JPH0945688A - Interconnection structure and its formation method - Google Patents

Interconnection structure and its formation method

Info

Publication number
JPH0945688A
JPH0945688A JP21248095A JP21248095A JPH0945688A JP H0945688 A JPH0945688 A JP H0945688A JP 21248095 A JP21248095 A JP 21248095A JP 21248095 A JP21248095 A JP 21248095A JP H0945688 A JPH0945688 A JP H0945688A
Authority
JP
Japan
Prior art keywords
film
wiring
forming
protective film
wiring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21248095A
Other languages
Japanese (ja)
Inventor
Setsuo Suzuki
説男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21248095A priority Critical patent/JPH0945688A/en
Publication of JPH0945688A publication Critical patent/JPH0945688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an interconnection structure in which a hillock to the side face of an interconnection is suppressed and in which a short circuit between interconnections on the same layer is prevented. SOLUTION: A TiN film 24, an AlCu film 23 and a TiN film 22 are worked to patterns for interconnections, a plasma treatment or the like is executed in an atmosphere which contains nitrogen, an Al3 N film 26 is formed on side faces of every AlCu film 23 which is exposed from the TiN films 22, 24, and an Al interconnection 27 in a laminated structure is completed. Since the Al3 N film is of higher hardness and of higher density than the AlCu film 23, the Al3 N film 26 functions as a protective film, and a hillock to a side is hard to form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願の発明は、半導体装置中
の配線構造及びその形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring structure in a semiconductor device and a method for forming the same.

【0002】[0002]

【従来の技術】半導体装置中の配線として、低抵抗で且
つ加工が容易なAl合金を材料とするAl配線が広く使
用されている。しかし、Al配線はエレクトロマイグレ
ーションやストレスマイグレーションに対する耐性が高
くなく、図5に示す様に、Al配線11中で矢印12方
向のマイグレーションが発生すると、Al原子の移動元
と移動先とに夫々ボイド13とヒロック14とが形成さ
れる。
2. Description of the Related Art As an interconnection in a semiconductor device, an Al interconnection made of an Al alloy which has a low resistance and is easily processed is widely used. However, the Al wiring does not have high resistance to electromigration and stress migration, and as shown in FIG. 5, when migration in the direction of arrow 12 occurs in the Al wiring 11, voids 13 are formed at the source and the destination of the Al atom, respectively. And hillocks 14 are formed.

【0003】そこで、図6に示す様に、積層構造のAl
配線15も広く使用されている。このAl配線15は、
高融点金属膜等から成るバリアメタル膜16とAl合金
膜17と高融点金属膜等から成るキャップメタル膜18
とを順次に積層させ、これらの膜を配線のパターンに加
工したものである。
Therefore, as shown in FIG. 6, Al having a laminated structure is used.
The wiring 15 is also widely used. This Al wiring 15 is
A barrier metal film 16 made of a refractory metal film or the like, an Al alloy film 17, and a cap metal film 18 made of a refractory metal film or the like
And are sequentially laminated, and these films are processed into a wiring pattern.

【0004】従って、このAl配線15では、バリアメ
タル膜16及びキャップメタル膜18によって、Al配
線15の下方及び上方へのヒロック14が抑制されてい
る。また、バリアメタル膜16によってAl合金膜17
を形成する際の配向性が向上して、マイグレーション自
体も抑制されている。
Therefore, in the Al wiring 15, the hillocks 14 below and above the Al wiring 15 are suppressed by the barrier metal film 16 and the cap metal film 18. Further, the barrier metal film 16 is used to form the Al alloy film 17
Orientation at the time of forming is improved, and migration itself is also suppressed.

【0005】[0005]

【発明が解決しようとする課題】しかし、図6に示した
Al配線15でも、側面は高融点金属膜等に覆われてい
ないので、Al配線15の側方へのヒロック14は抑制
することができない。一方、半導体装置の微細化に伴っ
て、Al配線11、15の幅が縮小されると共にAl配
線11、15間の距離も縮小されてきている。
However, even in the Al wiring 15 shown in FIG. 6, since the side surface is not covered with the refractory metal film or the like, the hillocks 14 to the side of the Al wiring 15 can be suppressed. Can not. On the other hand, with the miniaturization of semiconductor devices, the width of the Al wirings 11 and 15 has been reduced and the distance between the Al wirings 11 and 15 has also been reduced.

【0006】このため、図5に示す様に、Al配線11
で形成されたヒロック14が、同一層で且つ隣接してい
るAl配線11に到達する可能性が高かった。従って、
これらのAl配線11間で短絡を生じ易く、従来のAl
配線11、15では信頼性が必ずしも高くなかった。
For this reason, as shown in FIG.
There is a high possibility that the hillocks 14 formed in 1 will reach the Al wiring 11 adjacent in the same layer. Therefore,
A short circuit is likely to occur between these Al wirings 11 and
The wirings 11 and 15 were not always reliable.

【0007】[0007]

【課題を解決するための手段】請求項1の配線構造は、
配線の形成材料よりも高硬度で且つ高密度の材料から成
る保護膜によって前記配線の側面が覆われていることを
特徴としている。
A wiring structure according to claim 1 is
It is characterized in that the side surface of the wiring is covered with a protective film made of a material having a higher hardness and a higher density than the material for forming the wiring.

【0008】請求項2の配線構造は、請求項1の配線構
造において、前記保護膜が導電膜であることを特徴とし
ている。
A wiring structure according to a second aspect is the wiring structure according to the first aspect, wherein the protective film is a conductive film.

【0009】請求項3の配線構造の形成方法は、配線の
パターニング後に、この配線の形成材料よりも高硬度で
且つ高密度の材料から成る保護膜を前記配線の側面に形
成する工程を具備することを特徴としている。
According to a third aspect of the present invention, there is provided a method of forming a wiring structure, which comprises, after patterning the wiring, forming a protective film made of a material having a higher hardness and a higher density than a material for forming the wiring on a side surface of the wiring. It is characterized by that.

【0010】請求項4の配線構造の形成方法は、請求項
3の配線構造の形成方法において、前記保護膜として導
電膜を用いることを特徴としている。
According to a fourth aspect of the present invention, there is provided a wiring structure forming method according to the third aspect, wherein a conductive film is used as the protective film.

【0011】請求項5の配線構造の形成方法は、請求項
3の配線構造の形成方法において、窒素を含む雰囲気中
または酸素を含む雰囲気中で前記配線にプラズマ処理を
施して、前記保護膜を形成することを特徴としている。
According to a fifth aspect of the present invention, there is provided a method of forming a wiring structure according to the third aspect, wherein the wiring is subjected to plasma treatment in an atmosphere containing nitrogen or an atmosphere containing oxygen to form the protective film. It is characterized by forming.

【0012】請求項6の配線構造の形成方法は、請求項
5の配線構造の形成方法において、前記配線のパターニ
ングと前記プラズマ処理とを同一の反応室内で行うこと
を特徴としている。
According to a sixth aspect of the present invention, there is provided a wiring structure forming method according to the fifth aspect, wherein the patterning of the wiring and the plasma treatment are performed in the same reaction chamber.

【0013】請求項7の配線構造の形成方法は、請求項
3の配線構造の形成方法において、窒素を含む雰囲気中
または酸素を含む雰囲気中で前記配線に熱処理を施し
て、前記保護膜を形成することを特徴としている。
A method of forming a wiring structure according to a seventh aspect is the method of forming a wiring structure according to the third aspect, wherein the wiring is heat-treated in an atmosphere containing nitrogen or an atmosphere containing oxygen to form the protective film. It is characterized by doing.

【0014】請求項8の配線構造の形成方法は、請求項
3の配線構造の形成方法において、前記配線に窒素また
は酸素をイオン注入して、前記保護膜を形成することを
特徴としている。
The method for forming a wiring structure according to an eighth aspect is the method for forming a wiring structure according to the third aspect, characterized in that nitrogen or oxygen is ion-implanted into the wiring to form the protective film.

【0015】請求項9の配線構造の形成方法は、請求項
3の配線構造の形成方法において、前記配線の側面に側
壁状の前記保護膜を形成することを特徴としている。
The method of forming a wiring structure according to a ninth aspect is the method of forming a wiring structure according to the third aspect, characterized in that the side wall-shaped protective film is formed on a side surface of the wiring.

【0016】本願の発明による配線構造及びその形成方
法では、配線の形成材料よりも高硬度で且つ高密度の材
料から成る保護膜によって配線の側面を覆っているの
で、配線の側方へのヒロックを抑制して同一層の配線間
における短絡を防止することができる。
In the wiring structure and the method for forming the wiring according to the present invention, since the side surface of the wiring is covered with the protective film made of a material having a higher hardness and a higher density than the material for forming the wiring, hillocks to the side of the wiring are formed. Can be suppressed to prevent a short circuit between wirings in the same layer.

【0017】また、配線の側面を覆う保護膜を導電膜に
すれば、ボイド等によって配線が断線しても、保護膜が
電流のバイパスになる。
If the protective film covering the side surface of the wiring is a conductive film, the protective film serves as a current bypass even if the wiring is broken due to voids or the like.

【0018】また、配線のパターニングと配線の側面を
覆う保護膜を形成するためのプラズマ処理とを同一の反
応室内で行えば、製造装置及び製造装置間の搬送工程が
少なくなる。
Further, if the patterning of the wiring and the plasma treatment for forming the protective film covering the side surface of the wiring are carried out in the same reaction chamber, the number of manufacturing apparatuses and the steps of carrying between the manufacturing apparatuses can be reduced.

【0019】[0019]

【発明の実施の形態】以下、本願の発明の第1〜第4具
体例を、図1〜4を参照しながら説明する。図1が、第
1具体例を示している。この第1具体例では、図1
(a)に示す様に、SiO2 膜21等の層間絶縁膜上
に、バリアメタル膜であり膜厚が100nmであるTi
N膜22と、0.5%のCuを含有しており膜厚が50
0nmであるAlCu膜23と、キャップメタル膜であ
り膜厚が100nmであるTiN膜24とを、スパッタ
法で順次に形成する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, first to fourth specific examples of the invention of the present application will be described with reference to FIGS. FIG. 1 shows a first specific example. In this first specific example, FIG.
As shown in (a), a barrier metal film of Ti having a thickness of 100 nm is formed on the interlayer insulating film such as the SiO 2 film 21.
It contains N film 22 and 0.5% Cu and has a film thickness of 50.
An AlCu film 23 having a thickness of 0 nm and a TiN film 24 having a thickness of 100 nm, which is a cap metal film, are sequentially formed by a sputtering method.

【0020】TiN膜22、24及びAlCu膜23の
形成条件は、下記の通りである。これらのTiN膜2
2、24及びAlCu膜23を形成した後、TiN膜2
4上でフォトレジスト25を配線のパターンに加工す
る。
The conditions for forming the TiN films 22, 24 and the AlCu film 23 are as follows. These TiN films 2
After forming 2, 24 and AlCu film 23, TiN film 2
The photoresist 25 is processed into a wiring pattern on the wiring 4.

【0021】TiN膜のスパッタ条件 ガス Ar/N2 =33/66sccm 圧力 0.4Pa 直流電力 8kW 基板加熱温度 300℃Sputtering conditions for TiN film Gas Ar / N 2 = 33/66 sccm Pressure 0.4 Pa DC power 8 kW Substrate heating temperature 300 ° C.

【0022】AlCu膜のスパッタ条件 ガス Ar=65sccm 圧力 0.2Pa 直流電力 15kW 基板加熱温度 300℃Sputtering conditions for AlCu film Gas Ar = 65 sccm Pressure 0.2 Pa DC power 15 kW Substrate heating temperature 300 ° C.

【0023】次に、図1(b)に示す様に、フォトレジ
スト25をマスクにした下記の条件のRIEで、TiN
膜24、AlCu膜23及びTiN膜22を連続的にエ
ッチングした後、図1(c)に示す様に、灰化によって
フォトレジスト25を剥離する。そして、図1(d)に
示す様に、上述のRIE及び灰化を行った反応室のガス
を入れ換え、この反応室内で、下記の条件のプラズマ処
理を行う。
Next, as shown in FIG. 1B, TiN is formed by RIE using the photoresist 25 as a mask under the following conditions.
After the film 24, the AlCu film 23, and the TiN film 22 are continuously etched, as shown in FIG. 1C, the photoresist 25 is removed by ashing. Then, as shown in FIG. 1D, the gas in the reaction chamber that has undergone the above RIE and ashing is exchanged, and plasma processing under the following conditions is performed in this reaction chamber.

【0024】エッチング条件 ガス BCl3 /Cl2 =60/90sccm 圧力 2Pa 高周波電力 1200WEtching conditions Gas BCl 3 / Cl 2 = 60/90 sccm Pressure 2 Pa High frequency power 1200 W

【0025】プラズマ処理条件 ガス Ar/N2 =60/90sccm 圧力 2Pa 高周波電力 1500WPlasma processing conditions Gas Ar / N 2 = 60/90 sccm Pressure 2 Pa High frequency power 1500 W

【0026】上述のプラズマ処理の結果、図1(e)に
示す様に、TiN膜22、24から露出しているAlC
u膜23の側面に、 6Al+N2 →3Al3 N の反応式によってAl3 N膜26が形成されて、積層構
造のAl配線27が完成する。
As a result of the above plasma treatment, as shown in FIG. 1E, the AlC exposed from the TiN films 22 and 24 is exposed.
The Al 3 N film 26 is formed on the side surface of the u film 23 by the reaction formula of 6Al + N 2 → 3Al 3 N, and the Al wiring 27 of the laminated structure is completed.

【0027】以上の様にして形成した第1具体例のAl
配線27では、AlCu膜23の下面及び上面がTiN
膜22、24に覆われているのみならず側面もAl3
膜26に覆われており、TiN膜22、24及びAl3
N膜26はAlCu膜23よりも高硬度で且つ高密度で
あるので、これらのTiN膜22、24及びAl3 N膜
26が保護膜になって、下方及び上方のみならず側方へ
もヒロックが形成されにくい。
Al of the first specific example formed as described above
In the wiring 27, the lower and upper surfaces of the AlCu film 23 are made of TiN.
Al 3 N is not only covered by the films 22 and 24 but also on the side surface.
The TiN films 22, 24 and Al 3 are covered with the film 26.
Since the N film 26 has a higher hardness and a higher density than the AlCu film 23, the TiN films 22, 24 and the Al 3 N film 26 serve as protective films, so that the hillocks are not only downward and upward but also laterally. Are hard to form.

【0028】しかも、この第1具体例では、図1(b)
のRIE及び図1(c)の灰化を行った反応室と同じ反
応室内で図1(d)のプラズマ処理を行っているので、
製造装置及び製造装置間の搬送工程が少なくて、Al配
線27を低コストで形成することができる。
Moreover, in the first specific example, FIG.
1D and the ashing reaction chamber of FIG. 1C, the plasma treatment of FIG. 1D is performed in the same reaction chamber.
The Al wiring 27 can be formed at low cost because the number of manufacturing steps between the manufacturing apparatuses is small.

【0029】なお、以上の第1具体例では、窒素を含む
雰囲気中でプラズマ処理を行ってAlCu膜23の側面
にAl3 N膜26を形成しているが、酸素を含む雰囲気
中でプラズマ処理を行ってAlCu膜23の側面にAl
2 3 膜を形成してもよい。
In the first embodiment described above, the plasma treatment is performed in the atmosphere containing nitrogen to form the Al 3 N film 26 on the side surface of the AlCu film 23. However, the plasma treatment is performed in the atmosphere containing oxygen. To the side surface of the AlCu film 23.
A 2 O 3 film may be formed.

【0030】図2が、第2具体例を示している。この第
2具体例でも、図2(a)に示す様に、TiN膜24、
AlCu膜23及びTiN膜22を配線のパターンに加
工するために使用したフォトレジスト25を灰化によっ
て剥離するまでは、図1に示した第1具体例と実質的に
同様の工程を実行する。しかし、この第2具体例では、
その後、図2(a)に示す様に、膜厚が100nmのW
膜31を下記の条件のCVD法で形成する。
FIG. 2 shows a second specific example. Also in this second example, as shown in FIG. 2A, the TiN film 24,
Until the photoresist 25 used for processing the AlCu film 23 and the TiN film 22 into a wiring pattern is removed by ashing, substantially the same steps as in the first specific example shown in FIG. 1 are performed. However, in this second example,
After that, as shown in FIG. 2A, a W film having a film thickness of 100 nm is formed.
The film 31 is formed by the CVD method under the following conditions.

【0031】 W膜のCVD条件 ガス WF6 /H2 /Ar=40/400/2250sccm 圧力 10.66kPa 基板加熱温度 420℃CVD conditions for W film Gas WF 6 / H 2 / Ar = 40/400/2250 sccm Pressure 10.66 kPa Substrate heating temperature 420 ° C.

【0032】次に、下記の条件でW膜31の全面をエッ
チバックし、図2(b)に示す様に、TiN膜22、A
lCu膜23及びTiN膜24の側面に、W膜31から
成る側壁を形成して、積層構造のAl配線32を完成さ
せる。
Next, the entire surface of the W film 31 is etched back under the following conditions, and as shown in FIG.
Sidewalls made of the W film 31 are formed on the side surfaces of the 1Cu film 23 and the TiN film 24 to complete the Al wiring 32 having a laminated structure.

【0033】エッチング条件 ガス SF6 /Cl2 =40/20sccm 圧力 1Pa 高周波電力 600WEtching conditions Gas SF 6 / Cl 2 = 40/20 sccm Pressure 1 Pa High frequency power 600 W

【0034】以上の様にして形成した第2具体例のAl
配線32では、W膜31によってAlCu膜23から側
方へのヒロックが形成されにくいのみならず、ボイド等
によってAlCu膜23が断線してもW膜31が電流の
バイパスになるので、寿命が長い。
Al of the second specific example formed as described above
In the wiring 32, not only is it difficult for the W film 31 to form hillocks laterally from the AlCu film 23, but also the W film 31 becomes a bypass for the current even if the AlCu film 23 is disconnected due to voids or the like, so the life is long. .

【0035】図3が、第3具体例を示している。この第
3具体例も、AlCu膜23の代わりに、膜厚が500
nmのTi膜33を下記の条件のスパッタ法で形成し、
プラズマ処理の代わりに、下記の条件の熱処理を行うこ
とを除いて、図1に示した第1具体例と実質的に同様の
工程を実行する。この結果、Ti膜33の側面がTiN
膜34に覆われている積層構造のTi配線35が完成す
る。
FIG. 3 shows a third specific example. Also in this third example, the film thickness is 500 instead of the AlCu film 23.
a Ti film 33 of 30 nm in thickness by a sputtering method under the following conditions,
Instead of the plasma treatment, substantially the same steps as those of the first specific example shown in FIG. 1 are performed except that the heat treatment under the following conditions is performed. As a result, the side surface of the Ti film 33 is covered with TiN.
The Ti wiring 35 having a laminated structure covered with the film 34 is completed.

【0036】Ti膜のスパッタ条件 ガス Ar=65sccm 圧力 0.4Pa 直流電力 5kW 基板加熱温度 300℃Sputtering conditions for Ti film Gas Ar = 65 sccm Pressure 0.4 Pa DC power 5 kW Substrate heating temperature 300 ° C.

【0037】熱処理条件 ガス NH3 100% 温度 700℃ 圧力 常圧 処理時間 30秒Heat treatment conditions Gas NH 3 100% Temperature 700 ° C. Pressure Normal pressure Treatment time 30 seconds

【0038】なお、以上の第3具体例では、窒素を含む
雰囲気中で熱処理を行ってTi膜33の側面にTiN膜
34を形成しているが、酸素を含む雰囲気中でプラズマ
処理を行ってTi膜33の側面にTiO膜を形成しても
よい。
In the above third embodiment, the heat treatment is performed in the atmosphere containing nitrogen to form the TiN film 34 on the side surface of the Ti film 33. However, the plasma treatment is performed in the atmosphere containing oxygen. A TiO film may be formed on the side surface of the Ti film 33.

【0039】図4が、第4具体例を示している。この第
4具体例も、プラズマ処理の代わりに、下記の条件で窒
素をイオン注入することを除いて、図1に示した第1具
体例と実質的に同様の工程を実行する。この結果、Al
Cu膜23の側面がAl3 N膜26に覆われている積層
構造のAl配線27が完成する。
FIG. 4 shows a fourth specific example. Also in this fourth specific example, the substantially same steps as the first specific example shown in FIG. 1 are executed except that nitrogen is ion-implanted under the following conditions instead of the plasma treatment. As a result, Al
The Al wiring 27 having a laminated structure in which the side surface of the Cu film 23 is covered with the Al 3 N film 26 is completed.

【0040】窒素のイオン注入条件 エネルギー 10keV ドーズ量 1×1018個/cm2 Nitrogen ion implantation conditions Energy 10 keV Dose amount 1 × 10 18 pieces / cm 2

【0041】窒素はAlCu膜23のみならずTiN膜
24やSiO2 膜21にもイオン注入される。しかし、
TiN膜24は窒素をイオン注入されてもパターンや電
気特性には影響がなく、SiO2 膜21も表面にSiO
N膜36が形成されるだけで絶縁特性には影響がない。
Nitrogen is ion-implanted not only into the AlCu film 23 but also into the TiN film 24 and the SiO 2 film 21. But,
Even if the TiN film 24 is ion-implanted with nitrogen, it does not affect the pattern and electrical characteristics, and the SiO 2 film 21 also has SiO 2 on the surface.
Only the N film 36 is formed without affecting the insulation characteristics.

【0042】なお、以上の第4具体例では、窒素をイオ
ン注入してAlCu膜23の側面にAl3 N膜26を形
成しているが、酸素をイオン注入してAlCu膜23の
側面にAl2 3 膜を形成してもよい。
In the fourth embodiment described above, nitrogen is ion-implanted to form the Al 3 N film 26 on the side surface of the AlCu film 23. However, oxygen is ion-implanted to form the Al 3 N film 26 on the side surface of the AlCu film 23. A 2 O 3 film may be formed.

【0043】また、以上の第1〜第4具体例では、配線
としてAlCu膜23またはTi膜33を用い、これら
のAlCu膜23またはTi膜33の保護膜としてAl
3 N膜26、W膜31またはTiN膜34を用いたが、
W膜、Mo膜、Cr膜またはこれらの合金膜や化合物膜
を配線として用いてもよく、Mo膜、Cr膜またはこれ
らの合金膜や化合物膜を保護膜として用いてもよい。
In the above-described first to fourth specific examples, the AlCu film 23 or the Ti film 33 is used as the wiring, and the AlCu film 23 or the Ti film 33 is protected by the Al film.
3 N film 26, W film 31 or TiN film 34 is used,
A W film, a Mo film, a Cr film or an alloy film or a compound film thereof may be used as the wiring, and a Mo film, a Cr film or an alloy film or a compound film thereof may be used as a protective film.

【0044】[0044]

【発明の効果】本願の発明による配線構造及びその形成
方法では、配線の側方へのヒロックを抑制して同一層の
配線間における短絡を防止することができるので、信頼
性が高い配線構造を提供することができる。
According to the wiring structure and the method for forming the same according to the present invention, it is possible to suppress a hillock on the side of the wiring and prevent a short circuit between the wirings in the same layer. Can be provided.

【0045】また、配線の側面を覆う保護膜を導電膜に
すれば、ボイド等によって配線が断線しても、保護膜が
電流のバイパスになるので、寿命が長くて信頼性が更に
高い配線構造を提供することができる。
Further, if the protective film covering the side surface of the wiring is made of a conductive film, the protective film serves as a current bypass even if the wiring is broken due to voids or the like, so that the wiring structure has a long life and higher reliability. Can be provided.

【0046】また、配線のパターニングと配線の側面を
覆う膜を形成するためのプラズマ処理とを同一の反応室
内で行えば、製造装置及び製造装置間の搬送工程が少な
くなるので、信頼性が高い配線構造を低コストで形成す
ることができる。
Further, if the patterning of the wiring and the plasma treatment for forming the film covering the side surface of the wiring are carried out in the same reaction chamber, the manufacturing apparatus and the transfer process between the manufacturing apparatuses are reduced, so that the reliability is high. The wiring structure can be formed at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の第1具体例を工程順に示す配線構
造の側断面図である。
FIG. 1 is a side sectional view of a wiring structure showing a first specific example of the invention of the present application in the order of steps.

【図2】本願の発明の第2具体例の一部を工程順に示す
配線構造の側断面図である。
FIG. 2 is a side sectional view of a wiring structure showing a part of a second specific example of the invention of the present application in the order of steps.

【図3】本願の発明の第3具体例の一部を示す配線構造
の側断面図である。
FIG. 3 is a side sectional view of a wiring structure showing a part of a third specific example of the present invention.

【図4】本願の発明の第4具体例の一部を示す配線構造
の側断面図である。
FIG. 4 is a side sectional view of a wiring structure showing a part of a fourth specific example of the present invention.

【図5】ボイド及びヒロックを説明するための配線の平
面図である。
FIG. 5 is a plan view of wiring for explaining voids and hillocks.

【図6】本願の発明の一従来例による配線の側断面図で
ある。
FIG. 6 is a side sectional view of a wiring according to a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

23 AlCu膜 26 Al3 N膜 27 Al配線 31 W膜 32 Al配線 33 Ti膜 34 TiN膜 35 Ti配線23 AlCu film 26 Al 3 N film 27 Al wiring 31 W film 32 Al wiring 33 Ti film 34 TiN film 35 Ti wiring

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 配線の形成材料よりも高硬度で且つ高密
度の材料から成る保護膜によって前記配線の側面が覆わ
れていることを特徴とする配線構造。
1. A wiring structure in which a side surface of the wiring is covered with a protective film made of a material having a higher hardness and a higher density than a material for forming the wiring.
【請求項2】 前記保護膜が導電膜であることを特徴と
する請求項1記載の配線構造。
2. The wiring structure according to claim 1, wherein the protective film is a conductive film.
【請求項3】 配線のパターニング後に、この配線の形
成材料よりも高硬度で且つ高密度の材料から成る保護膜
を前記配線の側面に形成する工程を具備することを特徴
とする配線構造の形成方法。
3. The formation of a wiring structure comprising the step of, after patterning the wiring, forming a protective film made of a material having a higher hardness and a higher density than a material for forming the wiring on a side surface of the wiring. Method.
【請求項4】 前記保護膜として導電膜を用いることを
特徴とする請求項3記載の配線構造の形成方法。
4. The method of forming a wiring structure according to claim 3, wherein a conductive film is used as the protective film.
【請求項5】 窒素を含む雰囲気中または酸素を含む雰
囲気中で前記配線にプラズマ処理を施して、前記保護膜
を形成することを特徴とする請求項3記載の配線構造の
形成方法。
5. The method for forming a wiring structure according to claim 3, wherein the protective film is formed by subjecting the wiring to plasma treatment in an atmosphere containing nitrogen or an atmosphere containing oxygen.
【請求項6】 前記配線のパターニングと前記プラズマ
処理とを同一の反応室内で行うことを特徴とする請求項
5記載の配線構造の形成方法。
6. The method for forming a wiring structure according to claim 5, wherein the patterning of the wiring and the plasma treatment are performed in the same reaction chamber.
【請求項7】 窒素を含む雰囲気中または酸素を含む雰
囲気中で前記配線に熱処理を施して、前記保護膜を形成
することを特徴とする請求項3記載の配線構造の形成方
法。
7. The method for forming a wiring structure according to claim 3, wherein the wiring is heat-treated in an atmosphere containing nitrogen or an atmosphere containing oxygen to form the protective film.
【請求項8】 前記配線に窒素または酸素をイオン注入
して、前記保護膜を形成することを特徴とする請求項3
記載の配線構造の形成方法。
8. The protective film is formed by ion-implanting nitrogen or oxygen into the wiring.
A method for forming the described wiring structure.
【請求項9】 前記配線の側面に側壁状の前記保護膜を
形成することを特徴とする請求項3記載の配線構造の形
成方法。
9. The method of forming a wiring structure according to claim 3, wherein the side wall-shaped protective film is formed on a side surface of the wiring.
JP21248095A 1995-07-28 1995-07-28 Interconnection structure and its formation method Pending JPH0945688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21248095A JPH0945688A (en) 1995-07-28 1995-07-28 Interconnection structure and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21248095A JPH0945688A (en) 1995-07-28 1995-07-28 Interconnection structure and its formation method

Publications (1)

Publication Number Publication Date
JPH0945688A true JPH0945688A (en) 1997-02-14

Family

ID=16623351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21248095A Pending JPH0945688A (en) 1995-07-28 1995-07-28 Interconnection structure and its formation method

Country Status (1)

Country Link
JP (1) JPH0945688A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021748A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Semiconductor device and its manufacturing method
JP2002359246A (en) * 2001-03-27 2002-12-13 Semiconductor Energy Lab Co Ltd Wiring and manufacturing method therefor, and circuit board and manufacturing method therefor
KR100457372B1 (en) * 2001-12-06 2004-11-16 치 메이 옵토일렉트로닉스 코포레이션 Hillock-free aluminum wiring layer and method of forming the same
US6835660B2 (en) 2002-11-05 2004-12-28 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device having metal alloy interconnection that has excellent EM lifetime
JP2009088537A (en) * 2001-03-27 2009-04-23 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabrication process
JP2010245415A (en) * 2009-04-09 2010-10-28 Nec Corp Magnetoresistive storage device and method of manufacturing the same
JP2011035048A (en) * 2009-07-30 2011-02-17 Renesas Electronics Corp Method of manufacturing semiconductor integrated circuit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021748A1 (en) * 1996-11-14 1998-05-22 Tokyo Electron Limited Semiconductor device and its manufacturing method
US6218299B1 (en) 1996-11-14 2001-04-17 Tokyo Electron Limited Semiconductor device and method for producing the same
JP2002359246A (en) * 2001-03-27 2002-12-13 Semiconductor Energy Lab Co Ltd Wiring and manufacturing method therefor, and circuit board and manufacturing method therefor
JP2009088537A (en) * 2001-03-27 2009-04-23 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabrication process
US7884369B2 (en) 2001-03-27 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Wiring and method of manufacturing the same, and wiring board and method of manufacturing the same
KR100457372B1 (en) * 2001-12-06 2004-11-16 치 메이 옵토일렉트로닉스 코포레이션 Hillock-free aluminum wiring layer and method of forming the same
US6835660B2 (en) 2002-11-05 2004-12-28 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor device having metal alloy interconnection that has excellent EM lifetime
JP2010245415A (en) * 2009-04-09 2010-10-28 Nec Corp Magnetoresistive storage device and method of manufacturing the same
JP2011035048A (en) * 2009-07-30 2011-02-17 Renesas Electronics Corp Method of manufacturing semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
EP0596364B1 (en) Method of producing semiconductor device having buried contact structure
JPH01252763A (en) Formation of metal silicide
US6143655A (en) Methods and structures for silver interconnections in integrated circuits
KR920005701B1 (en) Metal barrier layer for semiconductor integrated circuit
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
JP2809196B2 (en) Method for manufacturing semiconductor device
JPH0945688A (en) Interconnection structure and its formation method
US6136691A (en) In situ plasma clean for tungsten etching back
CA1238429A (en) Low resistivity hillock free conductors in vlsi devices
US6103639A (en) Method of reducing pin holes in a nitride passivation layer
JPH10209156A (en) Semiconductor device and its manufacture
WO1993011558A1 (en) Method of modifying contact resistance in semiconductor devices and articles produced thereby
JP2000252280A (en) Manufacture of semiconductor device
JPS5910064B2 (en) Manufacturing method of multilayer wiring structure
US6559047B1 (en) Method of forming a metal interconnect that substantially reduces the formation of intermetallic residue regions
JP2005197711A (en) Method for manufacturing semiconductor device
JPH05102148A (en) Semiconductor device
KR100248620B1 (en) Method for manufacturing wiring of semiconductor device
JPH01204449A (en) Copper wiring method for vlsi
KR100373364B1 (en) Method for forming metal line
KR0157876B1 (en) Method of fabricating wire of semiconductor device
KR930011461B1 (en) Method of forming submicron wiring of semiconductor integrated circuit
JPH10209155A (en) Method for forming wiring of semiconductor device
JPH07263447A (en) Semiconductor device and its manufacture
JPH07249611A (en) Dry etching method of laminated wiring