JPH094276A - Seismic isolator of building - Google Patents

Seismic isolator of building

Info

Publication number
JPH094276A
JPH094276A JP15374095A JP15374095A JPH094276A JP H094276 A JPH094276 A JP H094276A JP 15374095 A JP15374095 A JP 15374095A JP 15374095 A JP15374095 A JP 15374095A JP H094276 A JPH094276 A JP H094276A
Authority
JP
Japan
Prior art keywords
seismic isolation
building
weir
displacement
seismic isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15374095A
Other languages
Japanese (ja)
Inventor
Yukio Fujiwara
幸男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15374095A priority Critical patent/JPH094276A/en
Publication of JPH094276A publication Critical patent/JPH094276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE: To enhance the safety of a structure by laying out alternately a plurality of metallic plates and a plurality of elastic plates and thereby constituting a seismic isolator and a weir which forms a contact surface having a specified slope on the outer edge of the seismic isolator. CONSTITUTION: A weir 6 is installed around a seismic isolator 3, thereby constituting a building seismic isolating device. The weir 6, when it receives a horizontal force and reaches a specific amount of displacement, is arranged to provide a contact surface 8 which comes in contact with the outside surface of the seismic isolator 3. The contact surface 8 is formed in a conical shape. The weir 6 installed around the seismic isolator 3 shows small rigidity when the seismic isolator 3 is subjected to shear displacement over its full length in the early stage of displacement. However, after the displacement of the seismic isolator 3 further proceeds and comes in contact with the contact surface 8 of the weir 6, such an area, which is placed in contact with the weir 6, is immune to shear displacement. Therefore, only such a non-contact area proceeds with displacement, thereby increasing the rigidity of the seismic isolator 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建屋と建屋の基礎の間に
配設する建屋免震装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a building seismic isolation device arranged between a building and a building foundation.

【0002】[0002]

【従来の技術】従来の建屋免震装置の据え付け状態を示
す縦断面図を図8に示し、免震体の鳥瞰図を図9に示
す。以下図面を参照して説明する。図8において、建屋
1と基礎2との間には免震体3が複数個配設されてい
る。この免震体3は図9に示されるように円板状の鋼板
4と弾性体、例えばゴム5を積層状に積み重ねたもので
ある。この免震体3はせん断方向への剛性が小さく、圧
縮方向への剛性は高くなっている。このため、建屋1の
自重あるいは鉛直方向への地震等による荷重に対して
は、建屋1は免震体3が存在しない場合とほぼ同様の挙
動を示す。
2. Description of the Related Art FIG. 8 is a vertical sectional view showing a conventional building seismic isolation device installed, and FIG. 9 is a bird's-eye view of the seismic isolation device. This will be described below with reference to the drawings. In FIG. 8, a plurality of seismic isolation bodies 3 are arranged between the building 1 and the foundation 2. As shown in FIG. 9, the seismic isolation body 3 is formed by laminating a disk-shaped steel plate 4 and an elastic body such as rubber 5 in a laminated form. The seismic isolation body 3 has low rigidity in the shearing direction and high rigidity in the compressing direction. Therefore, with respect to the weight of the building 1 or a load due to an earthquake in the vertical direction, the building 1 behaves almost the same as when the seismic isolation body 3 is not present.

【0003】一方、水平方向への地震等による荷重につ
いては免震体3の水平方向の剛性が地震動の主たる周波
数成分よりかなり柔な領域に設定されるため、地震動の
卓越成分のエネルギーが削減され、おもにエネルギー量
の小さい長周期成分だけが建屋1に伝達される。この結
果として、建屋1に加わる加速度および水平荷重はとも
に低減される。
On the other hand, with respect to the load caused by an earthquake in the horizontal direction, the rigidity of the seismic isolation body 3 in the horizontal direction is set to a region considerably softer than the main frequency component of the seismic motion, so that the energy of the dominant component of the seismic motion is reduced. Mainly, only the long-period component having a small amount of energy is transmitted to the building 1. As a result, both the acceleration and the horizontal load applied to the building 1 are reduced.

【0004】[0004]

【発明が解決しようとする課題】上述の従来の建屋免震
装置においては、免震体は地震力を受けると、水平方向
にせん断変形するが、その度合いは地震力が強い程大き
くなる。特に、免震された建屋の1次固有周期が存在す
る長周期成分を多く有する地震の場合、その程度は大き
い。
In the conventional building seismic isolation device described above, when the seismic isolation body receives an earthquake force, it undergoes shear deformation in the horizontal direction, and the degree thereof increases as the earthquake force increases. Especially, in the case of an earthquake having many long-period components in which the first natural period of the isolated building exists, the degree is large.

【0005】ところで、免震された建屋の固有周期は建
屋や収納機器の受ける地震力および建屋1の相対変位等
を考慮し、適切な範囲になるように設定される。すなわ
ち、免震体3の剛性を高く設定しすぎると、免震された
建屋の固有周期が短くなり、地震力が十分に低減されな
い。また、剛性を低く設定しすぎると、地震力は低減さ
れるが、免震された建屋と免震されてない建屋との相対
変位が大きくなり、接続配管等がある場合、相対変位を
吸収することが困難になる。
By the way, the natural period of the seismic isolated building is set within an appropriate range in consideration of the seismic force received by the building and the storage equipment and the relative displacement of the building 1. That is, if the rigidity of the seismic isolation body 3 is set too high, the natural period of the seismic isolated building becomes short and the seismic force is not sufficiently reduced. Also, if the rigidity is set too low, the seismic force will be reduced, but the relative displacement between the seismic isolated building and the non-isolated building will be large, and if there is a connection pipe etc., the relative displacement will be absorbed. Becomes difficult.

【0006】従って、免震体の設計にあたっては、免震
された建屋の1次固有周期を適切な範囲に収め、かつ十
分なせん断変形を許容できるように考慮することが重要
である。
Therefore, in designing the base-isolated body, it is important to consider the primary natural period of the base-isolated building within an appropriate range and allow sufficient shear deformation.

【0007】ここで、長周期成分が卓越する地震動を想
定するという厳しい条件下において建屋免震装置の設計
を考えた場合、従来の技術ではせん断変形をより許容す
るという観点から、免震体3の径を大きくすることが必
要となる。この場合、免震体の断面積が増大するため、
その分、剛性が増加する。これを補償するためには2つ
の方法が考えられる。
Here, when considering the design of the building seismic isolation device under the severe condition of assuming a ground motion in which the long-period component is predominant, in the conventional technique, the seismic isolation body 3 is used from the viewpoint of allowing more shear deformation. It is necessary to increase the diameter of. In this case, because the cross-sectional area of the seismic isolation body increases,
The rigidity increases accordingly. There are two possible ways to compensate for this.

【0008】一つは免震体3の高さを増加させることで
あり、もう一つは免震体3の設置個数を低減させること
である。しかしながら、前者の場合重心が上がることに
より、ロッキングを誘発しやすくなり、建屋及び建屋内
収納機器に余分な地震力を与えることになる。また、後
者の場合、免震体3の絶対数が減る分、一つの免震体3
が破損した場合の影響が相対的に増大し、信頼性の観点
から問題となる可能性がある。
[0008] One is to increase the height of the seismic isolation body 3, and the other is to reduce the number of seismic isolation bodies 3 installed. However, in the former case, since the center of gravity increases, rocking is likely to be induced, and extra seismic force is applied to the building and the storage equipment in the building. In the latter case, one seismic isolation body 3
The impact of damage to the product increases relatively, which may cause a problem from the viewpoint of reliability.

【0009】本発明は上記事情を鑑みてなされたもので
あり、建屋の初期固有周期を適切な範囲に設定し、かつ
大地震時のせん断変形を抑制する建屋免震装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a building seismic isolation device which sets the initial natural period of the building within an appropriate range and suppresses shear deformation during a large earthquake. And

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の建屋免震装置は、複数枚の金属板と
複数の弾性板とを交互に積層してなる免震体と、この免
震体の外縁に設けられ所定の勾配を有して前記免震体の
外面と接触する接触面を形成するせきとを有するもので
ある。
In order to achieve the above object, the building seismic isolation apparatus according to claim 1 comprises a seismic isolation body comprising a plurality of metal plates and a plurality of elastic plates alternately laminated. The sewer is provided at the outer edge of the seismic isolation body, and has a weir that has a predetermined slope and forms a contact surface that comes into contact with the outer surface of the seismic isolation body.

【0011】請求項2記載の建屋免震装置は、請求項1
記載の建屋免震装置においてせきの接触面が複数の勾配
を有する曲面として形成されるものである。請求項3記
載の建屋免震装置は、請求項1記載の建屋免震装置にお
いてせきの接触面が無段階に連続して勾配が変化する曲
面として形成されるものである。
The building seismic isolation device as claimed in claim 2 is as claimed in claim 1.
In the building seismic isolation apparatus described above, the contact surface of the cough is formed as a curved surface having a plurality of slopes. The building seismic isolation apparatus according to a third aspect of the present invention is the building seismic isolation apparatus according to the first aspect, wherein the cough contact surface is formed as a curved surface having a continuously changing gradient.

【0012】[0012]

【作用】上記構成の建屋免震装置においては、地震によ
る慣性力で建屋が水平力を受けると、免震体はせん断変
形をする。地震による水平力が大きくなると免震体は外
縁に設けられたせきに接触するようになる。さらに大き
な地震力が加わった場合、免震体のうち、せきに接触し
ている部分は、変形が拘束され接触していない部分のみ
が変形を許される。この部分的な変形によって復元力特
性は非線形となり、免震体のせん断変形は小さく抑えら
れる。
In the building seismic isolation device having the above structure, when the building receives a horizontal force due to the inertial force caused by an earthquake, the seismic isolation body undergoes shear deformation. When the horizontal force due to the earthquake increases, the base isolation body comes into contact with the cough provided on the outer edge. When a larger seismic force is applied, the part of the base-isolated body that is in contact with the cough is constrained from being deformed, and only the part that is not in contact is allowed to be deformed. Due to this partial deformation, the restoring force characteristic becomes non-linear, and the shear deformation of the base isolation body is suppressed to a small level.

【0013】[0013]

【実施例】以下に、本発明に係る建屋免震装置の第1の
実施例を図1に基づき説明する。図1において従来の建
屋免震装置と同一部分には同一符号を付し、その構成の
説明は省略する。建屋免震装置7は免震体3の廻りにせ
き6を設けた構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a building seismic isolation device according to the present invention will be described below with reference to FIG. In FIG. 1, the same parts as those of the conventional building seismic isolation device are designated by the same reference numerals, and the description of the configuration will be omitted. The building seismic isolation device 7 has a structure in which a cough 6 is provided around the seismic isolation body 3.

【0014】せき6は免震体3が水平力を受け所定の変
形量に達すると、免震体3の外面と接触するように構成
された接触面8を有している。この接触面8はすり鉢状
に形成されている。
The cough 6 has a contact surface 8 configured to come into contact with the outer surface of the seismic isolation body 3 when the seismic isolation body 3 receives a horizontal force and reaches a predetermined deformation amount. This contact surface 8 is formed in a mortar shape.

【0015】このように構成された建屋免震装置におい
ては、建屋免震装置7は建屋の自重を支持するため、上
下の圧縮方向への剛性は高くなっている。一方、水平方
向の地震に対しては、免震体3のせん断方向への剛性が
小さく、その固有振動数が地震動の卓越成分をはずれ、
主にエネルギーの小さい長周期成分が建屋に伝達され
る。免震体3の廻りに設けられたせき6は、変形の初期
段階においては免震体3の全長がせん断変形し、小さな
剛性を示すが、免震体3の変形が進んでせき6の接触面
8に接触した後は、せき6に接触している部分は、せん
断変形をすることができない。
In the building seismic isolation device constructed as described above, the building seismic isolation device 7 supports the self-weight of the building, and therefore has high rigidity in the vertical compression direction. On the other hand, for horizontal earthquakes, the rigidity of the seismic isolation body 3 in the shearing direction is small, and its natural frequency deviates from the dominant component of seismic motion.
Mainly the long-period component with small energy is transmitted to the building. The weir 6 provided around the seismic isolation body 3 undergoes shear deformation over the entire length of the seismic isolation body 3 in the initial stage of deformation and exhibits a small rigidity. After contacting the surface 8, the portion contacting the cough 6 cannot undergo shear deformation.

【0016】従って、接触していない部分のみがさらに
変形することになり、免震体3の全長が短くなった場合
と同じ効果を生み、免震体3の剛性が大きくなる。図2
に免震体3の変形が大きくなり、せき6に接触した場合
の模式断面図を示す。せき6の高さ分の免震体3の変形
がせき6の接触面に沿って拘束され、せき6の高さ以上
の部分のみがさらにせん断変形している。
Therefore, only the portions that are not in contact are further deformed, and the same effect as when the total length of the seismic isolation body 3 is shortened is obtained, and the rigidity of the seismic isolation body 3 is increased. FIG.
A schematic cross-sectional view when the seismic isolation body 3 is greatly deformed and comes into contact with the cough 6 is shown in FIG. Deformation of the seismic isolation body 3 by the height of the weir 6 is constrained along the contact surface of the weir 6, and only the portion of the height of the weir 6 or higher is further sheared.

【0017】従って、所定のせん断変形以上となった場
合には免震体3はせき6の接触面8に接触するため、免
震体3の全長が短くなった場合と同一の効果を有するこ
とになる。
Therefore, when the shear deformation exceeds a predetermined value, the seismic isolation body 3 comes into contact with the contact surface 8 of the weir 6, so that the same effect as when the total length of the seismic isolation body 3 is shortened is obtained. become.

【0018】この場合の剛性の変化を復元力として、免
震体3の変位との関係で変化する様子を図3に示す。実
線は本実施例の場合の特性を示し、一点鎖線はせき6を
設けなかった場合の特性を示す。本実施例の場合、免震
体3は変位x0 でせき6の接触面8に接触し、せき6の
高さ分の免震体3の変形はせき6の接触面8に沿って拘
束されるため、単位変位に対して復元力は大きくなる。
変位x1 では、復元力はyとなるが、このyの復元力を
せき6なしで得ようとするとx1 より大きな変位x2
必要となる。
FIG. 3 shows how the rigidity in this case changes as a restoring force in relation to the displacement of the seismic isolation body 3. The solid line shows the characteristic in the case of this embodiment, and the alternate long and short dash line shows the characteristic in the case where the weir 6 is not provided. In the case of the present embodiment, the seismic isolation body 3 contacts the contact surface 8 of the weir 6 at a displacement x 0 , and the deformation of the seismic isolation body 3 by the height of the weir 6 is restrained along the contact surface 8 of the weir 6. Therefore, the restoring force becomes large with respect to the unit displacement.
At the displacement x 1 , the restoring force is y, but if an attempt is made to obtain the restoring force of this y without dam 6, a displacement x 2 larger than x 1 is required.

【0019】次に本発明に係る建屋免震装置の第2の実
施例について図4および図5を用いて説明する。図4に
おいて、図1と同一部分については同一符号を付し、そ
の構成の説明は省略する。本実施例においては、せき6
は接触面8として複数の勾配を有する曲面として構成さ
れている。
Next, a second embodiment of the building seismic isolation apparatus according to the present invention will be described with reference to FIGS. 4 and 5. 4, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the configuration will be omitted. In this embodiment, the cough 6
Is formed as a curved surface having a plurality of gradients as the contact surface 8.

【0020】このように構成された本実施例の場合は、
図5に示すように免震体3が地震による水平力を受けた
場合に、段階的にせき6の接触面8で拘束され、その度
に剛性が変化することになる。
In the case of the present embodiment configured as described above,
As shown in FIG. 5, when the seismic isolation body 3 receives a horizontal force due to an earthquake, the seismic isolation body 3 is gradually constrained by the contact surface 8 of the cough 6, and the rigidity changes each time.

【0021】このようにすれば、免震体3の変位によっ
て自在に復元力を設定することができ、耐震設計の多様
化を図ることが可能である。さらに、本発明に係る建屋
免震装置の第3の実施例について図6および図7を用い
て説明する。図6において、図1と同一部分については
同一符号を付し、その構成の説明は省略する。本実施例
においては、せき6の接触面8として無段階に連続して
勾配が変化する曲面として構成されている。本実施例の
場合には、図7に示されるように免震体3の変位に対し
て復元力を無段階に変化させて設定することができる。
従って、第2の実施例と同様に免震体3の変位に対して
自在に復元力を設定でき、耐震設計の多様化を図ること
が可能である。
In this way, the restoring force can be set freely by the displacement of the seismic isolation body 3, and the seismic design can be diversified. Further, a third embodiment of the building seismic isolation apparatus according to the present invention will be described with reference to FIGS. 6 and 7. 6, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the configuration will be omitted. In this embodiment, the contact surface 8 of the weir 6 is formed as a curved surface having a continuously changing gradient. In the case of the present embodiment, as shown in FIG. 7, it is possible to set the restoring force with respect to the displacement of the seismic isolation body 3 in a stepless manner.
Therefore, similarly to the second embodiment, the restoring force can be freely set with respect to the displacement of the seismic isolation body 3, and the seismic design can be diversified.

【0022】[0022]

【発明の効果】以上説明したように本発明の建屋免震装
置においては、水平方向剛性を免震体の変位によって大
きくなるように変化させることができ、変位量の抑制を
図り構造物の安全性の向上を図ることができる。
As described above, in the building seismic isolation device of the present invention, the horizontal rigidity can be changed so as to be increased by the displacement of the seismic isolation body, the displacement amount can be suppressed, and the structure safety can be improved. It is possible to improve the sex.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る建屋免震装置の第1の実施例を示
す外形図。
FIG. 1 is an outline view showing a first embodiment of a building seismic isolation device according to the present invention.

【図2】本発明に係る建屋免震装置の第1の実施例を示
す縦断面図。
FIG. 2 is a vertical cross-sectional view showing a first embodiment of the building seismic isolation device according to the present invention.

【図3】本発明に係る建屋免震装置の第1の実施例の復
元力の特性を示す模式図。
FIG. 3 is a schematic diagram showing characteristics of restoring force of the building seismic isolation apparatus according to the first embodiment of the present invention.

【図4】本発明に係る建屋免震装置の第2の実施例を示
す縦断面図。
FIG. 4 is a vertical cross-sectional view showing a second embodiment of the building seismic isolation apparatus according to the present invention.

【図5】本発明に係る建屋免震装置の第2の実施例の復
元力の特性を示す模式図。
FIG. 5 is a schematic diagram showing characteristics of restoring force of a second embodiment of the building seismic isolation apparatus according to the present invention.

【図6】本発明に係る建屋免震装置の第3の実施例を示
す縦断面図。
FIG. 6 is a longitudinal sectional view showing a third embodiment of the building seismic isolation apparatus according to the present invention.

【図7】本発明に係る建屋免震装置の第3の実施例の復
元力の特性を示す模式図。
FIG. 7 is a schematic diagram showing characteristics of restoring force of a third embodiment of the building seismic isolation apparatus according to the present invention.

【図8】建屋免震装置の従来例を示す外形図。FIG. 8 is an external view showing a conventional example of a building seismic isolation device.

【図9】建屋免震装置の従来例を示す外形図。FIG. 9 is an outline view showing a conventional example of a building seismic isolation device.

【符号の説明】[Explanation of symbols]

1…建屋 2…基礎 3…免震体 4…鋼板 5…ゴム 6…せき 7…建屋免震装置 8…接触面 1 ... Building 2 ... Foundation 3 ... Seismic isolation body 4 ... Steel plate 5 ... Rubber 6 ... Weir 7 ... Building seismic isolation device 8 ... Contact surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の金属板と複数の弾性板とを交互
に積層してなる免震体と、この免震体の外縁に設けられ
所定の勾配を有して前記免震体の外面と接触する接触面
を形成するせきとを有することを特徴とする建屋免震装
置。
1. A seismic isolation body formed by alternately laminating a plurality of metal plates and a plurality of elastic plates, and an outer surface of the seismic isolation body provided at an outer edge of the seismic isolation body and having a predetermined slope. A building seismic isolation device having a cough forming a contact surface that comes into contact with the building seismic isolation device.
【請求項2】 前記せきの接触面は複数の勾配を有する
曲面として形成されることを特徴とする請求項1記載の
建屋免震装置。
2. The building seismic isolation device according to claim 1, wherein the contact surface of the cough is formed as a curved surface having a plurality of slopes.
【請求項3】 前記せきの接触面は無段階に連続して勾
配が変化する曲面として形成されることを特徴とする請
求項1記載の建屋免震装置。
3. The building seismic isolation device according to claim 1, wherein the contact surface of the cough is formed as a curved surface having a continuously changing gradient.
JP15374095A 1995-06-21 1995-06-21 Seismic isolator of building Pending JPH094276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15374095A JPH094276A (en) 1995-06-21 1995-06-21 Seismic isolator of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15374095A JPH094276A (en) 1995-06-21 1995-06-21 Seismic isolator of building

Publications (1)

Publication Number Publication Date
JPH094276A true JPH094276A (en) 1997-01-07

Family

ID=15569076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15374095A Pending JPH094276A (en) 1995-06-21 1995-06-21 Seismic isolator of building

Country Status (1)

Country Link
JP (1) JPH094276A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017806A (en) * 2010-07-08 2012-01-26 Asahi Kasei Homes Co Base isolation support device
JP2013164115A (en) * 2012-02-10 2013-08-22 Tokkyokiki Corp Damping device of vibration isolation mount
JP2015224760A (en) * 2014-05-29 2015-12-14 株式会社竹中工務店 Seismic isolator
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method
JP2019215049A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン Seismic isolator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017806A (en) * 2010-07-08 2012-01-26 Asahi Kasei Homes Co Base isolation support device
JP2013164115A (en) * 2012-02-10 2013-08-22 Tokkyokiki Corp Damping device of vibration isolation mount
JP2015224760A (en) * 2014-05-29 2015-12-14 株式会社竹中工務店 Seismic isolator
JP2019215049A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン Seismic isolator
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method

Similar Documents

Publication Publication Date Title
EP0586701B1 (en) Vibration control device for structure
JPS6092571A (en) Earthquake dampening apparatus of structure
CN103233607A (en) Reinforced concrete periodic damping structure and construction method thereof
JPH094276A (en) Seismic isolator of building
JP7125193B2 (en) Seismic isolation structure
JP2012017806A (en) Base isolation support device
CN108589513B (en) Damping counterweight system for bridge and working method thereof
JP2006207680A (en) Laminated rubber supporter
JP2000064657A (en) Three-dimensional base isolation device and structure
JPH01250547A (en) Earthquake isolator
JP3185678B2 (en) Seismic isolation device
JP2000240315A (en) Base isolation method and device of structure whose aspect ratio is large
JP2522527B2 (en) Vibration isolation device
JPH09177372A (en) Seismic isolator of building
JP2001329716A (en) Method and structure of base isolation of multistory building
JPH0882012A (en) Three-dimensional base isolation device
CN220868492U (en) Vibration dual-control composite support based on rubber support and metal spring
JP2020059969A (en) Floating suppression structure
JPH10121415A (en) Base isolation structure of lower part of bridge pier
JP2802759B2 (en) Structure support structure
JPH01247633A (en) Damping mechanism for vibrationproof device
US20020166295A1 (en) Earthquake-protective building buffer
JPS60261845A (en) Earthquake dampening and support apparatus
JP2804465B2 (en) Seismic isolation device
JP5404104B2 (en) Seismic isolation device