JPH0945322A - Hydrogen storage alloy and hydrogen storage alloy electrode using it - Google Patents

Hydrogen storage alloy and hydrogen storage alloy electrode using it

Info

Publication number
JPH0945322A
JPH0945322A JP7197639A JP19763995A JPH0945322A JP H0945322 A JPH0945322 A JP H0945322A JP 7197639 A JP7197639 A JP 7197639A JP 19763995 A JP19763995 A JP 19763995A JP H0945322 A JPH0945322 A JP H0945322A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
electrode
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197639A
Other languages
Japanese (ja)
Inventor
Shusuke Inada
周介 稲田
Takamichi Inaba
隆道 稲葉
Noriaki Sato
典昭 佐藤
Takao Sawa
孝雄 沢
Hiromichi Horie
宏道 堀江
Hiroyuki Hasebe
裕之 長谷部
Yoshiyuki Isozaki
義之 五十崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7197639A priority Critical patent/JPH0945322A/en
Publication of JPH0945322A publication Critical patent/JPH0945322A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an alloy electrode having the long service life by attaining an improvement in corrosion resistance of hydrogen storage alloy and restraint of pulverization. SOLUTION: Hydrogen storage alloy has a CaCu5 type crystal structure, and is characterized in that a half value width of the (111) surface peak in X-ray diffraction of powder is 0.20 to 0.50 degree. It is flake shaped or ribbon- shaped hydrogen storage alloy which is manufactured by a liquid quenching method and has a CaCu5 type crystal structure, and the hydrogen storage alloy is characterized in that a crystal whose C axis is oriented in the direction vertical to the thickness direction of the alloy exists by 60% or more when X-ray diffraction is performed on the alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金および
それを用いた水素吸蔵合金電極に係り、特に寿命特性が
優れたニッケル水素二次電池を提供することを可能にす
る水素吸蔵合金およびそれを用いた水素吸蔵合金電極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a hydrogen storage alloy electrode using the same, and more particularly to a hydrogen storage alloy which makes it possible to provide a nickel-hydrogen secondary battery having excellent life characteristics. The hydrogen storage alloy electrode used.

【0002】[0002]

【従来の技術】近年の電子機器の進歩および普及に伴
い、これらの電子機器の電源となる二次電池に対する高
容量化および長寿命化が要求されている。このような要
求に対応する電池として、従来のニッケルカドミウム二
次電池に改良を加えた高容量タイプのニッケルカドミウ
ム二次電池が開発されている。
2. Description of the Related Art With the recent progress and popularization of electronic devices, there has been a demand for higher capacity and longer life of secondary batteries used as power sources of these electronic devices. As a battery that meets such demands, a high-capacity type nickel-cadmium secondary battery, which is an improvement of the conventional nickel-cadmium secondary battery, has been developed.

【0003】しかしながら上記従来の二次電池は、有害
物質であるカドミウムを含有するため環境汚染を起こす
おそれがある。そこでカドミウム電極の代りに水素吸蔵
合金を負極材料として使用したニッケル水素二次電池が
提案され実用化されている。
However, since the above-mentioned conventional secondary battery contains cadmium which is a harmful substance, it may cause environmental pollution. Therefore, a nickel-hydrogen secondary battery using a hydrogen storage alloy as a negative electrode material in place of the cadmium electrode has been proposed and put into practical use.

【0004】上記のニッケル水素二次電池に組み込まれ
る水素吸蔵合金は一般に以下のような製造方法によって
製造される。すなわち、高周波誘導炉やアーク炉におい
て所定組成の水素吸蔵合金原料を溶解した後に鋳込み法
によって冷却固化せしめ、固化体を粉砕して得られた粉
砕粉に導電剤および結合剤を添加して混練物を形成し、
得られた混練物を集電体に塗布または圧着して製造され
る。
The hydrogen storage alloy incorporated in the above nickel-hydrogen secondary battery is generally manufactured by the following manufacturing method. That is, in a high frequency induction furnace or an arc furnace, a hydrogen storage alloy raw material having a predetermined composition is melted and then cooled and solidified by a casting method, and a pulverized powder obtained by pulverizing a solidified body is mixed with a conductive agent and a binder to obtain a kneaded product. To form
The obtained kneaded product is applied or pressure-bonded to a current collector to be manufactured.

【0005】このようにして製造した水素吸蔵合金電極
は、カドミウム電極と比較して、単位重量当り、または
単位容積当りの実効的なエネルギー密度を増大させるこ
とが可能であり、二次電池の高容量化が達成される上
に、毒性が少なく環境汚染のおそれが少ないという優れ
た特徴を有している。
The hydrogen storage alloy electrode manufactured as described above can increase the effective energy density per unit weight or per unit volume as compared with the cadmium electrode, and the high energy of the secondary battery can be obtained. It has the excellent characteristics that the capacity is achieved and that the toxicity is low and the risk of environmental pollution is low.

【0006】ところで、電極に使用される水素吸蔵合金
は、二次電池に組み込まれた状態において、高濃度のア
ルカリ水溶液から成る電解液中に浸漬され腐食され易い
ため、特にアルカリに対する耐久性が要求される。また
充放電時における水素の吸蔵や放出に伴う合金材の体積
の膨張・収縮に起因する微粉化を抑制することも、長寿
命化を達成するためには極めて重要である。上記の技術
的な要請に対応するため、従来から水素吸蔵合金を多元
化して特性向上を図ることが広く試行されている。
By the way, the hydrogen storage alloy used in the electrode is apt to be corroded by being immersed in an electrolytic solution consisting of a high-concentration alkaline aqueous solution in a state of being incorporated in a secondary battery, and therefore, it is particularly required to have durability against alkali. To be done. It is also extremely important to achieve a long life by suppressing pulverization due to expansion / contraction of the volume of the alloy material due to the absorption and desorption of hydrogen during charging / discharging. In order to meet the above technical requirements, it has been widely attempted to improve the characteristics by diversifying hydrogen storage alloys.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、高周波
誘導炉やアーク炉を使用した製造方法に基づいて、多元
化した水素吸蔵合金を製造する場合、原料の溶解から冷
却までの工程において水素吸蔵合金内で多量の偏析が発
生し、この偏析によって寿命をはじめとする電極特性が
低下する問題点がある。
However, when a multi-component hydrogen storage alloy is manufactured based on a manufacturing method using a high-frequency induction furnace or an arc furnace, the hydrogen storage alloy is melted in the steps from melting of raw materials to cooling. However, a large amount of segregation occurs, and this segregation has a problem that the electrode characteristics such as the life deteriorate.

【0008】ここで、上記多元化した水素吸蔵合金の組
成としては、例えば、一般式R Nia b (但し、R
はY(イットリウム)を含む希土類元素から選択される
少なくとも1種類の元素から成り、そのうちLa(ラン
タン)の重量比が25〜80%、MはCo,Mn,A
l,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
W,Fe,Cu,Zn,Ga,In,Si,Ge,S
n,PおよびSbから選択される少なくとも1種類の元
素、a,bはそれぞれ原子比で3.0≦a≦5.0、
0.5≦b≦2.0、4.5≦a+b≦5.5である)
で表されるものがある。
Here, as the composition of the above-mentioned multi-component hydrogen storage alloy, for example, the general formula R Ni a M b (where R
Is composed of at least one element selected from rare earth elements including Y (yttrium), in which the weight ratio of La (lanthanum) is 25 to 80%, M is Co, Mn, A
l, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
W, Fe, Cu, Zn, Ga, In, Si, Ge, S
at least one element selected from n, P and Sb, and a and b each have an atomic ratio of 3.0 ≦ a ≦ 5.0,
0.5 ≦ b ≦ 2.0 and 4.5 ≦ a + b ≦ 5.5)
Some are represented by

【0009】上記水素吸蔵合金の偏析を低減するため
に、合金溶湯を水冷鋳型に流し込んだり、高温度でのア
ニール処理を施すことも一般に広く実施されている。上
記の処理によって、偏析に起因する多元系合金の電極特
性の低下は、ある程度防止することが可能である。しか
しながら、合金電極特性のさらなる向上が要請されてい
る現状において、上記のような処理のみでは、電極特性
の大幅な向上は期待できず、合金の製造方法や後処理な
どを含めて多くの検討が必要になっている。また従来の
鋳込み法では、特に機械的強度の向上および応力の緩和
については、大きな改善効果が期待できない問題点があ
った。
In order to reduce the segregation of the above hydrogen storage alloy, it is generally widely practiced to cast the molten alloy into a water-cooled mold or to carry out an annealing treatment at a high temperature. The above treatment can prevent the deterioration of the electrode characteristics of the multi-component alloy due to segregation to some extent. However, in the current situation where further improvement of alloy electrode characteristics is required, a significant improvement in electrode characteristics cannot be expected only by the above treatment, and many studies including the alloy manufacturing method and post-treatment have been conducted. Is needed. In addition, the conventional casting method has a problem that a significant improvement effect cannot be expected, particularly in terms of improvement of mechanical strength and relaxation of stress.

【0010】本発明は上記問題点を解決するためにされ
たものであり、水素吸蔵合金の耐食性の向上と微粉化の
抑制とを図り、もって寿命の長い合金電極を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an alloy electrode having a long life by improving the corrosion resistance of a hydrogen storage alloy and suppressing the pulverization thereof. .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らはCaCu5 型の結晶構造を有する水素
吸蔵合金を種々調製し、合金内における偏析,結晶粒
径,機械的強度,結晶の配向性等の要因が、合金の耐食
性,電極の寿命などの特性に及ぼす影響を実験により比
較調査し、下記のような知見を得た。
In order to achieve the above object, the present inventors prepared various hydrogen storage alloys having a CaCu 5 type crystal structure, and segregated in the alloy, crystal grain size, mechanical strength, The effects of factors such as crystal orientation on the corrosion resistance of the alloy and the life of the electrodes were compared and investigated by experiments, and the following findings were obtained.

【0012】まず、冷却速度が遅い通常の鋳込み法と、
冷却速度が早く微細な結晶粒子が得られる液体急冷法
(単ロール法)を用いて結晶粒径が異なる複数の合金を
調製し、結晶粒子径と電極寿命との関係を調査検討し
た。その結果、粉末X線回折において結晶粒子が微細に
なると回折ピークの半値幅がブロードに広がり、合金結
晶の(111)面ピークの半値幅が0.20度以上、
0.50度以下になるような微細結晶粒を有する合金
を、水素吸蔵合金として使用すると電極の寿命特性が大
幅に向上することが判明した。
First, a normal casting method with a slow cooling rate,
A plurality of alloys having different crystal grain sizes were prepared by a liquid quenching method (single roll method) that can obtain fine crystal grains with a high cooling rate, and the relationship between the crystal grain size and the electrode life was investigated and investigated. As a result, when the crystal grains become fine in powder X-ray diffraction, the full width at half maximum of the diffraction peak broadens, and the full width at half maximum of the (111) plane peak of the alloy crystal is 0.20 degrees or more.
It was found that when an alloy having fine crystal grains of 0.50 degrees or less is used as a hydrogen storage alloy, the life characteristics of the electrode are significantly improved.

【0013】粉末X線回折を用いて、結晶子の大きさと
電極特性との関係を開示した公知例として特開平6−1
11815号公報がある。上記特開平6−111815
号公報においては、粉末X線回折におけるC軸方向の結
晶子の大きさが0.5μm以下である水素吸蔵合金を使
用した水素吸蔵合金電極が開示され、C軸方向の結晶子
の大きさと電極特性との関係が説明されている。すなわ
ち水素の吸脱蔵に伴う結晶の膨張収縮がC軸方向に特異
的に発生するとの観点から、C軸方向の結晶子の大きさ
を0.5μm以下にすると、粒子内にクラックが多数存
在し、反応面積が大きく、活性点が増大化する。そのた
め、この合金を電極材料とした場合に電池の初期高率放
電特性や低温特性を改善できるものと考えられている。
As a known example which discloses the relationship between the crystallite size and the electrode characteristics by using powder X-ray diffraction, Japanese Patent Laid-Open No. 6-1 is known.
There is 11815 publication. JP-A-6-111815
In the publication, a hydrogen storage alloy electrode using a hydrogen storage alloy having a crystallite size in the C-axis direction of 0.5 μm or less in powder X-ray diffraction is disclosed. The crystallite size in the C-axis direction and the electrode are disclosed. The relationship with the characteristics is explained. That is, from the viewpoint that the expansion and contraction of crystals accompanying hydrogen absorption and desorption occurs specifically in the C-axis direction, when the crystallite size in the C-axis direction is 0.5 μm or less, many cracks are present in the particles. However, the reaction area is large and the active sites are increased. Therefore, it is considered that when this alloy is used as an electrode material, the initial high rate discharge characteristics and low temperature characteristics of the battery can be improved.

【0014】しかしながら本願発明者らが得た知見によ
れば、特性向上のための組成が多元化されている実用合
金組成において水素の吸脱蔵に伴う結晶の膨張収縮は、
LaNi5 におけるC軸の特異的な膨張収縮ではなく、
a軸,b軸,c軸の全てにわたる膨張収縮であることが
判明した。すなわち合金特性の向上を図るためには、C
軸方向の結晶子の大きさだけでなく、a,b,c軸全方
向の結晶子の大きさを考慮することが必須となることが
判明した。そこて本願発明では、a,b,c軸全ての影
響を受ける(111)面ピークの半値幅の変化に注目
し、電極特性との相関を見い出し、本願発明を完成する
に至った。
However, according to the knowledge obtained by the inventors of the present invention, the expansion and contraction of crystals due to the absorption and desorption of hydrogen in a practical alloy composition in which the composition for improving the characteristics is multidimensional is
Not the specific expansion and contraction of the C axis in LaNi 5 ,
It was found to be expansion and contraction over all of the a-axis, b-axis, and c-axis. That is, in order to improve alloy properties, C
It was found that it is essential to consider not only the crystallite size in the axial direction but also the crystallite size in all directions of the a, b, and c axes. Therefore, in the present invention, attention was paid to the change in the half-value width of the (111) plane peak affected by all of the a, b, and c axes, the correlation with the electrode characteristics was found, and the present invention was completed.

【0015】すなわち本発明に係る水素吸蔵合金は、C
aCu5 型の結晶構造を有し、粉末X線回折における
(111)面ピークの半値幅が0.20〜0.50度で
あることを特徴とする。また水素吸蔵合金は、合金溶湯
を液体急冷法によって急冷して得られたことを特徴とす
る。さらに、液体急冷法を用いて作製したフレーク状ま
たはリボン状の水素吸蔵合金において、該合金をX線回
折した場合に合金の厚さ方向に垂直な方向にC軸が配向
している結晶が60%以上存在するように構成してもよ
い。
That is, the hydrogen storage alloy according to the present invention is C
It is characterized by having an aCu 5 type crystal structure and having a (111) plane peak half-width of 0.20 to 0.50 in powder X-ray diffraction. The hydrogen storage alloy is characterized in that it is obtained by quenching a molten alloy by a liquid quenching method. Furthermore, in the flaky or ribbon-shaped hydrogen storage alloy produced by the liquid quenching method, when the alloy was subjected to X-ray diffraction, 60 crystals with the C axis oriented in the direction perpendicular to the thickness direction of the alloy were obtained. % Or more may be present.

【0016】また液体急冷法を用いて作製され、CaC
5 型の結晶構造を有するフレーク状またはリボン状の
水素吸蔵合金であり、該合金をX線回折した場合に合金
の厚さ方向に垂直な方向にC軸が配向している結晶が6
0%以上存在することを特徴とする。
Further, it is produced by using a liquid quenching method, and CaC
It is a flaky or ribbon-shaped hydrogen storage alloy having a u 5 type crystal structure, and when the alloy is X-ray diffracted, 6 crystals have a C axis oriented in a direction perpendicular to the thickness direction of the alloy.
It is characterized by the presence of 0% or more.

【0017】さらに本発明に係る水素吸蔵合金電極は、
上記のように調製された水素吸蔵合金を使用して形成さ
れたことを特徴とする。
Further, the hydrogen storage alloy electrode according to the present invention is
It is characterized by being formed using the hydrogen storage alloy prepared as described above.

【0018】本発明において、粉末X線回折における
(111)面ピークの半値幅Wは0.20〜0.50度
の範囲に設定される。この半値幅Wが0.20度より狭
くなると、それに対応して合金の結晶粒子径が大きくな
り、合金の機械的強度と電極としての寿命が低下してし
まう。一方、半値幅が0.50より広くなると、PCT
特性においてプラトー域が狭くなる。すなわち安定した
操作圧力下において多量の水素吸蔵放出が困難になり、
電極としての容量が低下してしまう。
In the present invention, the full width at half maximum W of the (111) plane peak in powder X-ray diffraction is set in the range of 0.20 to 0.50 degrees. If this half-width W is narrower than 0.20 degree, the crystal grain size of the alloy correspondingly increases, and the mechanical strength of the alloy and the life of the electrode decrease. On the other hand, when the half-width becomes wider than 0.50, the PCT
In terms of characteristics, the plateau range becomes narrow. That is, it becomes difficult to store and release a large amount of hydrogen under stable operating pressure,
The capacity as an electrode is reduced.

【0019】なおX線回折に供する合金の測定前の分級
処理条件およびX線回折の測定条件は、上記半値幅に影
響を及ぼすことが十分に考えられるため、本発明では以
下のように設定した。
The classification treatment conditions and the measurement conditions for X-ray diffraction before the measurement of the alloy to be subjected to X-ray diffraction are sufficiently considered to affect the above-mentioned half-value width. Therefore, the following settings were made in the present invention. .

【0020】測定前処理: 粉砕後、500 メッシュ(有
効開き幅30μm)以下に分級した。 測定条件 : 管球 Cu 管電圧 40KV, 管電流 20mA ゴニオメーター 縦型ゴニオメーター2軸 サンプリング角度 0.010度 スキャンスピード 1度/min モノクロメーター受光スリット 0.80mm 発散スリット 1度 散乱スリット 1度 受光スリット 0.15mm 測定角度(2θ) 40〜45度 また単ロール法などの液体急冷法によって得られた合金
フレークまたはリボンの表面層を除去した後に、そのま
まの形状で無反射試料板に固定しX線回折した際、60
%以上さらに好ましくは80%以上の結晶のC軸が厚さ
方向に垂直な方向に配向している合金を水素吸蔵合金電
極材料として使用すると電極の寿命特性を大幅に向上さ
せることができる。
Pretreatment for measurement: After pulverization, the powder was classified to 500 mesh (effective opening width: 30 μm) or less. Measurement conditions: Tube Cu Tube voltage 40KV, Tube current 20mA Goniometer Vertical goniometer Biaxial sampling angle 0.010 degree Scan speed 1 degree / min Monochromator light receiving slit 0.80mm Divergence slit 1 degree Scattering slit 1 degree Light receiving slit 0.15 mm Measurement angle (2θ) 40 to 45 degrees After removing the surface layer of the alloy flakes or ribbons obtained by the liquid quenching method such as the single roll method, the X-ray was fixed to the non-reflective sample plate as it was. 60 when diffracted
% Or more, and more preferably 80% or more of the crystal whose C axis is oriented in the direction perpendicular to the thickness direction is used as the hydrogen storage alloy electrode material, the life characteristics of the electrode can be significantly improved.

【0021】ここで上記合金フレークやリボンの表面層
の除去方法は、特に限定されるものではなく、急冷処理
時に冷却体に接した側の表面を厚さ5μm以上で除去す
ることが好ましい。具体的な除去方法として、例えば酢
酸:硝酸:純水の重量比を1:1:10として調製した
エッチング液にフレークまたはリボンを60分間以上浸
漬することにより、厚さ5μm以上の表面層を除去する
方法などが採用できる。X線回折は、冷却体に接した合
金フレークやリボンの表面について実施する。
The method for removing the surface layer of the alloy flakes or ribbons is not particularly limited, and it is preferable to remove the surface on the side in contact with the cooling body at a thickness of 5 μm or more during the rapid cooling treatment. As a specific removing method, for example, the flakes or ribbons are immersed in an etching solution prepared with a weight ratio of acetic acid: nitric acid: pure water of 1: 1: 10 for 60 minutes or more to remove a surface layer having a thickness of 5 μm or more. The method of doing can be adopted. X-ray diffraction is performed on the surface of the alloy flakes or ribbon that is in contact with the cooling body.

【0022】上記X線回折の測定条件および結晶の配向
度の計算方法を以下に示す。
The X-ray diffraction measurement conditions and the method for calculating the crystal orientation are shown below.

【0023】 X線回折測定条件: 管球 Cu 管電圧 40KV, 管電流 20mA ゴニオメーター 縦型ゴニオメーター2軸 サンプリング角度 0.020度 スキャンスピード 4度/min モノクロメーター受光スリット 0.80mm 発散スリット 1/2度 散乱スリット 1/2度 受光スリット 0.15mm 測定角度(2θ) 10〜80度配向度の計算方法 まず合金フレークまたはリボンを粉砕して30μm以下
に分級した粉末で粉末X線回折を実施し、各結晶面ピー
ク強度を測定し、下記(1)式に従ってP値を求め
る。
X-ray diffraction measurement conditions: tube Cu tube voltage 40 KV, tube current 20 mA goniometer vertical goniometer biaxial sampling angle 0.020 degree scan speed 4 degree / min monochromator light receiving slit 0.80 mm divergence slit 1 / 2 degree Scattering slit 1/2 degree Light receiving slit 0.15 mm Measuring angle (2θ) 10 to 80 degree Calculating method of orientation degree First, alloy flakes or ribbons were crushed and powder X-ray diffraction was performed using powder classified to 30 μm or less. The peak intensity of each crystal plane is measured, and the Po value is calculated according to the following equation (1).

【0024】[0024]

【数1】 [Equation 1]

【0025】次に表面層を除去したフレークまたはリボ
ンを無反射試料板に固定し、フレークまたはリボンが冷
却体に接していた側の面についてX線回折を実施し、同
様に各結晶面ピーク強度を測定し、下記(2)式に従っ
てP値を求める。
Next, the flakes or ribbons from which the surface layer has been removed are fixed to a non-reflective sample plate, and X-ray diffraction is carried out on the surface on the side where the flakes or ribbons were in contact with the cooling body. Is measured and the P value is calculated according to the following equation (2).

【0026】[0026]

【数2】 [Equation 2]

【0027】上記(1),(2)式において、(h0
0)面は(100)(200)(300)…を表し、
(hk0)面は(110)(220)(330)(21
0)…を表す。換言すると、結晶格子の面指数を(hk
m)で表わしたときにm=0となるような面のピーク強
度の総和を表わしている。上記(1),(2)式から求
めたP値とP値とから配向度Fは下記(3)式のよう
に求めた。
In the above equations (1) and (2), (h0
The (0) plane represents (100) (200) (300) ...
The (hk0) plane is (110) (220) (330) (21
0) ... represents. In other words, the plane index of the crystal lattice is (hk
It represents the sum of the peak intensities of the surfaces such that m = 0 when represented by m). (1), the degree of orientation F and a P o values and P values obtained from (2) was determined as follows (3).

【0028】[0028]

【数3】 (Equation 3)

【0029】本発明に係る水素吸蔵合金の組成として
は、例えば、一般式R Nia b (但し、RはY(イ
ットリウム)を含む希土類元素から選択される少なくと
も1種類の元素から成り、そのうちLa(ランタン)の
重量比が25〜80%、MはCo,Mn,Al,Ti,
Zr,Hf,V,Nb,Ta,Cr,Mo,W,Fe,
Cu,Zn,Ga,In,Si,Ge,Sn,Pおよび
Sbから選択される少なくとも1種類の元素、a,bは
それぞれ原子比で3.0≦a≦5.0、0.5≦b≦
2.0、4.5≦a+b≦5.5である)で表される組
成が採用される。
The composition of the hydrogen storage alloy according to the present invention is, for example, R Ni a M b (where R is at least one element selected from rare earth elements including Y (yttrium), of which The weight ratio of La (lanthanum) is 25 to 80%, M is Co, Mn, Al, Ti,
Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe,
At least one element selected from Cu, Zn, Ga, In, Si, Ge, Sn, P and Sb, and a and b have an atomic ratio of 3.0 ≦ a ≦ 5.0 and 0.5 ≦ b, respectively. ≤
2.0, 4.5 ≦ a + b ≦ 5.5) is adopted.

【0030】本発明に係る水素吸蔵合金は、上記のよう
な組成に調整された原料液体(溶湯)を、単ロール法,
双ロール法やガスアトマイズ法などの液体急冷法を使用
して、冷却ロールへの溶湯供給量,溶湯噴射ノズルと冷
却ロールとの間隔,冷却ロール周速等の製造条件を厳正
に制御して急冷処理することによって得られる。
In the hydrogen storage alloy according to the present invention, the raw material liquid (molten metal) adjusted to the above composition is prepared by the single roll method,
A liquid quenching method such as twin roll method or gas atomization method is used to perform quenching treatment by strictly controlling manufacturing conditions such as the amount of molten metal supplied to the cooling roll, the distance between the molten metal injection nozzle and the cooling roll, and the peripheral speed of the cooling roll. It is obtained by doing.

【0031】結晶のC軸が配向している場合、一般に配
向方向と垂直な方向に柱状組織が形成される。この柱状
組織と電極特性との関係は、本出願人の特願平5−21
5193号明細書および特願平6−87572号明細書
に記載されている。上記明細書においては、柱状組織の
面積比率と大きさとを規定し、それらの規定と電極特性
との関係ならびに柱状組織を得るための製造条件が記載
されている。
When the C axis of the crystal is oriented, a columnar structure is generally formed in a direction perpendicular to the orientation direction. The relationship between the columnar structure and the electrode characteristics is as follows.
5193 and Japanese Patent Application No. 6-85772. In the above-mentioned specification, the area ratio and the size of the columnar structure are defined, and the relation between the definition and the electrode characteristics and the manufacturing conditions for obtaining the columnar structure are described.

【0032】本願発明者らは、上記先願の明細書には記
載されていない製造条件、特に冷却ールへの溶湯供給
量,溶湯噴射ノズルと冷却ロールとの間隔および冷却ロ
ール周速の関係を詳細に検討した。その結果、下記のよ
うに溶湯供給量を噴射ノズルの射出口径とその配置数で
制御する場合において、噴射ノズルと冷却ロールとの間
隔および冷却ロール周速を下記の範囲内に設定すること
により、CaCu5 型の結晶構造を有し、粉末X線回折
における(111)面ピークの半値幅が0.20〜0.
50度である水素吸蔵合金や合金の厚さ方向に垂直な方
向にC軸が配向している結晶が60%以上存在する水素
吸蔵合金が得られる。
The inventors of the present application have studied the manufacturing conditions not described in the specification of the above-mentioned prior application, particularly the relationship between the amount of molten metal supplied to the cooling roll, the distance between the molten metal injection nozzle and the cooling roll, and the peripheral speed of the cooling roll. Was examined in detail. As a result, in the case of controlling the molten metal supply amount by the injection aperture diameter of the injection nozzle and the number of arrangements thereof as described below, by setting the interval between the injection nozzle and the cooling roll and the cooling roll peripheral speed within the following range, It has a CaCu 5 type crystal structure, and the full width at half maximum of the (111) plane peak in powder X-ray diffraction is 0.20 to 0.
A hydrogen storage alloy having a temperature of 50 degrees or a hydrogen storage alloy having 60% or more of crystals in which the C axis is oriented in a direction perpendicular to the thickness direction of the alloy can be obtained.

【0033】本願発明の水素吸蔵合金を単ロール法で製
造する場合における製造条件の一例を下記に示す。
An example of production conditions for producing the hydrogen storage alloy of the present invention by the single roll method is shown below.

【0034】 製造条件(単ロール法) 合金溶解温度 : 1400℃ ノズル材質 : 石英、アルミナ、ムライト 射出口径 : 0.5〜3mm 射出口数 : 1〜3 ノズルとロールの間隔 : 2〜45mm ロール材質 : 銅、ニッケル ロール周速 : 6〜10m/s 雰囲気 : アルゴン 射出圧力 : 0.9 kgf/cm2 そして、上記製造条件で製造した水素吸蔵合金を使用し
て電極を形成することにより、前記先願の明細書に記載
された水素吸蔵合金電極と比較して、さらに寿命特性が
改善される。
Manufacturing conditions (single roll method) Alloy melting temperature: 1400 ° C. Nozzle material: Quartz, alumina, mullite Injection port diameter: 0.5-3 mm Number of injection ports: 1-3 Nozzle-roll distance: 2-45 mm Roll material: Copper and nickel roll peripheral speed: 6 to 10 m / s atmosphere: Argon injection pressure: 0.9 kgf / cm 2 And, by forming an electrode using the hydrogen storage alloy manufactured under the above manufacturing conditions, the above-mentioned prior application The life characteristics are further improved as compared with the hydrogen storage alloy electrode described in the above specification.

【0035】さらに結晶の(111)面ピークの半値幅
が0.20度以上0.50度以下という第1の条件と、
合金フレークまたはリボンの表面層を除去した後にX線
回折した際に60%以上の結晶のC軸が合金の厚さ方向
に垂直な方向に配向するという第2の条件とを共に満足
した水素吸蔵合金を電極構成材として使用することによ
り、電極の寿命が相乗的に改善される。
Further, the first condition that the full width at half maximum of the (111) plane peak of the crystal is 0.20 degrees or more and 0.50 degrees or less,
Hydrogen storage satisfying both the second condition that 60% or more of the crystal C-axes are oriented in the direction perpendicular to the thickness direction of the alloy when X-ray diffraction is performed after removing the surface layer of the alloy flakes or ribbons. The use of alloys as electrode components synergistically improves electrode life.

【0036】上記構成に係る水素吸蔵合金によれば、X
線回折における(111)面ピークの半値幅が0.20
度以上0.50度以下の範囲になるような微細な結晶粒
子から成る組織を有し、容量を低下させることなく機械
的強度を向上させることができる。そのため、この合金
を使用して水素吸蔵合金電極を形成した場合に、電極寿
命を大幅に延ばすことが可能となり、ひいては長寿命の
水素化物二次電池を提供することが可能になる。
According to the hydrogen storage alloy having the above structure, X
The full width at half maximum of the (111) plane peak in line diffraction is 0.20.
It has a structure composed of fine crystal grains in the range of not less than 0.5 degrees and not more than 0.50 degrees, and can improve the mechanical strength without lowering the capacity. Therefore, when a hydrogen storage alloy electrode is formed by using this alloy, the life of the electrode can be significantly extended, which in turn can provide a long-life hydride secondary battery.

【0037】また厚さ方向に垂直な方向にC軸が配向し
ている結晶が60%以上存在するよように構成すること
により、水素の吸蔵・放出時における合金の膨張収縮方
向に規則性が現われ、合金の微粉化が効果的に抑制され
る。したがって、この合金を使用した電極の寿命が大幅
に延伸される。さらに上記半値幅の条件およびC軸配向
条件を共に満たすことにより電極寿命を相乗的に改善す
ることができる。
Further, by configuring so that 60% or more of the crystals in which the C-axis is oriented in the direction perpendicular to the thickness direction are present, there is a regularity in the expansion / contraction direction of the alloy during hydrogen absorption / desorption. Appearing, the pulverization of the alloy is effectively suppressed. Therefore, the service life of electrodes using this alloy is significantly extended. Furthermore, by satisfying both the half width condition and the C-axis orientation condition, the electrode life can be synergistically improved.

【0038】[0038]

【発明の実施の形態】次に本発明の実施形態について以
下の実施例を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described with reference to the following examples.

【0039】各実施例において、水素吸蔵合金は水冷鋳
型を使用した鋳造法および単ロール装置を使用した液体
急冷法によって調製した。調製した合金のC軸の配向
度,(111)面ピークの半値幅を測定するとともに、
その合金を使用して水素吸蔵合金電極を作製し、その電
極容量および寿命を下記要領で測定した。
In each example, the hydrogen storage alloy was prepared by a casting method using a water-cooled mold and a liquid quenching method using a single roll apparatus. The degree of C-axis orientation and the half width of the (111) plane peak of the prepared alloy were measured,
A hydrogen storage alloy electrode was produced using the alloy, and the electrode capacity and life of the electrode were measured in the following manner.

【0040】鋳造法によって合金を製造する場合、表1
に示す所定の合金組成となるように各金属粉末を混合し
て原料金属混合体を調製し、内部を不活性ガス雰囲気に
した高周波誘導加熱炉で原料金属混合体を加熱溶解して
合金溶湯とし、この合金溶湯を水冷鋳型に流し込んで冷
却し、冷却凝固した合金をアルゴンガス雰囲気で熱処理
し、さらに粉砕して75μm以下に分級して、電池用水
素吸蔵合金粉末とした。また鋳造時における鋳型の冷却
条件や熱処理条件を変化させて、多種類の水素吸蔵合金
粉末を調整した。なお、表1に示す合金組成において、
ミッシュメタル(Lm)としては、Y(イットリウム)
を含む希土類元素から選択される少なくとも1種類の元
素から成り、そのうちLa(ランタン)の重量比が25
〜80%である希土類元素混合物を用いた。
When the alloy is produced by the casting method, Table 1
A raw metal mixture is prepared by mixing the metal powders so that the predetermined alloy composition shown in Fig. 1 is obtained, and the raw metal mixture is heated and melted in a high-frequency induction heating furnace with an inert gas atmosphere inside to form an alloy melt. This molten alloy was poured into a water-cooled mold to be cooled, and the cooled and solidified alloy was heat-treated in an argon gas atmosphere, further pulverized and classified to 75 μm or less to obtain a hydrogen storage alloy powder for a battery. In addition, various types of hydrogen storage alloy powders were prepared by changing the cooling conditions and heat treatment conditions of the mold during casting. In addition, in the alloy composition shown in Table 1,
As a misch metal (Lm), Y (yttrium)
Of at least one element selected from rare earth elements including, in which the weight ratio of La (lanthanum) is 25
A rare earth element mixture of -80% was used.

【0041】一方、単ロール装置を用いた液体急冷法に
て合金を製造する場合、表1に示す所定組成となるよう
に各金属粉末を混合して原料金属混合体を調製し、内部
を不活性ガス雰囲気にした高周波誘導加熱炉で原料金属
混合体を加熱溶解して合金溶湯とし、この合金溶湯を高
速で回転する冷却ロールの表面に射出して急冷凝固せし
めて合金とし、さらに粉砕して75μm以下に分級して
電池用水素吸蔵合金粉末とした。また上記急冷法におい
て、冷却ロールの回転数や材質,合金の溶解温度,ノズ
ル口数,ノズル口径,ノズルと冷却ロールとのギャップ
など合金の製造条件を下記の範囲内で変化させて、他種
類の水素吸蔵合金粉末を調製した。
On the other hand, in the case of producing an alloy by the liquid quenching method using a single roll device, each metal powder is mixed so as to have a predetermined composition shown in Table 1, a raw metal mixture is prepared, and the inside is The raw material metal mixture is heated and melted in a high-frequency induction heating furnace in an active gas atmosphere to form an alloy melt, which is injected onto the surface of a cooling roll that rotates at high speed to rapidly solidify to form an alloy, which is then crushed. The hydrogen storage alloy powder for batteries was classified by classification to 75 μm or less. Further, in the above quenching method, the alloy manufacturing conditions such as the rotation speed and material of the cooling roll, the melting temperature of the alloy, the number of nozzle openings, the nozzle diameter, and the gap between the nozzle and the cooling roll are changed within the following range to obtain other kinds of A hydrogen storage alloy powder was prepared.

【0042】 合金溶解温度 : 1400℃ ノズル材質 : 石英、アルミナ、ムライト 射出口径 : 0.5〜3mm 射出口数 : 1〜3 ノズルとロールの間隔 : 2〜45mm ロール材質 : 銅、ニッケル ロール周速 : 6〜10m/s 雰囲気 : アルゴン 射出圧力 : 0.9 kgf/cm2 また水素吸蔵合金電極および評価用電池は下記の要領で
調製した。すなわち前記のように調製した水素吸蔵合金
粉末を95.5%と、カーボン粉末を0.5重量%と、
ポリテトラフルオロエチレン(PTFE)粉末を4.0
重量%とから成る混合体をロール成形機で圧延して電極
用シートを作成し、この電極用シートをニッケルメッシ
ュに圧着して水素吸蔵合金電極とした。さらに電気絶縁
性を有するセパレータを介して水素吸蔵合金電極を、高
容量ニッケル酸化物電極と組合せ、この組み合せたもの
を、8規定(8N)の水酸化カリウム水溶液を満たした
スチロール瓶中に浸漬して評価用電池とした。また参照
電極としはてHg/HgO電極を使用した。
Alloy melting temperature: 1400 ° C. Nozzle material: Quartz, alumina, mullite Injection port diameter: 0.5-3 mm Number of injection ports: 1-3 Nozzle-roll spacing: 2-45 mm Roll material: Copper, nickel Roll peripheral speed: 6 to 10 m / s atmosphere: Argon injection pressure: 0.9 kgf / cm 2 The hydrogen storage alloy electrode and the evaluation battery were prepared in the following manner. That is, the hydrogen storage alloy powder prepared as described above was 95.5%, and the carbon powder was 0.5% by weight.
Add polytetrafluoroethylene (PTFE) powder to 4.0
A mixture containing 1% by weight of the mixture was rolled by a roll forming machine to prepare an electrode sheet, and the electrode sheet was pressure-bonded to a nickel mesh to obtain a hydrogen storage alloy electrode. Further, the hydrogen storage alloy electrode was combined with a high capacity nickel oxide electrode through a separator having electrical insulation, and the combination was immersed in a styrene bottle filled with 8N (8N) potassium hydroxide aqueous solution. And used as an evaluation battery. An Hg / HgO electrode was used as the reference electrode.

【0043】さらに水素吸蔵合金電極の容量および寿命
は下記の要領で測定した。すなわち電極容量は、300
mAh/gの充電を行なった後、220mA/gの電流
値でHg/HgOの参照電極に対して−0.5Vになる
まで放電したときの放電容量として測定した。また寿命
については、充電電流560mA/gで0.5時間充電
後、放電電流560mA/gで放電し、終了電圧がHg
/HgO電極に対して−0.5Vとなるまで放電させる
条件で充放電を繰り返した時に、放電容量が最大放電容
量の80%まで低下した時点までのサイクル数を用い
た。
Further, the capacity and life of the hydrogen storage alloy electrode were measured in the following manner. That is, the electrode capacity is 300
After charging mAh / g, it was measured as a discharge capacity when discharged to −0.5 V with respect to a Hg / HgO reference electrode at a current value of 220 mA / g. Regarding the life, after charging at a charging current of 560 mA / g for 0.5 hours, the battery was discharged at a discharging current of 560 mA / g, and the end voltage was Hg.
The number of cycles until the discharge capacity decreased to 80% of the maximum discharge capacity when charging / discharging was repeated under the condition of discharging to −0.5 V with respect to the / HgO electrode was used.

【0044】実施例1 前記のように鋳造法および単ロール法によって調製した
各種水素吸蔵合金粉末の中からC軸配向度が50〜55
%の合金のみを選択した。これは配向度の違いによる寿
命差を極力低減するためである。そして選択した合金粉
末(111)面ピークの半値幅Wと、この合金を使用し
た電極の電極容量を測定して下記表1に示す結果を得
た。また半値幅Wおよび電極寿命の測定結果を下記表2
に示す。
Example 1 Among various hydrogen storage alloy powders prepared by the casting method and the single roll method as described above, the degree of C-axis orientation is 50 to 55.
Only% alloy was selected. This is to reduce the difference in life due to the difference in orientation as much as possible. Then, the full width at half maximum of the selected alloy powder (111) plane peak and the electrode capacity of the electrode using this alloy were measured, and the results shown in Table 1 below were obtained. In addition, the measurement results of the full width at half maximum W and the electrode life are shown in Table 2 below.
Shown in

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】表1に示す結果から明らかなように、合金
の(111)面ピークの半値幅Wが0.5度よりも大き
くなると、電極容量が大幅に低下することが判明した。
また各合金の操作圧力下における水素の吸蔵量を測定す
るPCT測定においても、半値幅が広がるとプラトー領
域が狭くなり、特に半値幅Wが0.5度より増大化する
とプラトー域の幅がさらに狭くなり、圧力−吸蔵量線図
の傾きも急になり、安定した吸蔵放出が困難であった。
これらの事実から、より好適な電極容量を維持するため
には、合金の(111)面ピークの半値幅を0.5度よ
り狭くする必要がある。
As is clear from the results shown in Table 1, it was found that when the half width W of the (111) plane peak of the alloy was larger than 0.5 degree, the electrode capacity was significantly reduced.
Also in the PCT measurement for measuring the amount of hydrogen absorbed under the operating pressure of each alloy, the plateau region becomes narrower as the half width widens, and particularly when the half width W increases from 0.5 degrees, the plateau region width becomes further. It became narrower and the slope of the pressure-occlusion amount diagram became steeper, making it difficult to achieve stable occlusion and release.
From these facts, in order to maintain a more preferable electrode capacity, it is necessary to make the full width at half maximum of the (111) plane peak of the alloy narrower than 0.5 degree.

【0048】また表2に示す結果から明らかなように、
合金の(111)面ピークの半値幅Wが0.2度未満お
よび0.5度を超える合金を使用した電極においては、
相対的に寿命の低下が観察される。半値幅が0.5度を
超える合金を使用した場合には、電極容量が小さいこと
が短寿命の主たる原因となっている。一方、半値幅が
0.2度未満の合金を使用した場合には、結晶粒径の増
大により合金の機械的強度が低下し、充放電時における
合金の膨張収縮に伴う微粉化の速度が早くなるために寿
命が短かくなるものと考えられる。
As is clear from the results shown in Table 2,
In an electrode using an alloy having a full width at half maximum W of the (111) plane peak of the alloy of less than 0.2 degrees and more than 0.5 degrees,
A relative decrease in life is observed. When an alloy having a full width at half maximum of more than 0.5 degree is used, the small electrode capacitance is the main cause of the short life. On the other hand, when an alloy having a full width at half maximum of less than 0.2 degree is used, the mechanical strength of the alloy decreases due to an increase in the crystal grain size, and the pulverization rate accompanying the expansion and contraction of the alloy during charge / discharge is high. Therefore, it is considered that the life will be shortened.

【0049】実施例2 前記のように鋳造法および単ロール法によって調製した
各種水素吸蔵合金の中から、単ロール法によって調製し
た合金フレークのみを選択し、さらに、(111)面ピ
ークの半値幅が0.16〜0.18度にある超急冷合金
フレークについてX線回折で配向度Fを測定し、その合
金を使用した電極の寿命を測定した。その合金組成と配
向度Fと寿命との相互関係を下記表3に示す、また比較
例として、通常の鋳込み法で製造した配向性のない合金
を使用した電極の寿命についても表3に併記した。
Example 2 From the various hydrogen storage alloys prepared by the casting method and the single roll method as described above, only the alloy flakes prepared by the single roll method were selected, and the full width at half maximum of the (111) plane peak was selected. The degree of orientation F was measured by X-ray diffraction for the ultra-quenched alloy flakes having a temperature of 0.16 to 0.18 degrees, and the life of electrodes using the alloy was measured. The interrelationship between the alloy composition, the orientation degree F, and the life is shown in Table 3 below, and as a comparative example, the life of an electrode using a non-oriented alloy produced by a normal casting method is also shown in Table 3. .

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示す結果から明らかなように、合金
結晶のC軸方向への配向度Fが60%以上になると、当
該合金を使用した電極の寿命が長期化する傾向が現わ
れ、特に配向度Fが80%を超えると、さらに寿命特性
が改善されることが判明した。これは合金を構成する結
晶粒子が規則的に配列することによって合金の膨張収縮
方向が規則的になった結果、結晶粒界における応力集中
が緩和され微粉化が効果的に抑制されたことに起因する
と考えられる。一方、鋳造合金の場合は、配向度Fがゼ
ロ%であり、結晶粒子に配向性が現われず、膨張収縮方
向が不規則となるため、応力集中による微粉化が起こり
易く、超急冷合金の場合と比較して寿命が半減してしま
うことも確認できた。
As is clear from the results shown in Table 3, when the degree of orientation F of the alloy crystal in the C-axis direction is 60% or more, the life of the electrode using the alloy tends to be prolonged, and particularly the orientation is improved. It was found that when the degree F exceeds 80%, the life characteristics are further improved. This is because the crystal grains that compose the alloy are regularly arranged so that the direction of expansion and contraction of the alloy becomes regular, and as a result, stress concentration at the crystal grain boundaries is relaxed and pulverization is effectively suppressed. It is thought that. On the other hand, in the case of a cast alloy, the degree of orientation F is 0%, the crystal grains do not show orientation, and the expansion and contraction directions are irregular, so pulverization due to stress concentration easily occurs, It was also confirmed that the life was halved compared to.

【0052】実施例3 前記のように単ロール法によって調製した各種超急冷合
金フレークの中から60%以上の配向度Fを有する水素
吸蔵合金フレークを選別し、この選別した合金フレーク
について粉末X線回折を行ない(111)面ピークの半
値幅Wと,この合金を使用した電極の寿命との関係を下
記表4および表5に示す。なお表4は、60%以上80
%未満の配向度Fを有する合金を使用した電極の寿命を
示す一方、表5は80%以上の配向度Fを有する合金を
使用した電極の寿命を示す。
Example 3 A hydrogen storage alloy flake having an orientation degree F of 60% or more was selected from various ultra-quenched alloy flakes prepared by the single roll method as described above, and powder X-rays of the selected alloy flakes were selected. Tables 4 and 5 below show the relationship between the full width at half maximum W of the (111) plane peak after diffraction and the life of the electrode using this alloy. Table 4 shows 60% or more and 80
Table 5 shows the lifetime of electrodes using alloys with an orientation degree F of less than%, while Table 5 shows the lifetime of electrodes using alloys with an orientation degree F of 80% or more.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】表4および表5に示す結果から明らかなよ
うに、配向度Fが60%以上という条件と、合金の(1
11)面ピークの半値幅Wが0.20度以上0.50度
以下という条件とを2つとも満たしている合金を使用し
た場合には、表2および表3に示すようないずれか1つ
の条件を満たす合金を使用した場合と比較して、電極寿
命が大幅に改善されることが確認できる。特に表5に示
すように配向度Fが80%を超えると、さらに長寿命特
性が得られることが判明した。これは結晶粒子の微細化
による合金の機械的強度の向上による微粉化の防止効果
と、結晶の配向による応力緩和による微粉化の防止効果
とが相乗的に発現したためと考えられる。
As is clear from the results shown in Tables 4 and 5, the condition that the degree of orientation F is 60% or more and the alloy (1
11) When an alloy satisfying both conditions that the half-value width W of the plane peak is 0.20 degrees or more and 0.50 degrees or less is used, any one of those shown in Tables 2 and 3 is used. It can be confirmed that the life of the electrode is significantly improved as compared with the case of using the alloy satisfying the conditions. In particular, as shown in Table 5, it was found that when the orientation degree F exceeds 80%, further long life characteristics can be obtained. It is considered that this is because the effect of preventing pulverization due to the improvement in mechanical strength of the alloy due to the refinement of crystal grains and the effect of preventing pulverization due to stress relaxation due to crystal orientation are synergistically exhibited.

【0056】比較例1 LmNi4.0 Co0.4 Mo0.3 Al0.3 なる組成を有す
る合金溶湯を、特願平5−215193号明細書に記載
されている下記の製造条件で超急冷処理して、比較例1
に係る水素吸蔵合金を調製した。また上記製造条件とは
別に、急冷処理を行なう際に単ロール装置に供給する溶
湯量を、表6の左欄に示すように、射出ノズルの口数
(射出口数)と射出ノズルの口径(射出口径)とによっ
て変化させた。なお、射出口径が0.5mm未満の射出ノ
ズルでは合金溶湯の射出が不可能であったため、実験対
象から除外した。
Comparative Example 1 A molten alloy having a composition of LmNi 4.0 Co 0.4 Mo 0.3 Al 0.3 was subjected to ultra-quenching treatment under the following production conditions described in Japanese Patent Application No. 5-215193, and Comparative Example 1
A hydrogen storage alloy according to was prepared. In addition to the above manufacturing conditions, as shown in the left column of Table 6, the amount of molten metal supplied to the single roll device at the time of performing the quenching treatment, as shown in the left column of Table 6, the number of injection nozzles (the number of injection ports) and the diameter of the injection nozzles (the injection port diameter). ) And changed. Since injection of molten alloy was impossible with an injection nozzle having an injection port diameter of less than 0.5 mm, it was excluded from the experiments.

【0057】 製造条件 合金溶解温度 : 1400℃ 射出ノズルと冷却ロールとの間隔 : 50mm 射出圧力 : 0.02 kgf/cm2 ロール材質 : Cu ロール周速 : 9.4m/s 雰囲気 : 真空 そして上記の製造条件および表6左欄に示す溶湯供給条
件で製造した各水素吸蔵合金について、(111)面ピ
ークの半値幅Wと、C軸方向に配向した結晶の配向度F
を測定して下記表6に示す結果を得た。
Manufacturing conditions Alloy melting temperature: 1400 ° C. Distance between injection nozzle and cooling roll: 50 mm Injection pressure: 0.02 kgf / cm 2 Roll material: Cu roll peripheral speed: 9.4 m / s Atmosphere: Vacuum and above For each hydrogen storage alloy manufactured under the manufacturing conditions and the molten metal supply conditions shown in the left column of Table 6, the half-width W of the (111) plane peak and the orientation degree F of crystals oriented in the C-axis direction
Was measured to obtain the results shown in Table 6 below.

【0058】[0058]

【表6】 [Table 6]

【0059】上記表6に示す結果から明らかなように、
先願である特願平5−215193号明細書に記載され
た製造条件に従っただけでは、合金の(111)面ピー
クの半値幅Wと配向度Fとが本願で規定された範囲内に
ならない場合がある。したがって、合金特性を、さらに
向上させるためには、射出ノズルの口数や口径を考慮
し、適正な溶湯供給量の条件下で合金製造を行なうこと
が必要であることが確認できた。
As is clear from the results shown in Table 6 above,
Only by following the manufacturing conditions described in Japanese Patent Application No. 5-215193, which is a prior application, the full width at half maximum (W) of the (111) plane peak and the orientation degree F of the alloy are within the ranges specified in the present application. It may not be. Therefore, it was confirmed that in order to further improve the alloy properties, it is necessary to manufacture the alloy under the conditions of an appropriate molten metal supply amount in consideration of the number and diameter of the injection nozzle.

【0060】比較例2 LmNi4.0 Co0.4 Mn0.3 Al0.3 なる組成を有す
る合金溶湯を、特願平6−87572号明細書に記載さ
れている下記の製造条件で超急冷処理して、比較例2に
係る水素吸蔵合金を調製した。また上記製造条件とは別
に、急冷処理を行なう際に単ロール装置に供給する溶湯
量を、表7の左欄に示すように、射出ノズルの口数(射
出口数)と射出ノズルの口径(射出口径)とによって変
化させた。なお、比較例1の場合と同様に、射出口径が
0.5mm未満の射出ノズルでは合金溶湯の射出が不可能
であったため、実験対象から除外した。
Comparative Example 2 A molten alloy having a composition of LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3 was subjected to ultra-quenching treatment under the following production conditions described in Japanese Patent Application No. 6-85772, and Comparative Example 2 A hydrogen storage alloy according to was prepared. In addition to the above manufacturing conditions, as shown in the left column of Table 7, the amount of molten metal supplied to the single roll device at the time of performing the quenching treatment, as shown in the left column of Table 7, the number of injection nozzles (the number of injection ports) and the diameter of the injection nozzles (the injection port diameters). ) And changed. As in the case of Comparative Example 1, it was impossible to inject the molten alloy with an injection nozzle having an injection port diameter of less than 0.5 mm.

【0061】 製造条件 合金溶解温度 : 1400℃ 射出ノズルと冷却ロールとの間隔 : 50mm 射出圧力 : 0.5 kgf/cm2 ロール材質 : CuCr ロール周速 : 1.5m/s〜4.7m/s 雰囲気 : アルゴン そして上記の製造条件および表7左欄に示す溶湯供給条
件で製造した各水素吸蔵合金について、(111)面ピ
ークの半値幅Wと、C軸方向に配向した結晶の配向度F
を測定して下記表7に示す結果を得た。
Manufacturing conditions Alloy melting temperature: 1400 ° C. Distance between injection nozzle and cooling roll: 50 mm Injection pressure: 0.5 kgf / cm 2 Roll material: CuCr roll peripheral speed: 1.5 m / s to 4.7 m / s Atmosphere: Argon, and for each hydrogen storage alloy manufactured under the above manufacturing conditions and the molten metal supply conditions shown in the left column of Table 7, the full width at half maximum of the (111) plane peak and the orientation degree F of crystals oriented in the C-axis direction
Was measured to obtain the results shown in Table 7 below.

【0062】[0062]

【表7】 [Table 7]

【0063】上記表7に示す結果から明らかなように、
先願である特願平6−87572号明細書に記載された
製造条件に従っただけでは、合金の(111)面ピーク
の半値幅Wと配向度Fとが本願で規定された範囲内にな
らない場合がある。したがって、合金特性を、さらに向
上させるためには、射出ノズルの口数や口径を考慮し、
適正な溶湯供給量の条件下で合金製造を行なうことが必
要であることが確認できた。
As is clear from the results shown in Table 7 above,
Only by following the manufacturing conditions described in Japanese Patent Application No. 6-85772, which is a prior application, the full width at half maximum W of the (111) plane peak and the orientation degree F of the alloy are within the ranges specified in the present application. It may not be. Therefore, in order to further improve the alloy properties, consider the number and diameter of the injection nozzle,
It was confirmed that it is necessary to carry out alloy production under the condition of an appropriate molten metal supply amount.

【0064】以上の実施例および比較例から明らかなよ
うに、特に寿命特性を主眼にした合金特性の向上を実現
するためには偏析の抑制,結晶粒子の微細化による合金
の機械的強度の向上,結晶を配向させることによる水素
の吸脱蔵に伴う結晶の膨張収縮応力の緩和などの対策を
複合的に取る必要があることが判明した。
As is clear from the above Examples and Comparative Examples, in order to realize the improvement of the alloy characteristics focusing on the life characteristics, segregation is suppressed and the mechanical strength of the alloy is improved by making the crystal grains finer. It was found that it is necessary to take multiple measures such as relaxation of the expansion and contraction stress of the crystal due to the absorption and desorption of hydrogen by orienting the crystal.

【0065】すなわち、単ロール法や双ロール法などに
代表される液体急冷法を用いて合金溶湯の冷却時におけ
る冷却速度を高めることにより、多元系の合金でも偏析
が大幅に抑制されるとともに、微細な結晶粒子や結晶C
軸が配向した柱状組織を有する微細な合金組織が得られ
た。このような微細組織においては、偏析が大幅に抑制
されているために、電解液による合金の腐食が抑制され
る上に、結晶粒子が微細であるため、合金の機械的強度
が大きくなる。また、結晶のC軸が配向しているため、
水素吸蔵放出時の格子の膨張収縮に起因する微小領域で
の粒子間応力が緩和されて微粉化が抑制される結果、長
寿命の水素吸蔵合金電極およびニッケル水素二次電池を
提供することが可能となった。
That is, by increasing the cooling rate at the time of cooling the molten alloy by using a liquid quenching method typified by a single roll method or a twin roll method, segregation is greatly suppressed even in a multi-component alloy. Fine crystal particles and crystals C
A fine alloy structure having a columnar structure with axes oriented was obtained. In such a microstructure, segregation is significantly suppressed, corrosion of the alloy by the electrolytic solution is suppressed, and the crystal grains are fine, so that the mechanical strength of the alloy increases. Also, since the C axis of the crystal is oriented,
As a result, the inter-particle stress in the microscopic region due to the expansion and contraction of the lattice during hydrogen storage / release is relaxed and pulverization is suppressed, and as a result, it is possible to provide a long-life hydrogen storage alloy electrode and a nickel-hydrogen secondary battery. Became.

【0066】[0066]

【発明の効果】以上説明の通り本発明に係る水素吸蔵合
金によれば、X線回折における(111)面ピークの半
値幅が0.20度以上0.50度以下の範囲になるよう
な微細な結晶粒子から成る組織を有し、容量を低下させ
ることなく機械的強度を向上させることができる。その
ため、この合金を使用して水素吸蔵合金電極を形成した
場合に、電極寿命を大幅に延ばすことが可能となり、ひ
いては長寿命の水素化物二次電池を提供することが可能
になる。
As described above, according to the hydrogen storage alloy of the present invention, it is possible to obtain such a fine grain that the half width of the (111) plane peak in X-ray diffraction is in the range of 0.20 degrees to 0.50 degrees. It has a structure composed of various crystalline particles and can improve the mechanical strength without reducing the capacity. Therefore, when a hydrogen storage alloy electrode is formed by using this alloy, the life of the electrode can be significantly extended, which in turn can provide a long-life hydride secondary battery.

【0067】また厚さ方向に垂直な方向にC軸が配向し
ている結晶が60%以上存在するよように構成すること
により、水素の吸蔵・放出時における合金の膨張収縮方
向に規則性が現われ、合金の微粉化が効果的に抑制され
る。したがって、この合金を使用した電極の寿命が大幅
に延伸される。さらに上記半値幅の条件およびC軸配向
条件を共に満たすことにより電極寿命を相乗的に改善す
ることができる。
Further, by configuring so that 60% or more of the crystals in which the C-axis is oriented in the direction perpendicular to the thickness direction are present, there is a regularity in the expansion / contraction direction of the alloy during hydrogen absorption / desorption. Appearing, the pulverization of the alloy is effectively suppressed. Therefore, the service life of electrodes using this alloy is significantly extended. Furthermore, by satisfying both the half width condition and the C-axis orientation condition, the electrode life can be synergistically improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢 孝雄 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 堀江 宏道 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 五十崎 義之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Sawa 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated company Toshiba Yokohama Works (72) Hiromichi Horie 8th Shin-sugita-cho, Isogo-ku, Yokohama, Kanagawa Company TOSHIBA Yokohama Works (72) Inventor Hiroyuki Hasebe 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Ltd. Corporate Research and Development Center, Toshiba (72) Inventor Yoshiyuki Isazaki 1 Komu-Toshiba-cho, Kawasaki-shi, Kanagawa Banchi Co., Ltd. Toshiba Research & Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CaCu5 型の結晶構造を有し、粉末X
線回折における(111)面ピークの半値幅が0.20
〜0.50度であることを特徴とする水素吸蔵合金。
1. A powder X having a CaCu 5 type crystal structure.
The full width at half maximum of the (111) plane peak in line diffraction is 0.20.
A hydrogen storage alloy, characterized in that it is ˜0.50 degrees.
【請求項2】 水素吸蔵合金は、合金溶湯を液体急冷法
によって急冷して得られたことを特徴とする請求項1記
載の水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is obtained by quenching a molten alloy by a liquid quenching method.
【請求項3】 液体急冷法を用いて作製したフレーク状
またはリボン状の水素吸蔵合金であり、該合金をX線回
折した場合に合金の厚さ方向に垂直な方向にC軸が配向
している結晶が60%以上存在することを特徴とする請
求項1記載の水素吸蔵合金。
3. A flake-shaped or ribbon-shaped hydrogen storage alloy produced by a liquid quenching method, wherein the C axis is oriented in a direction perpendicular to the thickness direction of the alloy when the alloy is subjected to X-ray diffraction. The hydrogen storage alloy according to claim 1, characterized in that 60% or more of the existing crystals are present.
【請求項4】 液体急冷法を用いて作製され、CaCu
5 型の結晶構造を有するフレーク状またはリボン状の水
素吸蔵合金であり、該合金をX線回折した場合に合金の
厚さ方向に垂直な方向にC軸が配向している結晶が60
%以上存在することを特徴とする水素吸蔵合金。
4. CaCu produced using a liquid quenching method.
It is a flake-shaped or ribbon-shaped hydrogen storage alloy having a 5- type crystal structure, and when the alloy is subjected to X-ray diffraction, 60 crystals having a C axis oriented in a direction perpendicular to the thickness direction of the alloy are obtained.
% Of hydrogen storage alloy.
【請求項5】 請求項1ないし4のいずれかに記載の水
素吸蔵合金を使用して形成されたことを特徴とする水素
吸蔵合金電極。
5. A hydrogen storage alloy electrode, which is formed by using the hydrogen storage alloy according to any one of claims 1 to 4.
JP7197639A 1995-08-02 1995-08-02 Hydrogen storage alloy and hydrogen storage alloy electrode using it Pending JPH0945322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197639A JPH0945322A (en) 1995-08-02 1995-08-02 Hydrogen storage alloy and hydrogen storage alloy electrode using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197639A JPH0945322A (en) 1995-08-02 1995-08-02 Hydrogen storage alloy and hydrogen storage alloy electrode using it

Publications (1)

Publication Number Publication Date
JPH0945322A true JPH0945322A (en) 1997-02-14

Family

ID=16377839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197639A Pending JPH0945322A (en) 1995-08-02 1995-08-02 Hydrogen storage alloy and hydrogen storage alloy electrode using it

Country Status (1)

Country Link
JP (1) JPH0945322A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119284B2 (en) 2006-12-27 2012-02-21 Panasonic Ev Energy Co., Ltd. Nickel-metal hydride battery
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
JP7260722B1 (en) * 2021-10-22 2023-04-18 三井金属鉱業株式会社 Hydrogen storage alloy
WO2023067848A1 (en) * 2021-10-22 2023-04-27 三井金属鉱業株式会社 Hydrogen storage alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119284B2 (en) 2006-12-27 2012-02-21 Panasonic Ev Energy Co., Ltd. Nickel-metal hydride battery
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
US9225016B2 (en) 2010-08-19 2015-12-29 Santoku Corporation Hydrogen absorbing alloy, negative pole, and nickel—hydrogen secondary battery
JP5851991B2 (en) * 2010-08-19 2016-02-03 株式会社三徳 Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP7260722B1 (en) * 2021-10-22 2023-04-18 三井金属鉱業株式会社 Hydrogen storage alloy
WO2023067848A1 (en) * 2021-10-22 2023-04-27 三井金属鉱業株式会社 Hydrogen storage alloy

Similar Documents

Publication Publication Date Title
EP0588310B1 (en) Hydrogen-absorbing alloy for battery, method of manufacturing the same, and secondary nickel-metal hydride battery
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
EP0790323B1 (en) Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
EP2214229B1 (en) Nickel-metal hydride battery
KR100216305B1 (en) Rare earth metal nickel hydrogen occlusion alloy process for producing the same and negative electrode of nickel hydrogen secondary battery
JPH0945322A (en) Hydrogen storage alloy and hydrogen storage alloy electrode using it
JPH0969362A (en) Secondary battery and power source using it
JPH10102172A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP4117918B2 (en) Hydrogen storage alloy, manufacturing method thereof, and nickel metal hydride secondary battery
JP2015176858A (en) Lithium ion battery negative electrode active material and secondary battery
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10237569A (en) Hydrogen storate alloy for battery, its production and nickel-hydrogen secondary battery
JP2005050800A (en) Secondary battery and power source using secondary battery
EP1205566B1 (en) Hydrogen absorbing alloy and method for its production
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH10102170A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH1060565A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH10265886A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH09270255A (en) Hydrogen storage alloy for battery and nickel hydrogen secondary battery