JPH0949047A - Wear resistant sintered alloy bearing low in counter part attackability - Google Patents

Wear resistant sintered alloy bearing low in counter part attackability

Info

Publication number
JPH0949047A
JPH0949047A JP21980195A JP21980195A JPH0949047A JP H0949047 A JPH0949047 A JP H0949047A JP 21980195 A JP21980195 A JP 21980195A JP 21980195 A JP21980195 A JP 21980195A JP H0949047 A JPH0949047 A JP H0949047A
Authority
JP
Japan
Prior art keywords
sintered alloy
distributed
ferrite phase
component
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21980195A
Other languages
Japanese (ja)
Inventor
Sekihin You
楊  積彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21980195A priority Critical patent/JPH0949047A/en
Publication of JPH0949047A publication Critical patent/JPH0949047A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wear resistant sintered alloy bearing low in counter part attackability. SOLUTION: This sintered alloy bearing is composed of a low pore Cu-Fe-Sn sintered alloy having a compsn. contg., by weight, 40 to 60% Fe, 0.1 to 5% Sn, 0.1 to 2% C, 0.05 to 1% S and 0.01 to 0.5% B and furthermore contg., at need, 0.5 to 2% MoS2 , and the balance Cu with inevitable impurities, having a structure in which ferritic phases are dispersedly distributed into the matrix of a Cu-Sn alloy, furthermore, free graphite grown with the S component as the nuclei is dispersedly distributed into the ferritic phases, moreover, the B component is dispersedly distributed along the surfaces and grain boundaries of the ferritic phases, and, if required, MoS2 is distributed into the boundary parts of the matrix and ferritic phases and having <=9% porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、相手材である回
転軸に対するなじみ性にすぐれ、かつ自己潤滑性にもす
ぐれているので、苛酷な条件下での実用に際しても、き
わめて低い相手攻撃性で、すぐれた耐摩耗性を示す焼結
合金軸受に関するものである。
BACKGROUND OF THE INVENTION The present invention has excellent compatibility with a rotating shaft, which is a mating material, and excellent self-lubricating property. Therefore, even when it is put to practical use under severe conditions, it has a very low mating attack. The present invention relates to a sintered alloy bearing having excellent wear resistance.

【0002】[0002]

【従来の技術】従来、一般に各種駆動装置には、相手材
である回転軸の支持部材として焼結合金軸受が用いられ
ており、この焼結合金軸受が、重量%で(以下、組成に
関する%は重量%を示す)、Fe:40〜60%、S
n:0.1〜5%、C:0.1〜2%を含有し、残りが
Cuと不可避不純物からなる組成、並びに図3に組織拡
大模写図で示されるように、Cu−Sn系合金の素地に
パーライト相が分散分布した組織を有し、さらに9%以
下の気孔率を有する低気孔Cu−Fe−Sn系焼結合金
で構成されていることも良く知られるところである。
2. Description of the Related Art Conventionally, a sintered alloy bearing has been generally used as a supporting member of a rotating shaft which is a mating member in various drive devices. Indicates weight%), Fe: 40 to 60%, S
A composition containing n: 0.1 to 5%, C: 0.1 to 2%, and the balance of Cu and inevitable impurities, and a Cu-Sn alloy as shown in FIG. It is well known that it has a structure in which the pearlite phase is dispersedly distributed in the base material and is composed of a low porosity Cu—Fe—Sn system sintered alloy having a porosity of 9% or less.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の駆動装置
の高性能化および小型化、さらに高出力化はめざまし
く、これに伴ない、駆動装置の構造部材である回転軸の
回転は高速化し、かつこれへの負荷は高荷重となる傾向
にあるが、上記の従来焼結合金軸受においては、これを
構成する低気孔Cu−Fe−Sn系焼結合金が、図3に
示される通り素地中に存在するパーライト相が原因で、
相手材である回転軸に対するなじみ性が低く、さらに自
己潤滑性も十分でなく、したがって高速回転および高荷
重条件では相手攻撃性が強く現われ、かつ摩耗進行も加
速されるようになるのが避けられないのが現状である。
On the other hand, in recent years, the performance and size of the drive unit have been remarkably increased and the output thereof has been increased. As a result, the rotational speed of the rotary shaft, which is a structural member of the drive unit, has been increased. Moreover, the load on this tends to be high, but in the above-mentioned conventional sintered alloy bearing, the low-pore Cu—Fe—Sn-based sintered alloy that constitutes this bearing has a base material as shown in FIG. Due to the pearlite phase present in
It has low compatibility with the rotating shaft that is the mating material, and also has insufficient self-lubricating properties. Therefore, under high-speed rotation and high load conditions, it is possible to avoid strong mating aggression and accelerate the progress of wear. The current situation is that there are none.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特になじみ性および自己潤滑性
のすぐれた焼結合金軸受を開発すべく、特に上記の従来
焼結合金軸受に着目し研究を行なった結果、上記の従来
焼結合金軸受を構成する低気孔Cu−Fe−Sn系焼結
合金に、合金成分としてSとBを含有させると、前記S
成分が核となって遊離黒鉛が析出し、この遊離黒鉛の成
長をB成分が促進するように作用することから、前記低
気孔Cu−Fe−Sn系焼結合金は、図1に組織拡大模
写図で示される通り、Cu−Sn系合金の素地に、硬質
のパーライト相に代って主体がFeのフェライト相が分
散分布し、このフェライト相内の結晶粒界にそってS成
分が核となって成長した微細な遊離黒鉛が分散分布し、
かつフェライト相の表面および結晶粒界にそってB成分
が分布した組織をもつようになり、この結果の低気孔C
u−Fe−Sn系焼結合金は、軟質のフェライト相と遊
離黒鉛によってすぐれたなじみ性と自己潤滑性をもち、
さらに前記低気孔Cu−Fe−Sn系焼結合金に硫化モ
リブデン(以下、MoS2 で示す)を含有させると、同
じく図2の組織拡大模写図で示される通り、フェライト
相と素地の界面部に分布して自己潤滑性が一段と向上し
たものになることから、焼結合金軸受として高速回転お
よび高荷重条件での実用に際しても相手攻撃性が著しく
低く、かつすぐれた耐摩耗性を発揮するという研究結果
を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, in order to develop a sintered alloy bearing excellent in conformability and self-lubricating property, particularly, the above-mentioned conventional sintered alloy bearing was studied by paying attention to the above-mentioned conventional sintered alloy bearing. When S and B are contained as alloy components in the low-pore Cu-Fe-Sn-based sintered alloy that constitutes
Since the component serves as a nucleus to precipitate free graphite and the component B acts to promote the growth of this free graphite, the low-pore Cu—Fe—Sn system sintered alloy is shown in FIG. As shown in the figure, a ferrite phase of Fe as a main component is dispersedly distributed in place of the hard pearlite phase in the base material of the Cu-Sn alloy, and the S component forms nuclei along the crystal grain boundaries in the ferrite phase. The fine free graphite that has grown up is distributed and distributed,
In addition, it has a structure in which the B component is distributed along the surface of the ferrite phase and the crystal grain boundaries. As a result, low porosity C
The u-Fe-Sn based sintered alloy has excellent compatibility and self-lubricity due to the soft ferrite phase and free graphite.
Further, when molybdenum sulfide (hereinafter, referred to as MoS 2 ) is added to the low porosity Cu—Fe—Sn system sintered alloy, as shown in the enlarged structure diagram of FIG. Since it is distributed and self-lubricating property is further improved, it is a research that it shows extremely low opponent attack and excellent wear resistance even when it is used as a sintered alloy bearing under high speed rotation and high load conditions. The result was obtained.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Fe:40〜60%、 S
n:0.1〜5%、C:0.1〜2%、 S:
0.05〜1%、B:0.01〜0.5%、を含有し、
さらに必要に応じて、MoS2 :0.5〜2%、を含有
し、残りがCuと不可避不純物からなる組成、Cu−S
n系合金の素地に、フェライト相が分散分布し、かつ前
記フェライト相内にはS成分を核として成長した遊離黒
鉛が分散分布し、さらに前記フェライト相の表面および
結晶粒界にそってB成分が分布し、必要に応じて前記素
地とフェライト相の界面部にMoS2 が分布した組織、
および9%以下の気孔率、を有する低気孔Cu−Fe−
Sn系焼結合金で構成してなる、相手攻撃性の低い耐摩
耗性焼結合金軸受に特徴を有するものである。
The present invention was made based on the above research results, and Fe: 40 to 60%, S
n: 0.1 to 5%, C: 0.1 to 2%, S:
0.05 to 1%, B: 0.01 to 0.5%,
Further, if necessary, a composition containing MoS 2 : 0.5 to 2% and the balance Cu and inevitable impurities, Cu-S.
The ferrite phase is dispersed and distributed in the base material of the n-based alloy, and free graphite grown with the S component as a nucleus is distributed and distributed in the ferrite phase, and the B component is further distributed along the surface of the ferrite phase and the grain boundaries. And a structure in which MoS 2 is distributed at the interface between the green body and the ferrite phase, if necessary,
And low porosity Cu-Fe- having a porosity of 9% or less.
It is characterized by a wear-resistant sintered alloy bearing made of Sn-based sintered alloy and having low opponent attack.

【0006】つぎに、この発明の焼結合金軸受におい
て、これを構成する低気孔Cu−Fe−Sn系焼結合金
の成分組成および気孔率を上記の通りに限定した理由を
説明する。 (a) Fe Fe成分には、素地に分散分布するフェライト相を形成
してなじみ性を向上させる作用があるが、その割合が4
0%未満では相対的にフェライト相の割合が少なくなり
すぎて、所望の耐摩耗性を確保することができず、一方
その割合が60%を越えると、相対的に素地の割合が少
なくなりすぎて強度が低下するようになることから、そ
の割合を40〜60%、望ましくは45〜55%と定め
た。
Next, in the sintered alloy bearing of the present invention, the reason why the composition and porosity of the low-pore Cu-Fe-Sn sintered alloy constituting the bearing are limited as described above will be explained. (A) Fe The Fe component has a function of forming a ferrite phase dispersedly distributed in the matrix to improve the conformability, but the proportion thereof is 4
If it is less than 0%, the proportion of the ferrite phase becomes too small, and the desired wear resistance cannot be secured, while if it exceeds 60%, the proportion of the base material becomes too small. As a result, the strength is lowered, so the ratio is set to 40 to 60%, preferably 45 to 55%.

【0007】(b) Sn Sn成分には、Cuに固溶して素地のCu−Sn系合金
を形成し、強度を向上させる作用があるが、その割合が
0.1%未満では所望の強度を確保することができず、
一方その割合が5%を越えると素地に脆化傾向が現わ
れ、相手攻撃性が増すようになることから、その割合を
0.1〜5%、望ましくは1〜3%と定めた。
(B) Sn The Sn component has the function of forming a solid solution with Cu to form a Cu-Sn alloy of the base material and improving the strength, but if the proportion is less than 0.1%, the desired strength is obtained. Could not be secured,
On the other hand, if the ratio exceeds 5%, the base material tends to become brittle and the attacking property of the opponent increases, so the ratio was set to 0.1 to 5%, preferably 1 to 3%.

【0008】(c) C C成分には、SとB成分の作用でフェライト相内の粒界
に微細な遊離黒鉛として析出し、かつ成長して自己潤滑
性を向上させる作用があるが、その割合が0.1%未満
では遊離黒鉛の分布割合が少なすぎて所望の自己潤滑性
を確保することができず、一方その割合が2%を越える
と完全な黒鉛化が困難になり、セメンタイトが析出する
ようになって相手攻撃性が高くなることから、その割合
を0.1〜2%、望ましくは0.5〜1.5%と定め
た。
(C) CC The C component has the function of precipitating as fine free graphite at the grain boundaries in the ferrite phase by the action of the S and B components and growing to improve the self-lubricating property. If the ratio is less than 0.1%, the distribution ratio of free graphite is too small to secure the desired self-lubricating property. On the other hand, if the ratio exceeds 2%, complete graphitization becomes difficult and cementite becomes The ratio of attack is increased to 0.1 to 2%, preferably 0.5 to 1.5%, since the attacking property of the other party becomes high due to precipitation.

【0009】(d) S S成分は、上記の通り遊離黒鉛の析出には不可欠の成分
であり、したがってその割合が0.05%未満では黒鉛
化が不十分となって所望の自己潤滑性が得られず、その
分セメンタイトが析出して相手攻撃性を増すようにな
り、一方その割合が1%を越えると急激に脆化し、強度
が低下するようになることから、その割合を0.05〜
1%、望ましくは0.2〜0.7%と定めた。
(D) The S S component is an essential component for the precipitation of free graphite as described above. Therefore, if the proportion thereof is less than 0.05%, graphitization becomes insufficient and the desired self-lubricating property is not obtained. When the ratio exceeds 0.05%, the cementite precipitates to increase the attacking property of the opponent, and when the ratio exceeds 1%, the strength is reduced. ~
It was set to 1%, preferably 0.2 to 0.7%.

【0010】(e) B B成分には、フェライト相の表面および結晶粒界にそっ
て分布して、フェライト相内の粒界にS成分を核として
析出した遊離黒鉛を成長させる、いいかえればパーライ
ト相のセメンタイトを黒鉛化して前記パーライト相をフ
ェライト相と遊離黒鉛にする作用があるが、その割合が
0.01%未満では黒鉛化が不十分で、残留パーライト
による相手攻撃性は避けられず、かつ所望の自己潤滑性
も得られず、一方その割合が0.5%を越えると焼結性
が低下し高強度を確保することができなくなることか
ら、その割合を0.01〜0.5%、望ましくは0.1
〜0.3%と定めた。
(E) BB The B component is distributed along the surface of the ferrite phase and the crystal grain boundaries, and free graphite deposited with the S component as a nucleus is grown at the grain boundaries in the ferrite phase. In other words, pearlite. There is an action of graphitizing cementite in the phase to convert the pearlite phase into a ferrite phase and free graphite, but if the ratio is less than 0.01%, graphitization is insufficient, and the opponent attack by residual pearlite is unavoidable. Moreover, the desired self-lubricating property cannot be obtained, and on the other hand, when the ratio exceeds 0.5%, the sinterability is deteriorated and high strength cannot be secured, so the ratio is 0.01 to 0.5. %, Preferably 0.1
It was set at 0.3%.

【0011】(f) MoS2 MoS2 成分には、上記の通り素地とフェライト相の界
面部に分布して自己潤滑性を一段と向上させる作用があ
るので必要に応じて含有されるが、その割合が0.5%
未満では前記作用に所望の効果が得られず、一方その割
合が2%を越えると強度が急激に低下するようになるこ
とから、その割合を0.5〜2%、望ましくは0.5〜
1.5%と定めた。
(F) MoS 2 The MoS 2 component is contained as necessary because it has a function of improving the self-lubricating property by being distributed in the interface between the matrix and the ferrite phase as described above. Is 0.5%
If the ratio is less than the above, the desired effect cannot be obtained, while if the ratio exceeds 2%, the strength rapidly decreases. Therefore, the ratio is 0.5 to 2%, preferably 0.5 to
It was set at 1.5%.

【0012】(g) 気孔率 気孔率が9%を越えると、軸受の強度か低下し、特に高
強度が要求される場合に対応することができなくなるこ
とから、気孔率を9%以下、望ましくは7%以下と定め
た。
(G) Porosity If the porosity exceeds 9%, the strength of the bearing will decrease, and it will not be possible to deal with the case where particularly high strength is required. Therefore, the porosity is preferably 9% or less. Was set at 7% or less.

【0013】[0013]

【発明の実施の形態】つぎに、この発明の焼結合金軸受
を実施例により具体的に説明する。原料粉末として、粒
度:−100メッシュのアトマイズFe−S合金(S:
0.3%含有)粉末、同−100メッシュのアトマイズ
Fe粉末、同−150メッシュの電解Cu粉末、同−1
00メッシュのSn粉末、同−100メッシュのCu−
Sn合金(Sn:9%含有)粉末、同−150メッシュ
のりん片状黒鉛粉末、同−100メッシュのFe−B合
金(B:5%含有)粉末、および同−100メッシュの
MoS2 粉末を用意し、これら原料粉末を表1,2に示
される配合組成に配合し、これに潤滑剤として0.4%
のステアリン酸亜鉛を添加してV型ミキサーにて30分
間混合した後、3.5〜5ton/cm2 の範囲内の所定の圧
力で圧粉体にプレス成形し、この圧粉体を、アンモニア
分解ガス雰囲気中、850〜950℃の範囲内の所定温
度に30分間保持の条件で焼結して、同じく表1,2に
示される気孔率および配合組成と実質的に同一の成分組
成をもった低気孔Cu−Fe−Sn系焼結合金で構成さ
れ、いずれも外径:16mmφ×内径:8mmφ×長さ:8
mmの寸法を有する本発明焼結合金1〜15、および従来
焼結合金軸受1〜7をそれぞれ製造した。なお、本発明
焼結合金軸受1〜15はいずれも図1または図2に示さ
れる組織を有し、また従来焼結合金軸受1〜7はいずれ
も図3に示される組織を有するものであった。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the sintered alloy bearing of the present invention will be specifically described by way of Examples. As a raw material powder, atomized Fe-S alloy (S:
0.3% included) powder, atomized Fe powder of the same-100 mesh, electrolytic Cu powder of the same-150 mesh, same-1
00 mesh Sn powder, -100 mesh Cu-
Sn alloy (Sn: 9% content) powder, -150 mesh flaky graphite powder, -100 mesh Fe-B alloy (B: 5% content) powder, and -100 mesh MoS 2 powder. Prepare and mix these raw material powders with the composition shown in Tables 1 and 2, and add 0.4% of this as a lubricant.
Zinc stearate is added and mixed in a V-type mixer for 30 minutes, and then pressed into a green compact at a predetermined pressure within the range of 3.5 to 5 ton / cm 2 , and the green compact is mixed with ammonia. Sintering was carried out in a decomposed gas atmosphere at a predetermined temperature within the range of 850 to 950 ° C. for 30 minutes, and the porosity and the compositional composition shown in Tables 1 and 2 were substantially the same. It is composed of low porosity Cu-Fe-Sn system sintered alloy, and each has an outer diameter: 16 mm φ × inner diameter: 8 mm φ × length: 8
Sintered alloys 1 to 15 of the present invention having a size of mm and conventional sintered alloy bearings 1 to 7 were manufactured, respectively. The sintered alloy bearings 1 to 15 of the present invention all have the structure shown in FIG. 1 or FIG. 2, and the conventional sintered alloy bearings 1 to 7 all have the structure shown in FIG. It was

【0014】ついで、この結果得られた各種の焼結合金
軸受のそれぞれを、合成油を真空浸油した状態で、図4
に概略正面図で示されるラジアル式摩擦試験機の支持治
具1に嵌め込み、これにS45C(炭素鋼)製回転軸3
を25μmのクリアランスで挿通し、前記回転軸3に焼
結合金軸受2、支持治具1、およびボールベアリング4
を介して20kgf/cm2 の高荷重Wをかけた状態で前記回
転軸を10,000rpm の回転数で高速回転させ、10
0時間運転の摩耗試験を行ない、試験後、焼結合金軸受
および回転軸の最大摩耗深さを測定した。この測定結果
を表1,2に示した。
Next, each of the various sintered alloy bearings obtained as a result was subjected to vacuum immersion of synthetic oil as shown in FIG.
It is fitted into a support jig 1 of a radial friction tester shown in a schematic front view in FIG.
With a clearance of 25 μm, and a sintered alloy bearing 2, a support jig 1, and a ball bearing 4 on the rotary shaft 3.
And a high load W of 20 kgf / cm 2 is applied thereto, the rotary shaft is rotated at a high speed of 10,000 rpm to obtain 10
A wear test was run for 0 hours, and after the test, the maximum wear depth of the sintered alloy bearing and the rotating shaft was measured. The measurement results are shown in Tables 1 and 2.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】表1,2に示される結果から、本発明焼
結合金軸受1〜15は、いずれも高速回転および高荷重
運転の苛酷な条件にもかかわらず、基本的に素地中に分
散分布するフェライト相とこれに分散分布する微細な遊
離黒鉛によってすぐれたなじみ性と自己潤滑性を具備す
ることから、相手材である回転軸の摩耗少なく、すなわ
ち低い相手攻撃性で、すぐれた耐摩耗性を示すのに対し
て、従来焼結合金軸受1〜7においては、素地中に分散
分布する硬質のパーライト相が原因で、上記の苛酷な条
件下では著しく高い相手攻撃性を示すばかりでなく、な
じみ性にも劣るので偏摩耗が発生し易いことが明らかで
ある。上述のように、この発明の焼結合金軸受は、相手
材である回転軸に対するなじみ性にすぐれ、かつ自己潤
滑性にもすぐれているので、苛酷な条件下でも、きわめ
て低い相手攻撃性で、すぐれた耐摩耗性を長期に亘って
発揮するのである。
From the results shown in Tables 1 and 2, the sintered alloy bearings 1 to 15 of the present invention are basically dispersed in the matrix despite the severe conditions of high speed rotation and high load operation. The distributed ferrite phase and the fine free graphite dispersed and distributed in it provide excellent conformability and self-lubricating properties, so the rotating shaft, which is the mating material, has less wear, that is, low mating attack and excellent wear resistance. In contrast, the conventional sintered alloy bearings 1 to 7 show not only extremely high opponent aggressiveness under the above-mentioned severe conditions due to the hard pearlite phase dispersed and distributed in the matrix, It is clear that uneven wear is likely to occur because of poor conformability. As described above, the sintered alloy bearing of the present invention has excellent compatibility with the rotating shaft that is the mating material, and also has excellent self-lubricating property, so that even under harsh conditions, it has extremely low mating aggressiveness. It exhibits excellent wear resistance over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明焼結合金軸受を構成する低気孔Cu−F
e−Sn系焼結合金の組織拡大模写図である。
FIG. 1 is a low-pore Cu-F constituting the sintered alloy bearing of the present invention.
It is a structure expansion copy figure of an e-Sn system sintered alloy.

【図2】本発明焼結合金軸受を構成する低気孔Cu−F
e−Sn系焼結合金の組織拡大模写図である。
FIG. 2 Low porosity Cu-F constituting the sintered alloy bearing of the present invention
It is a structure expansion copy figure of an e-Sn system sintered alloy.

【図3】従来焼結合金軸受を構成する低気孔Cu−Fe
−Sn系焼結合金の組織拡大模写図である。
FIG. 3 Low porosity Cu—Fe forming a conventional sintered alloy bearing
It is a structure expansion copy figure of-Sn system sintered alloy.

【図4】ラジアル式摩擦試験機を示す概略正面図であ
る。
FIG. 4 is a schematic front view showing a radial friction tester.

【符号の説明】[Explanation of symbols]

1 支持治具 2 焼結合金軸受 3 回転軸 4 ボールベアリング 5 ロードセル 1 Support jig 2 Sintered alloy bearing 3 Rotating shaft 4 Ball bearing 5 Load cell

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Fe:40〜60%、 Sn:0.1〜5%、 C:0.1〜2%、 S:0.05〜1%、 B:0.01〜0.5%、を含有し、残りがCuと不可
避不純物からなる組成、 Cu−Sn系合金の素地に、フェライト相が分散分布
し、かつ前記フェライト相内にはS成分を核として成長
した遊離黒鉛が分散分布し、さらに前記フェライト相の
表面および結晶粒界にそってB成分が分布した組織、 および9%以下の気孔率、を有する低気孔Cu−Fe−
Sn系焼結合金で構成したことを特徴とする相手攻撃性
の低い耐摩耗性焼結合金軸受。
1. By weight%, Fe: 40-60%, Sn: 0.1-5%, C: 0.1-2%, S: 0.05-1%, B: 0.01-0. 0.5% by weight, the balance consisting of Cu and unavoidable impurities, a ferrite phase dispersedly distributed on the base of a Cu-Sn alloy, and free graphite grown with the S component as a nucleus in the ferrite phase. Poor Cu-Fe- having a structure in which the B component is dispersed and further distributed along the surface of the ferrite phase and the grain boundaries, and the porosity is 9% or less.
A wear-resistant sintered alloy bearing having a low opponent attack characteristic, which is composed of a Sn-based sintered alloy.
【請求項2】 重量%で、 Fe:40〜60%、 Sn:0.1〜5%、 C:0.1〜2%、 S:0.05〜1%、 B:0.01〜0.5%、 硫化モリブデン:0.5〜2%、を含有し、残りがCu
と不可避不純物からなる組成、 Cu−Sn系合金の素地に、フェライト相が分散分布
し、かつ前記フェライト相内にはS成分を核として成長
した遊離黒鉛が分散分布し、さらに前記フェライト相の
表面および結晶粒界にそってB成分が分布すると共に、
前記素地とフェライト相の界面部に硫化モリブデンが分
布した組織、 および9%以下の気孔率、を有する低気孔Cu−Fe−
Sn系焼結合金で構成したことを特徴とする相手攻撃性
の低い耐摩耗性焼結合金軸受。
2. By weight%, Fe: 40 to 60%, Sn: 0.1 to 5%, C: 0.1 to 2%, S: 0.05 to 1%, B: 0.01 to 0. 0.5%, molybdenum sulfide: 0.5 to 2%, the balance Cu
And a composition consisting of unavoidable impurities, a ferrite phase is dispersed and distributed in the base material of the Cu-Sn alloy, and free graphite grown with the S component as a nucleus is dispersed and distributed in the ferrite phase, and the surface of the ferrite phase is further distributed. And the B component is distributed along the grain boundaries,
Low porosity Cu-Fe- having a structure in which molybdenum sulfide is distributed at the interface between the matrix and the ferrite phase, and a porosity of 9% or less.
A wear-resistant sintered alloy bearing having a low opponent attack characteristic, which is composed of a Sn-based sintered alloy.
JP21980195A 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing low in counter part attackability Withdrawn JPH0949047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21980195A JPH0949047A (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing low in counter part attackability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21980195A JPH0949047A (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing low in counter part attackability

Publications (1)

Publication Number Publication Date
JPH0949047A true JPH0949047A (en) 1997-02-18

Family

ID=16741256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21980195A Withdrawn JPH0949047A (en) 1995-08-04 1995-08-04 Wear resistant sintered alloy bearing low in counter part attackability

Country Status (1)

Country Link
JP (1) JPH0949047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230556A (en) * 1999-02-09 2000-08-22 Nippon Kagaku Yakin Co Ltd Bearing
WO2000062960A1 (en) * 1999-04-16 2000-10-26 Unisia Jecs Corporation Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
WO2014041976A1 (en) * 2012-09-12 2014-03-20 Ntn株式会社 Machine component made of ferrous sintered metal
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230556A (en) * 1999-02-09 2000-08-22 Nippon Kagaku Yakin Co Ltd Bearing
WO2000062960A1 (en) * 1999-04-16 2000-10-26 Unisia Jecs Corporation Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
US6905530B2 (en) 1999-04-16 2005-06-14 Unisia Jecs Corporation Metallic powder-molded body, re-compacted body of the molded body, sintered body produced from the re-compacted body, and processes for production thereof
US11035027B2 (en) 2012-09-12 2021-06-15 Ntn Corporation Machine component made of ferrous sintered metal
WO2014041976A1 (en) * 2012-09-12 2014-03-20 Ntn株式会社 Machine component made of ferrous sintered metal
JP2014055322A (en) * 2012-09-12 2014-03-27 Ntn Corp Ferrous sintered metallic machine component
CN104583443A (en) * 2012-09-12 2015-04-29 Ntn株式会社 Machine component made of ferrous sintered metal
US9970086B2 (en) 2012-09-12 2018-05-15 Ntn Corporation Machine component made of ferrous sintered metal
WO2017110778A1 (en) * 2015-12-25 2017-06-29 三菱マテリアル株式会社 Sintered oil-retaining bearing and process for producing the same
CN108431436A (en) * 2015-12-25 2018-08-21 三菱综合材料株式会社 Sintered metal bearing and its manufacturing method
CN108431436B (en) * 2015-12-25 2019-11-08 三菱综合材料株式会社 Sintered metal bearing and its manufacturing method
US10570959B2 (en) 2015-12-25 2020-02-25 Mitsubishi Materials Corporation Oil-retaining sintered bearing and method of producing the same
JPWO2017110778A1 (en) * 2015-12-25 2018-07-12 三菱マテリアル株式会社 Sintered oil-impregnated bearing and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4886545B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
US20090311129A1 (en) Abrasion resistant sintered copper base cu-ni-sn alloy and bearing made from the same
JPH0941069A (en) Wear resistant sintered oilless bearing low in mating attackability
JPH0941071A (en) Wear resistant sintered oilless bearing low in mating attackability
JPH0949047A (en) Wear resistant sintered alloy bearing low in counter part attackability
JPH0949064A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JP3094864B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JPH0941070A (en) Wear resistant sintered alloy bearing low in mating attackability
JP3410595B2 (en) Iron-based sintered oil-impregnated bearing and its manufacturing method
JP3094863B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH0949063A (en) Wear resistant iron base sintered alloy bearing low in counter part attackability
JP3094862B2 (en) Wear resistant sintered alloy bearing with low opponent aggression
JP3094861B2 (en) Wear-resistant sintered oil-impregnated bearing with low aggressiveness
JPH04124248A (en) Sintered alloy for oilless bearing and its production
JPH0499836A (en) Sintered copper series sliding material
JPH01212737A (en) Wear-resistant ferrous sintered alloy
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JPS6140027B2 (en)
JPS62133043A (en) Fe sintered material impregnated with cu
JPS60159154A (en) Wear resistant sintered sliding material
JP3838833B2 (en) Al-Bi based sintered bearing alloy and method for producing the same
JP2531625B2 (en) Fe-based sintered alloy with excellent wear resistance
JPH0717984B2 (en) Method for producing carbide-dispersed Fe-based sintered alloy with excellent wear resistance
JPS58130254A (en) Sintered fe alloy for sliding member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105