方向の力が小さくなり、
As described above, according to the present invention, the EC for forming the insulating oxide film under the RF bias is applied.
The R plasma CVD apparatus is an apparatus capable of achieving a radial component of the magnetic field on the substrate of 30 Gauss or less, and the film is formed under such conditions. Therefore, the radial component of the surface electric field and magnetic field of the substrate due to the RF bias application. The circumferential force acting on the electron due to the vector product of becomes smaller,

【0054】[0054]

【外3】 [Outside 3]

【0055】径方向のプラズマ電位分布が大きくなり得
ず、MOSゲート酸化膜にかかる電圧ストレスが小さく
なり、ゲート酸化膜の絶縁不良が防止されるため、LS
Iの歩留りが向上する効果が得られる。
Since the plasma potential distribution in the radial direction cannot be increased, the voltage stress applied to the MOS gate oxide film is reduced, and the insulation failure of the gate oxide film is prevented.
The effect of improving the yield of I can be obtained.

【0056】そして、基板上での磁界の径方向成分を3
0ガウス以下とするための手段を、サブソレノイドで構
成する場合には、ミラー磁界の形成により、真空容器内
軸方向の広い範囲で径方向磁界成分を30ガウス以下と
することができ、かつ高速成膜にも支障が生じない。
Then, the radial component of the magnetic field on the substrate is set to 3
When the means for reducing the pressure to 0 Gauss or less is constituted by a sub-solenoid, the radial magnetic field component can be reduced to 30 Gauss or less in a wide range in the axial direction of the vacuum vessel by forming a mirror magnetic field, and at a high speed. No problem occurs in film formation.

【0057】また、基板上での径方向磁界成分を30ガ
ウス以下とするための手段を、磁気シールドで構成する
場合には、従来装置への磁気シールドの付加のみにて目
的とする装置を得ることができ、安価な装置を構成する
ことができる。
When the means for reducing the radial magnetic field component on the substrate to 30 Gauss or less is constituted by a magnetic shield, the target device can be obtained only by adding the magnetic shield to the conventional device. Therefore, an inexpensive device can be configured.

【0058】また、上記手段を減磁コイルで構成する場
合には、減磁コイルへの通電電流を変えて基板上での径
方向磁界成分を30ガウス以下に保ちつつ、ECR磁界
領域から基板へ向かうプラズマ密度分布を改善すること
ができる付加的効果が得られる。
In the case where the above means is constituted by a demagnetizing coil, the current flowing through the demagnetizing coil is changed to keep the radial magnetic field component on the substrate at 30 Gauss or less, while the ECR magnetic field region is shifted to the substrate. The additional effect is that the onward plasma density distribution can be improved.

【0059】さらに、上記手段を構成するために主ソレ
ノイドを特別の形状とする場合には、従来の装置に対し
て新たに付加するものがなく、本発明の目的を安価に達
成することができる。
Further, when the main solenoid is formed into a special shape in order to configure the above means, there is nothing newly added to the conventional device, and the object of the present invention can be achieved at low cost. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による装置の一実施例を示す装置断面図
である。
FIG. 1 is a device sectional view showing an embodiment of a device according to the present invention.

【図2】径方向の磁界成分の分布を示す線図である。FIG. 2 is a diagram showing a distribution of magnetic field components in a radial direction.

【図3】本発明による装置の他の実施例の構成原理を示
す説明図である。
FIG. 3 is an explanatory diagram showing a configuration principle of another embodiment of the device according to the present invention.

【図4】本発明による装置のさらに他の実施例の構成原
理を示す説明図である。
FIG. 4 is an explanatory diagram showing a configuration principle of still another embodiment of the device according to the present invention.

【図5】本発明による装置のさらに他の一実施例の構成
原理を示す説明図である。
FIG. 5 is an explanatory diagram showing a configuration principle of still another embodiment of the apparatus according to the present invention.

【図6】測定用試料の電極形状を示し、同図(a)は平
面図、同図(b)は断面図である。
6A and 6B show electrode shapes of a measurement sample, FIG. 6A is a plan view and FIG. 6B is a sectional view.

【図7】測定用試料の電極形状を示し、同図(a)は平
面図、同図(b)は断面図である。
7A and 7B show electrode shapes of a measurement sample, FIG. 7A is a plan view, and FIG. 7B is a sectional view.

【図8】絶縁膜製造装置の従来の構成例を示す断面図で
ある。
FIG. 8 is a cross-sectional view showing a conventional configuration example of an insulating film manufacturing apparatus.

【図9】MOSゲートのプラズマダメージ現象を説明す
るための図であって、同図(a)はMOSゲート酸化膜
の絶縁強度評価のためのゲート構成図、同図(b)はプ
ラズマCVD法によって多数のMOSゲートを絶縁酸化
膜で覆う場合、プラズマ密度に分布があるときに低密度
プラズマ領域のMOSゲートが絶縁破壊する原因を説明
する説明図である。
9A and 9B are views for explaining a plasma damage phenomenon of a MOS gate, FIG. 9A is a gate configuration diagram for evaluating insulation strength of a MOS gate oxide film, and FIG. 9B is a plasma CVD method. FIG. 6 is an explanatory diagram illustrating a cause of dielectric breakdown of a MOS gate in a low density plasma region when a large number of MOS gates are covered with an insulating oxide film when the plasma density has a distribution.

【符号の説明】 1 導波管 2 導波窓 3 第1の真空容器 4 主ソレノイド(ソレノイドコイル) 5 第1ガス導入路 7 第2の真空容器 9 基板台 10 基板(被処理基板,半導体基板) 12 排気孔 13 サブソレノイド 14 RF電源 20 磁気シールド 21 減磁コイル[Explanation of reference numerals] 1 waveguide 2 waveguide window 3 first vacuum container 4 main solenoid (solenoid coil) 5 first gas introduction path 7 second vacuum container 9 substrate stage 10 substrate (processed substrate, semiconductor substrate) ) 12 exhaust hole 13 sub-solenoid 14 RF power source 20 magnetic shield 21 demagnetizing coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片桐 源一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Genichi Katagiri 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波発生用電源からマイクロ波伝
達手段を介してマイクロ波が導入される真空容器と、該
真空容器を包囲し、真空容器内にマイクロ波との電子サ
イクロトロン共鳴磁界領域を形成して該真空容器内へ導
入されたガスのマイクロ波によるプラズマ化作用を助け
るソレノイドコイルと、真空容器内の基板台上に置かれ
た被処理基板にRFバイアスを印加するためのRF電源
と、真空容器内の排気を行う排気手段とを備えてなり、
真空容器内にN2 OまたはO2、およびSiH4 または
Si26 を導入して基板台上の半導体基板表面にSi
2 膜を成長させる絶縁膜製造装置において、成膜時に
半導体基板上での磁界の径方向成分が30ガウス以下と
なる磁界を形成する手段を有することを特徴とする絶縁
膜製造装置。
1. A vacuum container into which microwaves are introduced from a microwave generating power source through a microwave transmission means, and a vacuum container is enclosed to form an electron cyclotron resonance magnetic field region with the microwaves in the vacuum container. A solenoid coil for assisting a plasma conversion action of the gas introduced into the vacuum container by the microwave, and an RF power source for applying an RF bias to the substrate to be processed placed on the substrate table in the vacuum container, Equipped with an exhaust means for exhausting the inside of the vacuum container,
By introducing N 2 O or O 2 and SiH 4 or Si 2 H 6 into a vacuum container, Si is formed on the surface of the semiconductor substrate on the substrate table.
An insulating film manufacturing apparatus for growing an O 2 film, comprising means for forming a magnetic field such that a radial component of the magnetic field on a semiconductor substrate is 30 Gauss or less during film formation.
【請求項2】 請求項1に記載の装置において、前記真
空容器内に前記N2OまたはO2 、およびSiH4 また
はSi26 と共にArを導入する手段を有することを
特徴とする絶縁膜製造装置。
2. The insulating film according to claim 1, further comprising means for introducing Ar into the vacuum container together with the N 2 O or O 2 and SiH 4 or Si 2 H 6. Manufacturing equipment.
【請求項3】 請求項1または2に記載の装置におい
て、前記成膜時に半導体基板上での磁界の径方向成分が
30ガウス以下となる磁界を形成する手段が、前記基板
台を基準にして前記ソレノイドコイルと反対側にかつ該
ソレノイドコイルと同軸に配設された第2のソレノイド
コイルであることを特徴とする絶縁膜製造装置。
3. The apparatus according to claim 1, wherein the means for forming a magnetic field having a radial component of a magnetic field of 30 Gauss or less on the semiconductor substrate during the film formation is based on the substrate table. An insulating film manufacturing apparatus, which is a second solenoid coil disposed on the opposite side of the solenoid coil and coaxially with the solenoid coil.
【請求項4】 請求項1または2に記載の装置におい
て、前記成膜時に半導体基板上での磁界の径方向成分が
30ガウス以下となる磁界を形成する手段が、前記ソレ
ノイドコイルと前記基板台の基板載置面との間に基板載
置面に到達する磁束量を減少させるために配置された強
磁性材からなる磁気シールドであることを特徴とする絶
縁膜製造装置。
4. The apparatus according to claim 1, wherein the means for forming a magnetic field in which a radial direction component of the magnetic field on the semiconductor substrate is 30 Gauss or less during the film formation is the solenoid coil and the substrate table. 2. An insulating film manufacturing apparatus, which is a magnetic shield made of a ferromagnetic material and is disposed between the substrate mounting surface and the substrate mounting surface to reduce the amount of magnetic flux reaching the substrate mounting surface.
【請求項5】 請求項1または2に記載の装置におい
て、前記成膜時に半導体基板上での磁界の径方向成分が
30ガウス以下となる磁界を形成する手段が、前記ソレ
ノイドコイルの軸方向で前記基板台の基板載置面側に該
ソレノイドコイルと同軸に配置された減磁コイルである
ことを特徴とする絶縁膜製造装置。
5. The apparatus according to claim 1, wherein the means for forming a magnetic field in which the radial component of the magnetic field on the semiconductor substrate is 30 Gauss or less during the film formation is in the axial direction of the solenoid coil. An insulating film manufacturing apparatus, which is a demagnetizing coil arranged coaxially with the solenoid coil on the substrate mounting surface side of the substrate table.
【請求項6】 請求項1または2に記載の装置におい
て、前記成膜時に半導体基板上での磁界の径方向成分が
30ガウス以下となる磁界を形成する手段が、前記ソレ
ノイドコイルであり、該ソレノイドコイルは軸方向高さ
が内径の3/4より小さい形状であることを特徴とする
絶縁膜製造装置。
6. The apparatus according to claim 1, wherein the means for forming a magnetic field having a radial component of a magnetic field of 30 Gauss or less on a semiconductor substrate during the film formation is the solenoid coil, The insulating film manufacturing apparatus is characterized in that the solenoid coil has an axial height smaller than 3/4 of the inner diameter.
【請求項7】 マイクロ波発生用電源からマイクロ波伝
達手段を介して真空容器にマイクロ波を導入し、該真空
容器を包囲するソレノイドコイルによって真空容器内に
マイクロ波との電子サイクロトロン共鳴磁界領域を形成
して該真空容器内へ導入されたガスのマイクロ波による
プラズマ化作用を助長し、真空容器内にN2 OまたはO
2 、およびSiH4 またはSi26 を導入して基板台
上の半導体基板表面にSiO2 膜を成長させる絶縁膜製
造方法において、前記半導体基板上での磁界の径方向成
分を30ガウス以下に維持しながら成膜を行うことを特
徴とする絶縁膜製造方法。
7. A microwave is introduced from a microwave generating power source into a vacuum container through a microwave transmission means, and a solenoid coil surrounding the vacuum container creates an electron cyclotron resonance magnetic field region with the microwave in the vacuum container. The formation of N 2 O or O in the vacuum container is promoted by promoting the plasma-generating action of the gas introduced into the vacuum container by the microwave.
2 and SiH 4 or Si 2 H 6 are introduced to grow an SiO 2 film on the surface of a semiconductor substrate on a substrate stand, the radial component of the magnetic field on the semiconductor substrate is set to 30 Gauss or less. A method for manufacturing an insulating film, which comprises forming a film while maintaining the same.
【請求項8】 請求項7に記載の方法において、前記真
空容器内に前記N2OまたはO2 およびSiH4 または
Si26 と共にArを導入することを特徴とする絶縁
膜製造方法。
8. The method according to claim 7, wherein Ar is introduced together with the N 2 O or O 2 and SiH 4 or Si 2 H 6 into the vacuum container.
JP7200000A 1995-08-04 1995-08-04 Device and method for manufacturing insulating film Pending JPH0950991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7200000A JPH0950991A (en) 1995-08-04 1995-08-04 Device and method for manufacturing insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7200000A JPH0950991A (en) 1995-08-04 1995-08-04 Device and method for manufacturing insulating film

Publications (1)

Publication Number Publication Date
JPH0950991A true JPH0950991A (en) 1997-02-18

Family

ID=16417134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7200000A Pending JPH0950991A (en) 1995-08-04 1995-08-04 Device and method for manufacturing insulating film

Country Status (1)

Country Link
JP (1) JPH0950991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161677A1 (en) 2012-04-27 2013-10-31 協和メデックス株式会社 Method for assaying component to be assayed in specimen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161677A1 (en) 2012-04-27 2013-10-31 協和メデックス株式会社 Method for assaying component to be assayed in specimen

Similar Documents

Publication Publication Date Title
US5770098A (en) Etching process
US5897713A (en) Plasma generating apparatus
US6660659B1 (en) Plasma method and apparatus for processing a substrate
US6333269B2 (en) Plasma treatment system and method
JP3375646B2 (en) Plasma processing equipment
EP1100119A1 (en) Plasma processing method
JPS62241335A (en) Plasma etching reinforced by magnetron
US5916820A (en) Thin film forming method and apparatus
KR100842947B1 (en) Plasma processing method and plasma processor
US20050126711A1 (en) Plasma processing apparatus
KR970008333B1 (en) Plasma processing method and apparatus using electron cyclotron resonance
US6475814B1 (en) Method for improved low pressure inductively coupled high density plasma reactor
US6413876B1 (en) Method for plasma processing high-speed semiconductor circuits with increased yield
US5810932A (en) Plasma generating apparatus used for fabrication of semiconductor device
JPH03204925A (en) Plasma processor
JP3973283B2 (en) Plasma processing apparatus and plasma processing method
JPH0950991A (en) Device and method for manufacturing insulating film
JPH1167725A (en) Plasma etching device
JP3519066B2 (en) Equipment for plasma processing
JP3106838B2 (en) Insulation film manufacturing method
JP3040073B2 (en) Plasma processing equipment
US6531409B1 (en) Fluorine containing carbon film and method for depositing same
JP3082711B2 (en) Method for manufacturing semiconductor device
JP3432720B2 (en) Plasma processing apparatus and plasma processing method
JPS63292625A (en) Controlling method for plasma