JPH0949001A - Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production - Google Patents

Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production

Info

Publication number
JPH0949001A
JPH0949001A JP7200151A JP20015195A JPH0949001A JP H0949001 A JPH0949001 A JP H0949001A JP 7200151 A JP7200151 A JP 7200151A JP 20015195 A JP20015195 A JP 20015195A JP H0949001 A JPH0949001 A JP H0949001A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
oxide
dispersion strengthened
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7200151A
Other languages
Japanese (ja)
Inventor
Yoshiro Niimi
義朗 新見
Osamu Iwazu
修 岩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP7200151A priority Critical patent/JPH0949001A/en
Publication of JPH0949001A publication Critical patent/JPH0949001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain stock powder for producing the anode of a fuel cell excellent in creep and sintering resistances. SOLUTION: This Ni alloy powder contains 0.5-10vol.% fine oxide particles uniformly dispersed in the Ni or Ni alloy matrix and has 1-20μm average particle diameter, a powder hardness Hv of >=180, >=3,000cm<2> /g specific surface area and <3.0g/cm<3> apparent density. It is produced by mechanically alloying a mixture of Ni or Ni alloy powder with fine oxide particles under 1.0-101.3kPa of partial pressure of oxygen and then carrying out heat treatment in a reducing atmosphere to produce the oxide dispersion strengthened Ni alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
のアノードを製造するための原料粉として好適な酸化物
分散強化Ni合金粉およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide dispersion strengthened Ni alloy powder suitable as a raw material powder for manufacturing an anode of a molten carbonate fuel cell, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池の電極はアノード
側カソード側のいずれも多孔質のガス拡散電極であり、
高い空隙率ならびに比表面積が求められる。特にアノー
ド側は還元性の燃料ガスにさらされることもあり、従来
よりNi−Co粉を焼結した多孔質が用いられてきた。しか
し、運転温度が600〜700℃と高く、しかも運転中はセル
の積層方向に 0.1〜0.4MPaの圧力が加わるため、上述の
NiもしくはNi−Co基質のみより成り立っている多孔質体
ではクリープやシンタリングにより、短時間で空隙が減
少し、起電力が低下してしまう欠点があった。そこで、
耐クリープ性や耐シンタリング性を改善する目的でNi基
質中にAlを導入し、これを内部酸化させることによって
Ni基質中にAl2O3 粒子を分散させ、耐クリープ性や耐シ
ンタリング性を改善する方法が提案されている。Ni基質
中にAlを導入する方法としては1)Ni粉を焼結して得られ
たNi多孔質体にAlを拡散浸透させる方法(第31回電池討
論会要旨P211)2)Alの化学ポテンシャルを下げる目的で
Crなどとの金属間化合物の形でNi粉に添加し、焼結する
方法(第31回電池討論会要旨P209)3)NiにAlを少量添加
したNi−Al合金粉を作製し、これを焼結する方法(特開
昭62-2455 号公報)などが考えらている。
2. Description of the Related Art The electrodes of a molten carbonate fuel cell are porous gas diffusion electrodes on both the anode side and the cathode side.
High porosity and specific surface area are required. In particular, the anode side may be exposed to a reducing fuel gas, and a porous material obtained by sintering Ni—Co powder has been used conventionally. However, since the operating temperature is as high as 600-700 ° C and pressure of 0.1-0.4MPa is applied in the cell stacking direction during operation,
The porous body consisting of only Ni or Ni-Co substrate has a drawback that the voids are reduced in a short time due to creep and sintering, and the electromotive force is reduced. Therefore,
By introducing Al into the Ni substrate and internally oxidizing it for the purpose of improving creep resistance and sintering resistance.
A method has been proposed in which Al 2 O 3 particles are dispersed in a Ni substrate to improve creep resistance and sintering resistance. As a method of introducing Al into the Ni substrate, 1) a method of diffusing and permeating Al into the Ni porous body obtained by sintering Ni powder (31st Annual Meeting of the Battery Symposium P211) 2) Chemical potential of Al To lower
A method of adding Ni powder in the form of an intermetallic compound such as Cr and sintering it (31st Battery Conference, P209) 3) Making Ni-Al alloy powder with a small amount of Al added to Ni A method of sintering (Japanese Patent Laid-Open No. 62-2455) is considered.

【0003】しかし、1)、2)の方法ではNi基質中にAlを
均一に導入すること自体が難しく、また3)の方法でもNi
基質中のAl2O3 を均一微細に分散させることが困難であ
る。このため、これらの方法では十分な耐クリープ性や
耐シンタリング性を有する多孔質体が得られていない。
さらに3)の方法ではNi−Al合金粉の製造に際し、比表面
積が高く、かつ見掛密度が低い粉末の製造が工業的に難
しいため、空隙率が高く、比表面積の大きい電極を作る
ことにも難がある。
However, it is difficult to uniformly introduce Al into the Ni substrate by the methods 1) and 2), and also by the method 3).
It is difficult to disperse Al 2 O 3 in the matrix uniformly and finely. Therefore, a porous body having sufficient creep resistance and sintering resistance has not been obtained by these methods.
Furthermore, in the method of 3), when producing Ni-Al alloy powder, it is industrially difficult to produce a powder having a high specific surface area and a low apparent density, so that it is necessary to make an electrode having a high porosity and a large specific surface area. There is a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の技術
では製造が困難であった高い空隙率と大きな比表面積を
有し、しかも耐クリープ性ならびに耐シンタリングにも
優れた溶融炭酸塩型燃料電池のアノードを製造するため
の原料粉末となる酸化物分散強化Ni合金粉末およびその
製造方法を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is a molten carbonate type having a high porosity and a large specific surface area, which are difficult to produce by the conventional techniques, and is excellent in creep resistance and sintering resistance. It is an object of the present invention to propose an oxide dispersion strengthened Ni alloy powder as a raw material powder for manufacturing an anode of a fuel cell and a manufacturing method thereof.

【0005】[0005]

【問題を解決するための手段】すなわち、本発明では前
記特性を有する溶融炭酸塩型燃料電池用アノードの製造
に好適な原料粉として、Ni基質中もしくはNi合金基質中
に 0.5〜10vol%の熱的に安定な酸化物微粒子が均一に分
散し、粉末硬さが HV180以上あって、粉末の平均粒径1
〜20μm、比表面積(BET法) が3000cm2/g以上あり、
かつ粉末の見掛密度が3.0Mg/m3を越えないことを特徴と
する溶融炭酸塩型燃料電池アノード用酸化物分散強化Ni
合金粉を提供し、さらに前記粉末の製造方法として粉末
の製造過程において酸化物粒子もしくは熱処理によって
これら酸化物粒子に変化する水酸化物又は水和物とNi粉
もしくはNi合金粉もしくは単体粉もしくはそれらの混合
粉との混合物を1.0 〜101.3kPaの酸素分圧下で機械的合
金化処理を行ない、その後に還元雰囲気中で熱処理する
ことを特徴とする溶融炭酸塩型燃料電池アノード用酸化
物分散強化Ni合金粉の製造方法を提供することにより、
前記特性を有する溶融炭酸塩型燃料電池用アノードの製
造を可能にするものである。
[Means for Solving the Problems] That is, in the present invention, as a raw material powder suitable for producing a molten carbonate fuel cell anode having the above-mentioned characteristics, 0.5 to 10 vol% of heat is contained in a Ni substrate or a Ni alloy substrate. Stable oxide particles are uniformly dispersed, the powder hardness is HV180 or more, and the average particle size of the powder is 1
~ 20 μm, specific surface area (BET method) is 3000 cm 2 / g or more,
And the apparent density of the powder does not exceed 3.0 Mg / m 3 , oxide dispersion strengthened Ni for molten carbonate fuel cell anodes.
An alloy powder is provided, and as a method for producing the powder, a hydroxide or a hydrate and a nickel powder or a Ni alloy powder or a simple substance powder or the oxide particles or a hydrate which is changed into these oxide particles by a heat treatment in the manufacturing process of the powder. The oxide dispersion strengthened Ni for molten carbonate fuel cell anode is characterized in that the mixture with the mixed powder of is subjected to mechanical alloying treatment under an oxygen partial pressure of 1.0 to 101.3 kPa, and then heat-treated in a reducing atmosphere. By providing a method for producing an alloy powder,
The present invention enables the production of a molten carbonate fuel cell anode having the above characteristics.

【0006】[0006]

【作用】本発明の、分散強化Ni合金粉末は基本的には熱
的に極めて安定な酸化物微粒子を基質中に均一に分散さ
せることによって基質を強化し、優れた耐クリープ性や
耐シンタリング性といった耐熱性を付与している。基質
中に分散させる酸化物粒子としてはZrO2、Y2O3、MgO、C
eO2、Gd2O3、TaO3、LiAlO2、Li2ZrO3 から選ばれる1種
又は2種以上が可能でこれらを基質中に 0.5〜10vol%分
散させる。分散させる酸化物粒子の量が 0.5vol%より少
ないと分散強化の効果が現われず、一方、10vol%を越え
ると基質の再結晶温度(例えばNiの場合には約 500℃)を
越える温度域で基質と酸化物相との間で相分離の現象が
現れ、基質強度が大きく低下する。
[Function] The dispersion-strengthened Ni alloy powder of the present invention basically strengthens the substrate by uniformly dispersing thermally extremely stable oxide fine particles in the substrate, and has excellent creep resistance and sintering resistance. It imparts heat resistance such as heat resistance. ZrO 2 , Y 2 O 3 , MgO, C are used as oxide particles dispersed in the substrate.
eO 2, Gd 2 O 3, TaO 3, LiAlO 2, Li 2 1 kind selected from ZrO 3 or more is possible these is 0.5~10Vol% dispersed in the matrix. If the amount of the oxide particles to be dispersed is less than 0.5 vol%, the effect of strengthening the dispersion does not appear.On the other hand, if it exceeds 10 vol%, in the temperature range exceeding the recrystallization temperature of the substrate (for example, about 500 ° C for Ni). The phenomenon of phase separation appears between the substrate and the oxide phase, and the substrate strength is greatly reduced.

【0007】さらに本発明では必要に応じてNi基質に
合金元素としてFe、Co、Cu、Moの中から選ばれる1種又
は2種以上を添加し、Ni基質を固溶強化することもでき
る。ただし、合金元素の総量が50mass%を越えるとNiの
持つ化学的特性が希薄になり電極での起電反応の効率が
低下するため添加する合金元素の総量は50%以下にする
ことが好ましい。
Further, in the present invention, if necessary, one or more kinds selected from Fe, Co, Cu, and Mo as an alloying element may be added to the Ni substrate to solid-solution strengthen the Ni substrate. However, if the total amount of alloying elements exceeds 50 mass%, the chemical properties of Ni become weak and the efficiency of the electromotive reaction at the electrode decreases, so the total amount of alloying elements added is preferably 50% or less.

【0008】そして、耐クリープ性、耐シンタリング性
に優れた高強度のアノードを製造するためには粉末硬さ
が HV180以上になるように基質が強化される必要があ
る。一方、粉末の平均粒径や比表面積、あるいは見掛密
度はこれを焼結して得られるアノードの空隙率や比表面
積に直接的に影響を及ぼす一方で、アノードの強度に対
しても影響を及ぼす。一般に、溶融炭酸塩型燃料電池の
アノードは55〜65%の空隙率が必要と言われているが、
粉末の平均粒径および見掛密度が各々20μmおよび3.0M
g/m3を越え、しかも比表面積が3000cm2/gを下回ると粉
末硬さ、すなわち基質硬さがいかに高くても前記空隙率
を満足し、かつ十分な強度を有するアノードを製造する
ことが困難となる。すなわち、見掛密度が3.0Mg/m3
下、比表面積3000cm2/g以上で、しかも粉末硬さが HV1
80以上もある酸化物分散強化Ni合金粉を用いることによ
ってはじめて溶融炭酸塩型燃料電池のアノードとして効
率よく機能し得る空隙率並びに比表面積を有し、かつ十
分な強度を有する多孔質体を製造できるようになる。
In order to manufacture a high-strength anode having excellent creep resistance and sintering resistance, it is necessary to strengthen the substrate so that the powder hardness is HV180 or higher. On the other hand, the average particle size, the specific surface area, or the apparent density of the powder directly affects the porosity and the specific surface area of the anode obtained by sintering the powder, but also affects the strength of the anode. Exert. It is generally said that the anode of a molten carbonate fuel cell requires a porosity of 55 to 65%.
Average particle size and apparent density of powder are 20μm and 3.0M, respectively
If it exceeds g / m 3 and the specific surface area is less than 3000 cm 2 / g, it is possible to produce an anode which satisfies the porosity and has sufficient strength, no matter how high the powder hardness, that is, the substrate hardness. It will be difficult. That is, the apparent density is 3.0 Mg / m 3 or less, the specific surface area is 3000 cm 2 / g or more, and the powder hardness is HV1.
Producing a porous body with sufficient porosity and specific surface area that can function efficiently as an anode of a molten carbonate fuel cell for the first time by using 80 or more oxide dispersion strengthened Ni alloy powder become able to.

【0009】そして、このような粉末を用いて製造され
たアノードは基質が熱的に安定な酸化物粒子によって強
化され、耐クリープ、耐シンタリング性に優れるため、
運転時の温度、圧力下においても長期にわたり、初期の
高い空隙率ならびに大きな比表面積を維持することがで
きる。因に、粉末の平均粒径が1μmを下回ると空隙の
大きさが小さくなり過ぎて燃料ガスの透過性が悪くな
り、電極反応が低下するため好ましくない。
Since the substrate of the anode manufactured by using such a powder is reinforced by the thermally stable oxide particles, and the creep resistance and the sintering resistance are excellent,
The initial high porosity and large specific surface area can be maintained for a long period of time even under the temperature and pressure during operation. Incidentally, if the average particle size of the powder is less than 1 μm, the size of the voids becomes too small, the permeability of the fuel gas deteriorates, and the electrode reaction decreases, which is not preferable.

【0010】次に、本発明の酸化物分散強化Ni合金粉の
製造方法について述べる。酸化物分散強化Ni合金粉の製
造方法には本発明の方法である機械的合金化処理法以外
に内部酸化法や共沈法などの方法がある。しかし、共沈
法では基質中での酸化物粒子の分散が不均一で十分な粉
末硬さが得られず、また、内部酸化法は見掛密度が低
く、かつ、比表面積の大きな粉末を製造することが困難
である。これらの方法を用いて請求項1に記載の酸化物
分散強化Ni粉末を得るためにはいずれの方法の場合もそ
の後に、本発明の製造方法である機械的合金化処理を組
み合わせる必要があり、製造工程が複雑になって実用性
に欠ける。
Next, a method for producing the oxide dispersion strengthened Ni alloy powder of the present invention will be described. As a method for producing the oxide dispersion strengthened Ni alloy powder, there are methods such as an internal oxidation method and a coprecipitation method other than the mechanical alloying treatment method which is the method of the present invention. However, in the coprecipitation method, the dispersion of oxide particles in the substrate is not uniform and sufficient powder hardness cannot be obtained. In addition, the internal oxidation method produces a powder with a low apparent density and a large specific surface area. Difficult to do. In order to obtain the oxide dispersion strengthened Ni powder according to claim 1 using these methods, it is necessary to combine mechanical alloying treatment, which is the manufacturing method of the present invention, in any case after that. The manufacturing process is complicated and lacks in practicality.

【0011】本発明の酸化物分散強化Ni粉末は所定の粉
末硬さを得るために微細な酸化物粒子を基質中に均一に
分散させる必要があるが、本発明の方法では酸化物粒子
以外に酸化物粒子に変化する水酸化物又は水和物も用い
ることができる。これらの粒子は細かいほど適してお
り、最高でも 0.3μm以下の粒径のものが好ましい。粒
径が大きくなると基質強度、すなわち粉末硬さの低下を
招く。さらに本発明では酸化物粒子の原料として特開昭
61-12840号公報で提案されている無機または有機金属化
合物を利用する方法を適用することもできる。すなわ
ち、特開昭61-12840号公報に記載の無機または有機金属
化合物のうち、請求項3に記載の酸化物粒子を生成させ
ることができる無機または有機金属化合物を特開昭61-1
2840号公報に記載の方法によって請求項4に記載のNi粉
もしくはNi合金粉または金属単体もしくは合金粉とそれ
らの混合粉の表面に前記無機または有機金属化合物の加
水分解によって生成した水酸化物または水和物を被覆す
る方法についても適用することができる。
In the oxide dispersion strengthened Ni powder of the present invention, it is necessary to uniformly disperse fine oxide particles in the substrate in order to obtain a predetermined powder hardness. Hydroxides or hydrates that convert to oxide particles can also be used. The finer these particles are, the more suitable they are, and those having a particle size of 0.3 μm or less at the maximum are preferable. When the particle size is large, the substrate strength, that is, the powder hardness is lowered. Further, in the present invention, as a raw material of oxide particles,
The method utilizing an inorganic or organometallic compound proposed in 61-12840 can also be applied. That is, among the inorganic or organic metal compounds described in JP-A-61-2840, inorganic or organic metal compounds capable of forming the oxide particles according to claim 3 are disclosed in JP-A-61-1.
Hydroxide produced by hydrolysis of the inorganic or organometallic compound on the surface of the Ni powder or Ni alloy powder according to claim 4 or the metal powder or alloy powder and a mixed powder thereof according to the method described in Japanese Patent No. 2840. The method of coating a hydrate can also be applied.

【0012】本発明に使用する原料金属粉末としては基
質と同一組成のNi合金粉あるいはNi粉末とCr、Mn、F
e、Co、Cu、Nb、V、Mo各金属または合金粉との混合粉
を用いることができる。これら原料金属粉は細かい方が
好ましく、最大でも50μm以下の粉末を用いることが望
ましい。これ以上大きくなると後述の機械的合金化処理
によって酸化物粒子を基質中に均一に分散させることが
困難となるばかりでなく、原料金属粉として前記混合粉
を用いる場合には基質成分の偏在に伴う基質強度の低下
や粉末の比表面積の低下をも引き起こす。
As the raw metal powder used in the present invention, Ni alloy powder having the same composition as the substrate or Ni powder and Cr, Mn, F
A mixed powder of e, Co, Cu, Nb, V, and Mo metal or alloy powder can be used. It is preferable that these raw material metal powders are fine, and it is desirable to use powders of 50 μm or less at the maximum. If it becomes larger than this, it becomes difficult not only to uniformly disperse the oxide particles in the substrate by the mechanical alloying treatment described later, but also when the mixed powder is used as the raw material metal powder, it is accompanied by uneven distribution of the substrate component. It also reduces the substrate strength and the specific surface area of the powder.

【0013】本発明の方法では前記原料金属粉末と酸化
物粒子、もしくは水酸化物または水和物との混合物、あ
るいは無機または有機化合物の加水分解によって生成す
る水酸化物または水和物の被覆層を表面に有する前記原
料金属粉末を機械的合金化処理を 1.0〜101.3kPaの酸素
分圧下で行うことである。このような酸素分圧下で機械
的合金化処理を行う目的は機械的合金化処理中に金属粉
末の表面を酸化させることによって金属粉末同士の過度
の圧着による金属粉末の粗大化を防止することにより、
粉末の比表面積を増大させると同時に基質中への酸化物
粒子の均一分散を容易ならしめ、かつ基質中に歪エネル
ギーを効果的に導入せしめることにより、基質強度すな
わち、粉末硬さを高めることにある。酸素分圧が 1.0kP
a を下回った場合、金属粉末同士の圧着による粉末の粗
大化が著しくなり、粉末の比表面積が低下し、また粉末
硬さも低下する。
In the method of the present invention, a mixture of the raw material metal powder and oxide particles, or a hydroxide or hydrate, or a coating layer of a hydroxide or hydrate produced by hydrolysis of an inorganic or organic compound. Mechanical alloying treatment of the raw material metal powder having the surface of is carried out under an oxygen partial pressure of 1.0 to 101.3 kPa. The purpose of performing the mechanical alloying treatment under such an oxygen partial pressure is to prevent the coarsening of the metal powder due to the excessive pressure bonding of the metal powders by oxidizing the surface of the metal powder during the mechanical alloying treatment. ,
By increasing the specific surface area of the powder and at the same time facilitating uniform dispersion of the oxide particles in the matrix and effectively introducing strain energy into the matrix, it is possible to increase the matrix strength, that is, the powder hardness. is there. Oxygen partial pressure is 1.0kP
When it is less than a, the coarsening of the powder due to the pressure bonding of the metal powders becomes remarkable, the specific surface area of the powder decreases, and the hardness of the powder also decreases.

【0014】一方、酸素分圧を101.3kPa以上にした場
合、比表面積の増加や粉末硬さの上昇に対する効果はも
はや見られず、むしろ過大な圧力による装置への負担が
大きくなるばかりである。なお、このような酸素分圧下
での機械的合金化処理に代え、ステアリン酸やケロシン
などを潤滑剤として添加して機械的合金化処理する方法
も考えられるが、この方法では基質中への潤滑剤の混入
が避け難く、基質強度の低下を招くため好ましくない。
On the other hand, when the oxygen partial pressure is set to 101.3 kPa or more, the effect on the increase of the specific surface area and the increase of the powder hardness is no longer observed, but rather the load on the apparatus due to the excessive pressure only increases. Note that, instead of such mechanical alloying treatment under oxygen partial pressure, a method of adding mechanical lubricant such as stearic acid or kerosene as a lubricant is also conceivable. It is not preferable because mixing of the agent is unavoidable and the strength of the substrate is lowered.

【0015】本発明の方法による機械的合金化処理には
振動ミルやアトライターなどの高エネルギー・ボールミ
ルを用いるが、ボールミルの機種によって粉末に付与さ
れる機械的エネルギーに差が大きいため、処理時間につ
いては一概には決められない。機械的合金化処理後の粉
末は還元雰囲気中で熱処理することにより、機械的合金
化処理中に酸化した基質を還元するとともに、水酸化物
または水和物を用いた場合にはこれを酸化物に変化させ
る。熱処理温度は 500℃から基質の融点の90%の温度の
範囲が適当である。 500℃では基質が十分に還元され
ず、一方、基質の融点の90%を越えるような温度では酸
化物粒子が凝集、粗大化して粉末硬さが低下すると同時
に粉末粒子も凝集、粗大化を起こし、比表面積が低下す
る。次に、本発明の代表的な実施例について説明する。
A high energy ball mill such as a vibration mill or an attritor is used for the mechanical alloying treatment according to the method of the present invention. However, since the mechanical energy imparted to the powder varies depending on the type of ball mill, the treatment time is long. Can not be decided unconditionally. The powder after the mechanical alloying treatment is heat-treated in a reducing atmosphere to reduce the substrate that has been oxidized during the mechanical alloying treatment. Change to. The heat treatment temperature is preferably in the range of 500 ° C to 90% of the melting point of the substrate. At 500 ° C, the substrate is not sufficiently reduced, while at temperatures above 90% of the melting point of the substrate, the oxide particles aggregate and become coarse and the powder hardness decreases, and at the same time the powder particles also aggregate and become coarse. , The specific surface area decreases. Next, a typical embodiment of the present invention will be described.

【0016】[0016]

【実施例】【Example】

実施例1 平均粒径5μmのニッケル粉末と平均粒径0.05μmのY2
O3粒子を97:3vol比で混合し、アトライタを用いて20.0
kPa 酸素分圧下で8h機械的合金化処理を行った。次い
で、この粉末を水素気流中で 600℃、1h熱処理を行な
い、Ni基質中に3vol%のY2O3粒子が分散した分散強化Ni
合金粉末を得た。得られた粉末の見掛密度、BET法に
よる比表面積、ならびに粉末硬さの測定値をそれぞれ表
1に示す。また、得られた粉末を深さ1mmのアルミナ製
焼結型に無加圧充鎮し、大気中600℃で1h予備焼結後、
水素気流中で 900℃、1h焼結して多孔質体を作製した。
得られた多孔質体の特性を表1に示す。
Example 1 Nickel powder having an average particle size of 5 μm and Y 2 having an average particle size of 0.05 μm
O 3 particles were mixed at a ratio of 97: 3 vol and 20.0
Mechanical alloying treatment was performed for 8 h under kPa oxygen partial pressure. Next, this powder was heat-treated in a hydrogen stream at 600 ° C for 1 hour to obtain dispersion-strengthened Ni in which 3 vol% Y 2 O 3 particles were dispersed in the Ni substrate.
An alloy powder was obtained. Table 1 shows the measured values of the apparent density, the specific surface area by the BET method, and the powder hardness of the obtained powder. In addition, the obtained powder was filled into an alumina sintering mold having a depth of 1 mm without pressure, and pre-sintered at 600 ° C. in the atmosphere for 1 h,
A porous body was produced by sintering in a hydrogen stream at 900 ° C for 1 hour.
Table 1 shows the properties of the obtained porous body.

【0017】実施例2 平均粒径5μmのニッケル粉末とニッケル粉末に対して
6mass%のZr−ブトキシドを石油エーテルに溶解して前記
ニッケル粉末と混合後、自然乾燥させた。次いで、Zr−
ブトキシドを水蒸気で飽和した25℃の空気中で4h加水分
解させた後、アトライタを用いて5.0kPaの酸素分圧下で
8h機械的合金化処理を行った。次いで、水素気流中で 7
50℃、1h熱処理することにより、Ni基質中に2vol%のZr
O2粒子が分散した分散強化Ni合金粉末を得た。得られた
粉末の見掛密度、比表面積ならびに粉末硬さの測定値を
それぞれ表1に示す。また、得られた粉末を実施例1と
同じ方法で焼結型に充鎮し、大気中 500℃で1h予備焼結
後、水素気流中 850℃、1h焼結して多孔質体を作製し
た。得られた孔質体の特性を表1に示す。
Example 2 For nickel powder having an average particle size of 5 μm and nickel powder
6 mass% Zr-butoxide was dissolved in petroleum ether, mixed with the nickel powder, and then naturally dried. Then Zr-
Butoxide was hydrolyzed for 4 h in air saturated with water vapor at 25 ° C and then attritor was used under oxygen partial pressure of 5.0 kPa.
It was mechanically alloyed for 8 hours. Then, in a hydrogen stream 7
2vol% Zr in Ni substrate by heat treatment at 50 ℃ for 1h
A dispersion strengthened Ni alloy powder in which O 2 particles were dispersed was obtained. Table 1 shows the measured values of the apparent density, the specific surface area and the powder hardness of the obtained powder. Further, the obtained powder was filled into a sintering mold in the same manner as in Example 1, pre-sintered in the air at 500 ° C. for 1 hour, and then sintered in a hydrogen stream at 850 ° C. for 1 hour to produce a porous body. . The characteristics of the obtained porous body are shown in Table 1.

【0018】実施例3 平均粒径20μmのNi−10mass%Co合金粉と平均粒径 0.1
μmのGd2O3粒子を98:2のvol 比で混合し、アトライタ
を用いて20.0kPaの酸素分圧下で12h 機械的合金化処理
を行った。次いで、水素気流中で 800℃、1hの熱処理を
行うことにより、Ni-10mass%Co基質中に2vol%のGa2O3
粒子が分散した酸化物分散強化Ni合金粉末を作製した。
また、得られた粉末を実施例1と同じ方法で焼結型に充
鎮し、大気中で600℃、1h予備焼結後、水素気流中900
℃、1h焼結して多孔質体を作製した。得られた多孔質体
の特性を表1に示す。
Example 3 Ni-10 mass% Co alloy powder having an average particle size of 20 μm and an average particle size of 0.1
μm Gd 2 O 3 particles were mixed at a vol ratio of 98: 2, and mechanically alloyed for 12 hours under an oxygen partial pressure of 20.0 kPa using an attritor. Then, heat treatment was performed in a hydrogen stream at 800 ° C for 1 hour to obtain 2 vol% Ga 2 O 3 in the Ni-10mass% Co substrate.
An oxide dispersion strengthened Ni alloy powder in which particles were dispersed was prepared.
The obtained powder was filled into a sintering mold in the same manner as in Example 1, pre-sintered at 600 ° C. for 1 hour in the air, and then 900 in a hydrogen stream.
A porous body was produced by sintering at ℃ for 1 hour. Table 1 shows the properties of the obtained porous body.

【0019】実施例4 平均粒径5μmのニッケル粉と平均粒径3μmの銅粉を
mass比で90:10の割合で混合した混合粉に対して平均粒
径0.01μmの MgO粒子を1vol%混合後、アトライタを用
いて 20.0kPaの酸素分圧下で8h機械的合金化処理を行っ
た。次いで、水素気流中で 600℃、1h熱処理を行なうこ
とによりNi-10mass%Cu基質中に1vol%のMgO 粒子が均一
に分散した分散強化Ni合金粉を作製した。得られた粉
末の見掛密度、比表面積ならびに粉末硬さの測定結果を
表1に示す。また、得られた粉末を実施例1と同じ方法
で焼結型に充鎮し、大気中で 500℃1h予備焼結後水素気
流中で 800℃、1h焼結して多孔質体を作製した。得られ
た多孔質体の特性を表1に示す。
Example 4 Nickel powder having an average particle size of 5 μm and copper powder having an average particle size of 3 μm were used.
1% by volume of MgO particles with an average particle size of 0.01 μm was mixed with the mixed powder mixed at a mass ratio of 90:10, and mechanical alloying treatment was performed for 8 h under an oxygen partial pressure of 20.0 kPa using an attritor. . Then, a dispersion-strengthened Ni alloy powder in which 1 vol% MgO particles were uniformly dispersed in a Ni-10mass% Cu substrate was prepared by performing heat treatment at 600 ° C. for 1 hour in a hydrogen stream. Table 1 shows the measurement results of the apparent density, specific surface area and powder hardness of the obtained powder. Further, the obtained powder was filled into a sintering die in the same manner as in Example 1, pre-sintered at 500 ° C. for 1 hour and then sintered at 800 ° C. for 1 hour in a hydrogen stream to produce a porous body. . Table 1 shows the properties of the obtained porous body.

【0020】比較例1 平均粒径5μmのニッケル粉末と平均粒径0.05μmのY2
O3粒子を99.9:0.1のvol比で混合し、アトライタを用い
て20.0kPa の酸素分圧下で8h機械的合金処理を行なっ
た。次いで、この粉末を水素気流中で 600℃、1h熱処理
を行ないNi基質中に0.1vol%のY2O3粒子が分散した分散
強化Ni合金粉末を得た。得られた粉末の見掛密度、比表
面積ならびに粉末硬さの測定値を表1に示す。また、得
られた粉末を実施例1と同じ方法で焼結して多孔質体を
作製した。得られた多孔質の特性を表1に示す。
Comparative Example 1 Nickel powder having an average particle size of 5 μm and Y 2 having an average particle size of 0.05 μm
O 3 particles were mixed at a vol ratio of 99.9: 0.1 and mechanically alloyed for 8 hours under an oxygen partial pressure of 20.0 kPa using an attritor. Then, this powder was heat-treated at 600 ° C. for 1 hour in a hydrogen stream to obtain a dispersion-strengthened Ni alloy powder in which 0.1 vol% Y 2 O 3 particles were dispersed in a Ni substrate. Table 1 shows measured values of apparent density, specific surface area and powder hardness of the obtained powder. The obtained powder was sintered in the same manner as in Example 1 to produce a porous body. The properties of the obtained porous material are shown in Table 1.

【0021】比較例2 平均粒径5μmのニッケル粉と平均粒径 0.1μmのZrO2
粒子を98:2 のvol比で混合し、アトライタを用いて0.1
kPaの酸素分圧下で8h機械的合金処理を行なった、次い
で、この粉末を水素気流中で 600℃、1h熱処理を行な
い、Ni基質中に2vol%のZrO2粒子が分散した分散強化Ni
合金粉末を得た。得られた粉末の見掛密度、比表面積、
ならびに粉末硬さの測定値をそれぞれ表1に示す。ま
た、得られた粉末を実施例1と同じ方法で焼結型に充鎮
し、大気中で 500℃、1h予備焼結後、水素気流中で 800
℃、1h焼結して多孔質体を作製した。得られた多孔質体
の特性を表1に示す。
Comparative Example 2 Nickel powder having an average particle size of 5 μm and ZrO 2 having an average particle size of 0.1 μm
The particles were mixed in a vol ratio of 98: 2 and the volume was adjusted to 0.1 using an attritor.
Mechanical alloying treatment was performed for 8 h under oxygen partial pressure of kPa, and then this powder was heat-treated at 600 ° C. for 1 h in a hydrogen stream to obtain dispersion strengthened Ni in which 2 vol% ZrO 2 particles were dispersed in the Ni substrate.
An alloy powder was obtained. Apparent density, specific surface area of the obtained powder,
Table 1 shows the measured values of the powder hardness. Further, the obtained powder was filled into a sintering die in the same manner as in Example 1, pre-sintered at 500 ° C. for 1 hour in the air, and then 800 in a hydrogen stream.
A porous body was produced by sintering at ℃ for 1 hour. Table 1 shows the properties of the obtained porous body.

【0022】比較例3 平均粒径5μmのニッケル粉を実施例と同じ方法で焼結
型に充鎮し、水素気流中で 800℃、1h焼結して多孔質体
を作製した。得られた多孔質体の特性を表1に示す。
Comparative Example 3 Nickel powder having an average particle size of 5 μm was filled in a sintering die in the same manner as in the example, and sintered in a hydrogen stream at 800 ° C. for 1 hour to produce a porous body. Table 1 shows the properties of the obtained porous body.

【0023】比較例4 平均粒径11μmのNi-3mass%Al合金粉を見掛密度3.2Mg/m
3、比表面積2100cm2/gを実施例1の方法で焼結型に充鎮
し、大気中で 800℃、1h予備焼結後水素気流中で900
℃、1h焼結して多孔質を作製した。得られた多孔質体の
特性を表1に示す。
Comparative Example 4 Ni-3mass% Al alloy powder having an average particle size of 11 μm has an apparent density of 3.2 Mg / m.
3 , the specific surface area of 2100 cm 2 / g was filled into the sintering mold by the method of Example 1, 800 ° C. in the atmosphere for 1 hour, and 900 in a hydrogen stream after pre-sintering.
A porous material was produced by sintering at ℃ for 1 hour. The properties of the obtained porous body are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】表1に示すように、本発明の酸化物分散
強化Ni合金粉を用いて作製された多孔質体は本発明の
範囲外の粉末(比較例1、2)の酸化物分散強化Ni合金
粉に比べて耐クリープ、耐シンタリング性に優れる。さ
らに、従来の純Ni粉を用いて作製された多孔質体(比較
例3)や、さらに多孔質体の体クリープ、耐シンタリン
グ性を改善するために提案されたNi−5mass%を用いた多
孔質体(比較例4)に比べても同じ空隙率で比表面積が
大きく、しかも耐クリープ、耐シンタリング性に優れて
いることがわかる。すなわち、本発明の酸化物分散強化
Ni合金粉を用いることにより溶融炭酸塩型燃料電池の運
転条件下においても長期にわたり高い空隙率と比表面積
を維持できるアノードの製造が可能となり、溶融炭酸塩
化燃料電池の向上に寄与できる。
As shown in Table 1, the porous body produced by using the oxide dispersion strengthened Ni alloy powder of the present invention is an oxide dispersion of powder (Comparative Examples 1 and 2) outside the scope of the present invention. Excellent creep resistance and sintering resistance compared to reinforced Ni alloy powder. Furthermore, a porous body (Comparative Example 3) produced by using a conventional pure Ni powder, and Ni-5 mass% proposed for improving body creep and sintering resistance of the porous body were used. It can be seen that even when compared with the porous body (Comparative Example 4), it has the same porosity, a large specific surface area, and is excellent in creep resistance and sintering resistance. That is, the oxide dispersion strengthening of the present invention
By using the Ni alloy powder, it becomes possible to manufacture an anode capable of maintaining a high porosity and a specific surface area for a long period of time even under the operating conditions of the molten carbonate fuel cell, which can contribute to the improvement of the molten carbonated fuel cell.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ni基中に 0.5〜10vol%の酸化物微粒子が
均一に分散し、平均粒径が1〜20μmの範囲にあり、粉
末硬さが HV180以上かつ、比表面積(BET法)が3000cm2/
g以上あり、しかも、粉末の見掛密度が3.0Mg/m3を越え
ないことを特徴とする燃料電池アノード用酸化物分散強
化Ni合金粉。
1. Oxide fine particles of 0.5 to 10 vol% are uniformly dispersed in Ni group, the average particle size is in the range of 1 to 20 μm, the powder hardness is HV180 or more, and the specific surface area (BET method) is 3000 cm 2 /
Oxide dispersion strengthened Ni alloy powder for fuel cell anodes, characterized by having an amount of g or more and an apparent density of the powder not exceeding 3.0 Mg / m 3 .
【請求項2】 前記Ni基質中に合金元素としてCr、Fe、
Co、Cu、Moの1種又は2種以上を含み、かつ、合金元素
の総量が 50mass%以下であることを特徴とする請求項1
に記載の酸化物分散強化Ni合金粉。
2. The alloying elements Cr, Fe, and
The total amount of alloying elements is 50 mass% or less, including one or more of Co, Cu, and Mo.
The oxide dispersion strengthened Ni alloy powder according to.
【請求項3】 前記酸化物粒子としてZrO2、Y2O3、Mg
O、CeO2、Gd2O3、TaO3、La2O3 、LiAlO2、Li2ZrO3 、Li
TiO2のうちから選ばれる1種または2種以上含むことを
特徴とする請求項1に記載の酸化物分散強化Ni合金粉。
3. The oxide particles include ZrO 2 , Y 2 O 3 and Mg.
O, CeO 2 , Gd 2 O 3 , TaO 3 , La 2 O 3 , LiAlO 2 , Li 2 ZrO 3 , Li
The oxide-dispersion-strengthened Ni alloy powder according to claim 1, containing one or more selected from TiO 2 .
【請求項4】 粉末の製造過程において、酸化物粒子も
しくは熱処理によってこれら酸化物粒子に変化する水酸
化物又は水和物とNi粉末もしくはNiにCr、Fe、Co、Cu、
Moの1種又は2種以上を添加した合金粉末もしくはCr、
Fe、Co、Cu、Moの1種以上を含む金属または合金粉とそ
れらの混合粉との混合物を1.0〜101.3kPaの酸素分圧下
で機械的合金化処理を行ない、その後に還元雰囲気中で
熱処理することを特徴とする酸化物分散強化Ni合金粉の
製造方法。
4. In the manufacturing process of powder, oxide particles or hydroxide or hydrate which is converted into these oxide particles by heat treatment, and Ni powder or Ni, Cr, Fe, Co, Cu,
Alloy powder or Cr with one or more additions of Mo,
A mixture of metal or alloy powder containing at least one of Fe, Co, Cu and Mo and their mixed powder is mechanically alloyed under an oxygen partial pressure of 1.0 to 101.3 kPa, and then heat treated in a reducing atmosphere. A method for producing an oxide dispersion strengthened Ni alloy powder, comprising:
JP7200151A 1995-08-07 1995-08-07 Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production Pending JPH0949001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7200151A JPH0949001A (en) 1995-08-07 1995-08-07 Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7200151A JPH0949001A (en) 1995-08-07 1995-08-07 Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production

Publications (1)

Publication Number Publication Date
JPH0949001A true JPH0949001A (en) 1997-02-18

Family

ID=16419644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7200151A Pending JPH0949001A (en) 1995-08-07 1995-08-07 Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production

Country Status (1)

Country Link
JP (1) JPH0949001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024139A1 (en) * 1996-11-29 1998-06-04 Forschungszentrum Jülich GmbH Dispersoid-reinforced electrode
JP2018070985A (en) * 2016-11-04 2018-05-10 東邦チタニウム株式会社 Titanium-based porous body and manufacturing method therefor
JP2019534377A (en) * 2016-10-14 2019-11-28 エルジー・ケム・リミテッド Method for producing metal alloy foam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024139A1 (en) * 1996-11-29 1998-06-04 Forschungszentrum Jülich GmbH Dispersoid-reinforced electrode
US6180277B1 (en) 1996-11-29 2001-01-30 Forschungszentrum J{umlaut over (u)}lich GmbH Dispersoid-reinforced electrode
JP2019534377A (en) * 2016-10-14 2019-11-28 エルジー・ケム・リミテッド Method for producing metal alloy foam
US11951544B2 (en) 2016-10-14 2024-04-09 Lg Chem, Ltd. Method for manufacturing metal alloy foam
JP2018070985A (en) * 2016-11-04 2018-05-10 東邦チタニウム株式会社 Titanium-based porous body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP2230707B1 (en) Interconnector of a solid electrolyte high temperature fuel cell
EP0459351B1 (en) Method of manufacturing electrodes of molten carbonate fuel cell and electrode manufactured thereby
EP0198466B1 (en) Nickel anode electrode
US8163435B2 (en) Porous body and production method
CN105492148B (en) Chromium-containing powder or powder particles
JPH0925526A (en) Production of oxide grain dispersed metal matrix composite
US9660274B2 (en) Iron coated chromium powder and SOFC IC made therefrom
CA2311171A1 (en) Process for preparing metal powders, metal powders thus prepared, and compacts containing said powders
JP5119551B2 (en) Hydrogen storage alloy, method for producing the same, and secondary battery
CA2341779A1 (en) Inert electrode material in nanocrystalline powder form
EP0259226B1 (en) Powdery raw material for manufacturing anodes of fuel cells
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JPH0949001A (en) Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production
EP1689012A1 (en) Generation cell for solid electrolyte fuel cell
CN109047788A (en) A kind of ultrafine yttria Doped Tungsten composite nanometre powder preparation method of cyclic oxidation reduction
JP2005166563A (en) Fuel electrode for sofc into which active fine particles are added, and its fabricating method
RU2751917C1 (en) Metal-ceramic silver-based composite for selective oxygen membranes and method for production thereof
JP3216150B2 (en) Method for producing cathode electrode for molten carbonate fuel cell
JPH0892672A (en) Production of dispersion strengthened alloy
JP2735936B2 (en) Dispersion-strengthened Ni alloy powder excellent in sinterability and method for producing the same
JPH10183315A (en) Iron-chrome sintered alloy, its manufacture and separator for fuel cell using it
JP4381158B2 (en) High temperature oxidation resistant iron-base alloy composite member, method for producing the same, and fuel cell separator using the same
CN114054768B (en) Preparation method and application of scandium-strontium-containing superfine tungsten-rhenium composite powder
CN116765419A (en) W-V-Mo-Re-HfO 2 -Y 2 O 3 Chemical preparation method of nano powder and fine crystal block material thereof
KR20230139079A (en) Silicon Nano-composite Structured Powders for Anode Materials Using Ternary Si Alloys and Method for Producing the Same