JPH0941957A - Waste heat recovery system of internal combustion engine - Google Patents

Waste heat recovery system of internal combustion engine

Info

Publication number
JPH0941957A
JPH0941957A JP7196699A JP19669995A JPH0941957A JP H0941957 A JPH0941957 A JP H0941957A JP 7196699 A JP7196699 A JP 7196699A JP 19669995 A JP19669995 A JP 19669995A JP H0941957 A JPH0941957 A JP H0941957A
Authority
JP
Japan
Prior art keywords
cooling water
heat exchanger
internal combustion
heat
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7196699A
Other languages
Japanese (ja)
Inventor
Yoshinori Miyaura
義典 宮浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7196699A priority Critical patent/JPH0941957A/en
Publication of JPH0941957A publication Critical patent/JPH0941957A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2262/00Recuperating heat from exhaust gases of combustion engines and heat from lubrication circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0049Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for lubricants, e.g. oil coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent damage due to a crack generation in an exhaust gas-cooling water heat exchanger of a waste heat recovery system in such an internal combustion engine as a gas heat pump engine system. SOLUTION: In a cooling water-coolant heat exchanger installed at the outside of an internal combustion engine body 12a, cooling water turned to a low temperature by imparting the waste heat of an internal combustion engine to a coolant first flows into an engine oil-cooling water heat exchanger 15, and it is heated by the relatively high temperature engine oil being fed out of the engine and, after its temperature properly goes up, it also flows into such an exhaust gas-coolant heat exchanger as a cooling water passage 5a of an exhaust manifold 5, absorbing the waste heat from the hot exhaust gas. Therefore, a temperature difference between the exhaust gas and the cooling water becomes lessened as comapred with the conventional one, any possible damage due to a crack and deformation on a wall surface of the exhaust gas-cooling water heat exchanger are prevented from occurring. Supposing that an amount of recovery of the waste heat in the cooling water passage 5a is decreased, a portion of loss is compensated by the waste heat to be recovered out of the engine oil in the heat exchanger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関から動力
を取り出して空調装置(冷暖房装置)や冷凍装置等の冷
凍サイクルからなるヒートポンプにおける冷媒圧縮機や
送風機、或いは発電機等を回転駆動するだけでなく、そ
の内燃機関を前記冷凍サイクルの熱源の一つとしてとし
て利用し、前記内燃機関の運転によって冷却水や排気ガ
スの中へ捨てられる廢熱を回収して前記空調装置等にお
いて活用する目的で、内燃機関本体を冷却した後に冷凍
サイクルへ送られて廢熱を回収される冷却水を、排気通
路に設けられた冷却水通路へ循環させて排気ガスの熱を
も吸収させるようにした内燃機関の廢熱回収装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention only takes out power from an internal combustion engine and rotationally drives a refrigerant compressor, a blower, a generator or the like in a heat pump including a refrigeration cycle such as an air conditioner (cooling and heating device) or a refrigerating device. Not using the internal combustion engine as one of the heat source of the refrigeration cycle, for the purpose of recovering the residual heat wasted into the cooling water or exhaust gas by the operation of the internal combustion engine and utilizing it in the air conditioner or the like. The cooling water that is sent to the refrigerating cycle after the main body of the internal combustion engine is cooled to recover the residual heat is circulated to the cooling water passage provided in the exhaust passage to absorb the heat of the exhaust gas. A heat recovery device.

【0002】そして本発明は、特にこのような目的にお
いて、LPGやLNG等のガス体燃料によって運転され
る内燃機関、即ちガスヒートポンプ(GHP)エンジン
の廢熱回収装置として好適に適用されることができる。
また本発明は、同様な目的において、定置式の内燃機関
だけでなく、車両や船舶等に搭載される移動式の内燃機
関にも適用されることができる。
In particular, the present invention can be suitably applied as a waste heat recovery device for an internal combustion engine operated by a gas fuel such as LPG or LNG, that is, a gas heat pump (GHP) engine. .
Further, for the same purpose, the present invention can be applied not only to a stationary internal combustion engine, but also to a mobile internal combustion engine mounted on a vehicle, a ship, or the like.

【0003】[0003]

【従来の技術】図3に、従来から知られている内燃機関
の廢熱回収装置として、ガスヒートポンプ(GHP)エ
ンジンシステム1の要部の構成を示す。図中、1aはエ
ンジン本体、2はシリンダブロック、3はオイルパン、
4は、図示しない空調装置用のヒートポンプにおける冷
凍サイクルの冷媒蒸発器(エバポレータ)を通過して冷
媒に熱を与えることによって低温となって戻って来る冷
却水を、エンジン本体1aへ導入するための冷却水入口
配管、5は排気マニホールドであって、冷却水入口配管
4から導入される低温の冷却水を循環させる熱交換器と
しての冷却水通路5aを備えており、この従来例では低
温の冷却水が最初に排気ガスの有する廢熱を吸収して加
熱されるようになっている。
2. Description of the Related Art FIG. 3 shows a configuration of a main part of a gas heat pump (GHP) engine system 1 as a conventional heat recovery device for an internal combustion engine. In the figure, 1a is an engine body, 2 is a cylinder block, 3 is an oil pan,
Reference numeral 4 is for introducing cooling water that returns to a low temperature by passing heat through the refrigerant evaporator (evaporator) of the refrigeration cycle in a heat pump for an air conditioner (not shown) to the engine body 1a. The cooling water inlet pipes 5 are exhaust manifolds, and are provided with a cooling water passage 5a as a heat exchanger for circulating the low temperature cooling water introduced from the cooling water inlet pipe 4, and in this conventional example, low temperature cooling is performed. Water is first heated by absorbing the heat contained in the exhaust gas.

【0004】6は、排気マニホールド5を冷却した後の
冷却水をエンジン本体1a内へ送り込んで本体内部を冷
却し、この部分の廢熱を回収するために、冷却水をウオ
ータポンプ7へ吸入させるための接続管、8は、ウオー
タポンプ7によって加圧されて、エンジン本体1aのシ
リンダブロック2内やシリンダヘッド内の図示しない冷
却水通路或いは冷却水套を流れることによって高温とな
った冷却水を、エンジン本体1aから導出して、前述の
空調装置用ヒートポンプの冷凍サイクルにおける冷媒蒸
発器を加熱するために、冷却水を冷媒蒸発器へ送り出す
冷却水出口配管を示している。
Reference numeral 6 is for sending cooling water after cooling the exhaust manifold 5 into the engine body 1a to cool the inside of the engine body, and to suck the cooling water into the water pump 7 in order to recover the heat generated in this portion. The connection pipe 8 of the cooling water is pressurized by the water pump 7 and flows into a cooling water passage (not shown) or a cooling water passage (not shown) in the cylinder block 2 of the engine body 1a or the cylinder head to cool the cooling water. Shown is a cooling water outlet pipe that is drawn from the engine body 1a and sends cooling water to the refrigerant evaporator in order to heat the refrigerant evaporator in the refrigeration cycle of the heat pump for an air conditioner described above.

【0005】なお、従来のガスヒートポンプエンジンシ
ステム1においても、エンジン本体1aのオイルパン3
にあるエンジンオイルを補給するために、エンジン本体
1aとは別にエンジンオイルのリザーバとしてのサブタ
ンク9を設ける場合があり、そのようなものでは、オイ
ルパン3とサブタンク9は上下2本の導管10,11に
よって接続されていて、オイルパン3内のエンジンオイ
ルの量が減少すると、サブタンク9内に貯溜されていた
エンジンオイルの一部が、下方の導管11を通ってオイ
ルパン3へ補充のために供給される。
Even in the conventional gas heat pump engine system 1, the oil pan 3 of the engine body 1a is also used.
In some cases, a sub-tank 9 as a reservoir for engine oil is provided separately from the engine body 1a in order to replenish the engine oil in the above. In such a case, the oil pan 3 and the sub-tank 9 have two upper and lower conduits 10, When the amount of the engine oil in the oil pan 3 is reduced by 11 and the engine oil stored in the sub tank 9 is partially replenished to the oil pan 3 through the lower conduit 11. Supplied.

【0006】[0006]

【発明が解決しようとする課題】図3に示したような従
来のガスヒートポンプエンジンシステム1の場合、図示
しない冷凍サイクルにおける冷媒熱交換器(冷媒蒸発
器)において、冷媒に熱を与えることによって冷却され
て冷却水入口配管4から流入する低温の冷却水が、最初
に、排気ガスによって加熱されて高温となる排気マニホ
ールド5のような排気通路に付設された冷却水通路5a
を通過することになるために、冷却水通路と排気通路が
接する壁面の表裏の温度差が大きくなり、排気ガスが有
する廢熱の回収効率が高まる反面、前記壁面に亀裂が生
じたり、排気通路が変形して破損するというようなトラ
ブルを起こす可能性がある。
In the case of the conventional gas heat pump engine system 1 as shown in FIG. 3, a refrigerant heat exchanger (refrigerant evaporator) in a refrigerating cycle (not shown) is cooled by applying heat to the refrigerant. The low-temperature cooling water that is generated and flows from the cooling-water inlet pipe 4 is first heated by the exhaust gas and is attached to an exhaust passage such as the exhaust manifold 5 that becomes high in temperature.
Therefore, the temperature difference between the front and back surfaces of the wall surface where the cooling water passage and the exhaust passage are in contact with each other becomes large, and the efficiency of collecting the residual heat of the exhaust gas is increased, but on the other hand, the wall surface is cracked or the exhaust passage is There is a possibility of causing problems such as deformation and damage.

【0007】そこで本発明は、従来の内燃機関の廢熱回
収装置、特にガスヒートポンプエンジンシステムにおけ
るこの問題に対処し得る適切な解決手段を提供し、排気
通路やそれに接する冷却水通路を保護するだけでなく、
内燃機関の廢熱回収装置全体における廢熱の回収効率を
高く維持することを発明の目的としている。
Therefore, the present invention provides a proper solution for dealing with this problem in the conventional internal heat recovery system for internal combustion engines, especially in the gas heat pump engine system, and only by protecting the exhaust passage and the cooling water passage in contact therewith. Without
It is an object of the present invention to maintain a high recovery efficiency of the waste heat in the entire waste heat recovery device of an internal combustion engine.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の課題を
解決するための手段として、内燃機関の外部に設けら
れ、前記内燃機関からの冷却水と冷媒との間で熱交換を
行う冷却水−冷媒熱交換器と、前記内燃機関の内部を循
環したエンジンオイルと、前記冷却水−冷媒熱交換器か
らの冷却水との間で熱交換を行うエンジンオイル−冷却
水熱交換器と、前記内燃機関の排気通路を流れる排気ガ
スと、前記エンジンオイル−冷却水熱交換器からの冷却
水との間で熱交換を行う排気ガス−冷却水熱交換器とを
備えていることを特徴とする内燃機関の廢熱回収装置を
提供する。
As a means for solving the above-mentioned problems, the present invention is a cooling device provided outside an internal combustion engine for exchanging heat between cooling water and a refrigerant from the internal combustion engine. Water-refrigerant heat exchanger, engine oil circulated inside the internal combustion engine, and engine oil-cooling water heat exchanger that performs heat exchange between the cooling water from the cooling water-refrigerant heat exchanger, An exhaust gas-cooling water heat exchanger for performing heat exchange between exhaust gas flowing through an exhaust passage of the internal combustion engine and cooling water from the engine oil-cooling water heat exchanger, A heat recovery device for an internal combustion engine is provided.

【0009】本発明の解決手段によれば、内燃機関の外
部に設けられた冷却水−冷媒熱交換器において冷媒に内
燃機関の廢熱を与えることによって低温となった冷却水
は、先ずエンジンオイル−冷却水熱交換器に流入して、
内燃機関から送り出された比較的高温のエンジンオイル
によって加熱され、適度に昇温してから排気ガス−冷却
水熱交換器へ流入し、高温の排気ガスから廢熱を吸収す
る。従って、従来の同種のものに比べて、排気ガス−冷
却水熱交換器における排気ガスと冷却水の温度差が小さ
くなり、排気ガス−冷却水熱交換器の壁面の亀裂や変形
による破損が防止される。排気ガス−冷却水熱交換器を
通過した冷却水は、更に機関本体の冷却水通路を流れて
内燃機関を冷却することによって廢熱を吸収し、前述の
ように冷却水−冷媒熱交換器へ流出する。
According to the solution of the present invention, the cooling water provided outside the internal combustion engine--the cooling water that has been cooled to a low temperature by applying the internal heat of the internal combustion engine to the refrigerant in the refrigerant heat exchanger is the engine oil-- Flowing into the cooling water heat exchanger,
It is heated by the relatively high temperature engine oil sent from the internal combustion engine, rises to an appropriate temperature, then flows into the exhaust gas-cooling water heat exchanger, and absorbs the residual heat from the high temperature exhaust gas. Therefore, the temperature difference between the exhaust gas and the cooling water in the exhaust gas-cooling water heat exchanger is smaller than that of the same type as in the related art, and damage due to cracks or deformation of the wall surface of the exhaust gas-cooling water heat exchanger is prevented. To be done. The cooling water that has passed through the exhaust gas-cooling water heat exchanger further flows through the cooling water passage of the engine main body to cool the internal combustion engine, thereby absorbing the residual heat and flowing out to the cooling water-refrigerant heat exchanger as described above. To do.

【0010】[0010]

【発明の実施の形態】図1に、本発明の内燃機関の廢熱
回収装置の実施形態の一つとしての、ガスヒートポンプ
エンジンシステム12を例示する。また図2は図1の一
部を拡大して示す詳細図である。この実施形態におい
て、図3に示し先に説明した従来のガスヒートポンプエ
ンジン1における構成部分と実質的に同じ構成部分につ
いては、同じ参照符号を付すことによって重複する詳細
な説明を省略する。即ち、2はシリンダブロック、3は
オイルパン、5は排気マニホールド、5aは排気マニホ
ールドの冷却水通路、6は接続管、7はウオータポン
プ、8は冷却水出口配管、9はサブタンク、そして11
は下方の導管をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a gas heat pump engine system 12 as one of embodiments of an internal combustion engine scavenging heat recovery apparatus of the present invention. 2 is a detailed view showing a part of FIG. 1 in an enlarged manner. In this embodiment, components that are substantially the same as those of the conventional gas heat pump engine 1 shown in FIG. 3 and described above are denoted by the same reference numerals, and redundant detailed description will be omitted. That is, 2 is a cylinder block, 3 is an oil pan, 5 is an exhaust manifold, 5a is a cooling water passage for the exhaust manifold, 6 is a connecting pipe, 7 is a water pump, 8 is a cooling water outlet pipe, 9 is a sub tank, and 11
Indicate the lower conduits, respectively.

【0011】本発明によるガスヒートポンプエンジンシ
ステム12におけるエンジン本体12aは、従来のガス
ヒートポンプエンジンシステム1におけるエンジン本体
1aと基本的に同様なものであってもよいが、異なる点
として、オイルパン3の上部に、シリンダヘッド内の吸
気弁や排気弁を駆動するカムやカム軸等を潤滑した後に
オイルパン3へ落下する比較的高温のエンジンオイルを
受け止め、それを集めて導管13へ導くガイドプレート
14を備えている。
The engine body 12a of the gas heat pump engine system 12 according to the present invention may be basically the same as the engine body 1a of the conventional gas heat pump engine system 1, except that the oil pan 3 is different. A guide plate 14 that receives the relatively high temperature engine oil that drops into the oil pan 3 after lubricating the cams and cam shafts that drive the intake valve and the exhaust valve in the cylinder head, and collects and guides it to the conduit 13 Is equipped with.

【0012】導管13は、特設された熱交換器15と、
その下流側に接続される導管16と共に、従来のガスヒ
ートポンプエンジンシステム1における上方の導管10
に対応するもので、導管13及び16は下方の導管11
よりも上方の位置を通るように設けられている。もっと
も、導管13へ比較的高温のエンジンオイルを強制的に
送り込むために何らかのポンプ手段を設ける場合には、
導管13,導管16と導管11との上下の位置関係は問
題にならない。
The conduit 13 has a special heat exchanger 15 and
With the conduit 16 connected downstream thereof, the upper conduit 10 in the conventional gas heat pump engine system 1
Conduits 13 and 16 correspond to the lower conduit 11
It is provided so as to pass through a position above. However, in the case of providing some pumping means for forcibly feeding the engine oil of relatively high temperature into the conduit 13,
The vertical positional relationship between the conduits 13, 16 and 11 does not matter.

【0013】比較的高温のエンジンオイルをサブタンク
9へ導く導管13と導管16の間に挿入される熱交換器
15の具体的な構造例が図2に示されている。この熱交
換器15はマルチフロー型のものであるが、言うまでも
なく、熱交換器15はそのような形式のものに限られる
訳ではないので、例えばサーペンタイン型のものであっ
てもよい。図示の実施形態の場合、熱交換器15におい
てエンジンオイルの通路を形成する密閉された箱型の容
器17の対向する2つの壁面17a,17bには、オイ
ルパン3とサブタンク9に通じる導管13及び導管16
がそれぞれ開口するように接続されている。
FIG. 2 shows a specific structural example of the heat exchanger 15 inserted between the conduit 13 and the conduit 16 for guiding the engine oil of relatively high temperature to the sub tank 9. This heat exchanger 15 is a multi-flow type, but needless to say, the heat exchanger 15 is not limited to such a type, and may be, for example, a serpentine type. In the case of the illustrated embodiment, the two wall surfaces 17 a and 17 b facing each other of the closed box-shaped container 17 forming the engine oil passage in the heat exchanger 15 have the oil pan 3 and the conduit 13 leading to the sub-tank 9. Conduit 16
Are connected so as to open.

【0014】容器17の内部の下部及び上部には、それ
ぞれ冷却水のためのロアタンク18とアッパータンク1
9が概ね平行に支持されており、それらを上下方向に橋
絡する相互に平行な多数の熱交換チューブ20がタンク
18と19を連通している。チューブ20にはアルミニ
ウムや銅合金のような熱伝導に優れた材料を用いる。な
お、熱交換チューブ20には同様な材質の相互に平行な
多数の熱交換フィンを取り付けて熱交換効率を高めるこ
とができ、また、熱交換チューブ20として偏平な断面
形状を有するものを使用する場合には、それらの間に波
状のコルゲートフィンを取り付けることもできる。
A lower tank 18 for cooling water and an upper tank 1 for cooling water are provided inside and below the container 17, respectively.
9 are supported substantially parallel to each other, and a large number of heat exchange tubes 20 parallel to each other bridging them in the vertical direction communicate the tanks 18 and 19. The tube 20 is made of a material having excellent heat conduction such as aluminum or copper alloy. It should be noted that the heat exchange tube 20 can be provided with a large number of parallel heat exchange fins made of the same material to enhance heat exchange efficiency, and the heat exchange tube 20 having a flat cross section is used. In some cases, corrugated corrugated fins can be attached between them.

【0015】ロアタンク18には、従来のガスヒートポ
ンプエンジンシステム1における冷却水入口配管4と同
様に、図示しない冷凍サイクルの冷媒蒸発器から戻って
来る低温の冷却水を導く冷却水入口配管21が、熱交換
器15の容器17の側壁を液密に貫通して接続される。
また、アッパータンク19には、熱交換器15によって
若干加熱された冷却水を排気マニホールド5の冷却水通
路5aへ導く接続管22が、熱交換器15の容器17の
上壁を液密に貫通して接続される。
Similar to the cooling water inlet pipe 4 in the conventional gas heat pump engine system 1, the lower tank 18 is provided with a cooling water inlet pipe 21 for guiding low temperature cooling water returning from a refrigerant evaporator of a refrigeration cycle (not shown). The side wall of the container 17 of the heat exchanger 15 is liquid-tightly connected and connected.
In addition, in the upper tank 19, a connecting pipe 22 for guiding the cooling water slightly heated by the heat exchanger 15 to the cooling water passage 5a of the exhaust manifold 5 penetrates the upper wall of the container 17 of the heat exchanger 15 in a liquid-tight manner. And then connected.

【0016】図示の実施形態はこのような構成を有する
ので、エンジン本体12aはガスヒートポンプエンジン
システム12の一部である図示しない冷凍サイクルにお
ける冷媒圧縮機等を回転駆動するが、冷却水はエンジン
本体12aを冷却することによって温水となり、ウオー
タポンプ7の作動によって冷却水出口配管8からヒート
ポンプである冷凍サイクルの冷媒蒸発器へ送られ、冷凍
サイクルの冷媒を加熱して蒸発させるために使用され
る。冷媒に熱を与えて蒸発させることにより冷却されて
低温となった冷却水は、冷却水入口配管21を通って熱
交換器15のロアタンク18へ戻って来る。そして、多
数の熱交換チューブ20に分流してアッパータンク19
へ流れる間に、熱交換器15の容器17内を流れるエン
ジンオイルとの間で熱交換を行う。
Since the illustrated embodiment has such a structure, the engine body 12a rotationally drives the refrigerant compressor or the like in a refrigeration cycle (not shown) which is a part of the gas heat pump engine system 12, but the cooling water is used for the engine body. By cooling 12a, it becomes warm water, which is sent from the cooling water outlet pipe 8 to the refrigerant evaporator of the refrigeration cycle, which is a heat pump, by the operation of the water pump 7, and is used for heating and evaporating the refrigerant of the refrigeration cycle. The cooling water cooled to a low temperature by giving heat to the refrigerant to evaporate returns to the lower tank 18 of the heat exchanger 15 through the cooling water inlet pipe 21. Then, the heat is divided into a large number of heat exchange tubes 20, and the upper tank 19
During the flow of heat, heat is exchanged with the engine oil flowing in the container 17 of the heat exchanger 15.

【0017】容器17内を流れるエンジンオイルは、前
述のようにエンジン本体12aのシリンダヘッド内でカ
ム軸等を潤滑する間に熱を吸収して高温となっており、
それがオイルパン3内へ落下したときにガイドプレート
14によって受け止められ、合流して導管13によって
熱交換器15内へ流入するので、相当の熱量をエンジン
本体12aから熱交換器15内へ運び込むことになる。
そして、比較的高温のエンジンオイルが熱交換器15内
を流れる間に熱交換チューブ20内を流れる低温の冷却
水に熱を与え、冷却水の温度を若干高める。
The engine oil flowing in the container 17 absorbs heat during the lubrication of the cam shaft and the like in the cylinder head of the engine body 12a as described above, and has a high temperature.
When it falls into the oil pan 3, it is received by the guide plate 14, merges and flows into the heat exchanger 15 through the conduit 13, so that a considerable amount of heat is carried from the engine body 12a into the heat exchanger 15. become.
Then, while the relatively high temperature engine oil flows in the heat exchanger 15, heat is applied to the low temperature cooling water flowing in the heat exchange tube 20 to slightly raise the temperature of the cooling water.

【0018】このようにして、熱交換器15を通過する
比較的高温のエンジンオイルは、冷却水入口配管21か
ら流入する低温の冷却水によって冷却されるので、冷却
されたエンジンオイルは導管16を通ってサブタンク9
へ流れ、サブタンク9内に一時貯溜された後に下方の導
管11を通過して再びエンジン本体12aのオイルパン
3内へ戻る時には適度の低温となっている。また、この
ようなオイルパン3から熱交換器15へ、更にサブタン
ク9からオイルパン3へのエンジンオイルの循環は適当
なポンプ手段を設けて強制的に行わせることも可能であ
る。
In this way, the relatively high temperature engine oil passing through the heat exchanger 15 is cooled by the low temperature cooling water flowing from the cooling water inlet pipe 21, so that the cooled engine oil flows through the conduit 16. Through sub tank 9
When it returns to the inside of the oil pan 3 of the engine body 12a after passing through the lower conduit 11 after being temporarily stored in the sub tank 9, the temperature is moderately low. Further, the circulation of the engine oil from the oil pan 3 to the heat exchanger 15 and further from the sub tank 9 to the oil pan 3 can be forcedly performed by providing an appropriate pump means.

【0019】熱交換器15を通過した後の冷却水は、比
較的高温のエンジンオイルを冷却することによって加熱
されて適度に昇温しているので、接続管22を経て排気
マニホールド5内の冷却水通路5aを流れるときのエン
ジンオイルの温度と、同じ排気マニホールド5内を流れ
る排気ガスの温度との間の温度差は、従来のそれよりも
小さくなっている。従って、排気マニホールド5の冷却
水通路5aに亀裂や変形が生じる恐れが解消し、排気マ
ニホールド5の破損が予防される。
The cooling water that has passed through the heat exchanger 15 is heated by cooling the relatively high temperature engine oil and has an appropriate temperature rise. Therefore, the cooling water inside the exhaust manifold 5 is cooled through the connecting pipe 22. The temperature difference between the temperature of the engine oil flowing through the water passage 5a and the temperature of the exhaust gas flowing through the same exhaust manifold 5 is smaller than that of the conventional one. Therefore, the possibility that the cooling water passage 5a of the exhaust manifold 5 is cracked or deformed is eliminated, and damage to the exhaust manifold 5 is prevented.

【0020】また、排気マニホールド5の冷却水通路5
aを通過する冷却水の温度が従来のそれよりも高くなる
ために、排気ガスが有する廢熱を回収する効率が若干低
下するが、その代わりに熱交換器15において冷却水に
よってエンジンオイルの廢熱を回収するので、ガスヒー
トポンプエンジンシステム12全体として、冷却水が回
収する廢熱の量は概ね同じ程度となり、システム全体の
廢熱の回収効率が低下することはない。
Further, the cooling water passage 5 of the exhaust manifold 5
Since the temperature of the cooling water passing through a becomes higher than that of the conventional one, the efficiency of recovering the residual heat of the exhaust gas is slightly reduced, but instead, the heat of the engine oil is reduced by the cooling water in the heat exchanger 15. Since the gas heat pump engine system 12 as a whole is recovered, the amount of the residual heat recovered by the cooling water is approximately the same, and the efficiency of recovering the residual heat of the entire system does not decrease.

【0021】[0021]

【発明の効果】本発明による内燃機関の廢熱回収装置は
前述のように構成されるので、冷却水通路と排気通路が
接する壁面の亀裂や、その周辺の変形、破損を予防する
ことができるだけでなく、内燃機関全体からの廢熱の回
収効率を実質的に低下させることがないという効果を奏
する。
Since the scavenging heat recovery apparatus for an internal combustion engine according to the present invention is configured as described above, it is possible to prevent cracks on the wall surface where the cooling water passage and the exhaust passage are in contact with each other, and also to prevent deformation and damage around the wall surface. Therefore, there is an effect that the efficiency of recovering the waste heat from the entire internal combustion engine is not substantially reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の内燃機関の廢熱回収装置の一実施形態
として、ガスヒートポンプエンジンシステムの要部を例
示する斜視図である。
FIG. 1 is a perspective view illustrating a main part of a gas heat pump engine system as an embodiment of a scavenging heat recovery apparatus for an internal combustion engine of the present invention.

【図2】図1の一部を拡大して示すより詳細な斜視図で
ある。
FIG. 2 is a more detailed perspective view showing a part of FIG. 1 in an enlarged manner.

【図3】従来のガスヒートポンプエンジンシステムの要
部を示す斜視図である。
FIG. 3 is a perspective view showing a main part of a conventional gas heat pump engine system.

【符号の説明】[Explanation of symbols]

1…従来のガスヒートポンプエンジンシステム 1a…エンジン本体 2…シリンダブロック 3…オイルパン 4…冷却水入口配管 5…排気マニホールド 5a…冷却水通路(排気ガス−冷却水熱交換器) 7…ウオータポンプ 8…冷却水出口配管 10,11…導管 12…本発明によるガスヒートポンプエンジンシステム 13,16…導管 14…ガイドプレート 15…熱交換器(エンジンオイル−冷却水熱交換器) 17…容器 20…熱交換チューブ 21…冷却水入口配管 DESCRIPTION OF SYMBOLS 1 ... Conventional gas heat pump engine system 1a ... Engine main body 2 ... Cylinder block 3 ... Oil pan 4 ... Cooling water inlet piping 5 ... Exhaust manifold 5a ... Cooling water passage (exhaust gas-cooling water heat exchanger) 7 ... Water pump 8 Cooling water outlet pipe 10, 11 ... Conduit 12 ... Gas heat pump engine system according to the present invention 13, 16 ... Conduit 14 ... Guide plate 15 ... Heat exchanger (engine oil-cooling water heat exchanger) 17 ... Vessel 20 ... Heat exchange Tube 21 ... Cooling water inlet piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01P 11/08 F01P 11/08 A F02G 5/02 F02G 5/02 A 5/04 5/04 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location F01P 11/08 F01P 11/08 A F02G 5/02 F02G 5/02 A 5/04 5/04 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の外部に設けられ、前記内燃機
関からの冷却水と冷媒との間で熱交換を行う冷却水−冷
媒熱交換器と、 前記内燃機関の内部を循環したエンジンオイルと、前記
冷却水−冷媒熱交換器からの冷却水との間で熱交換を行
うエンジンオイル−冷却水熱交換器と、 前記内燃機関の排気通路を流れる排気ガスと、前記エン
ジンオイル−冷却水熱交換器からの冷却水との間で熱交
換を行う排気ガス−冷却水熱交換器と、を備えているこ
とを特徴とする内燃機関の廢熱回収装置。
1. A cooling water-refrigerant heat exchanger provided outside the internal combustion engine for exchanging heat between cooling water from the internal combustion engine and a refrigerant, and engine oil circulated inside the internal combustion engine. An engine oil-cooling water heat exchanger for exchanging heat with the cooling water from the cooling water-refrigerant heat exchanger; an exhaust gas flowing through an exhaust passage of the internal combustion engine; and an engine oil-cooling water heat. An exhaust gas-cooling water heat exchanger for exchanging heat with the cooling water from the exchanger, and a waste heat recovery device for an internal combustion engine.
【請求項2】 前記排気ガス−冷却水熱交換器が、前記
内燃機関の排気マニホールド内に形成されていることを
特徴とする請求項1に記載された内燃機関の廢熱回収装
置。
2. The waste heat recovery device for an internal combustion engine according to claim 1, wherein the exhaust gas-cooling water heat exchanger is formed in an exhaust manifold of the internal combustion engine.
【請求項3】 前記エンジンオイル−冷却水熱交換器へ
のエンジンオイルの流れを導くために、前記内燃機関の
オイルパン内にガイド手段が設けられていることを特徴
とする請求項1又は2に記載された内燃機関の廢熱回収
装置。
3. A guide means is provided in an oil pan of the internal combustion engine for guiding a flow of engine oil to the engine oil-cooling water heat exchanger. A heat recovery device for an internal combustion engine described in 1.
JP7196699A 1995-08-01 1995-08-01 Waste heat recovery system of internal combustion engine Pending JPH0941957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7196699A JPH0941957A (en) 1995-08-01 1995-08-01 Waste heat recovery system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7196699A JPH0941957A (en) 1995-08-01 1995-08-01 Waste heat recovery system of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0941957A true JPH0941957A (en) 1997-02-10

Family

ID=16362123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7196699A Pending JPH0941957A (en) 1995-08-01 1995-08-01 Waste heat recovery system of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0941957A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
KR101157924B1 (en) * 2010-09-29 2012-06-25 대우조선해양 주식회사 Waste Heat Recovery System Using Engine Coolant of Vessel
CN103234268A (en) * 2013-04-11 2013-08-07 王子忠 Environment-friendly energy-saving bathroom waste heat energy recycling heat pump water heater system
CN105240101A (en) * 2015-11-24 2016-01-13 安徽江淮汽车股份有限公司 Engine cooling system
CN105257426A (en) * 2015-10-13 2016-01-20 哈尔滨工程大学 Marine diesel engine tail gas waste heat power generation system utilizing S-CO2 and ORC combined cycle
JP2019138197A (en) * 2018-02-08 2019-08-22 いすゞ自動車株式会社 Radiator and engine cooling system
CN110185538A (en) * 2019-05-29 2019-08-30 海南民生管道燃气有限公司 One kind is provided multiple forms of energy to complement each other distributed energy resource system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157924B1 (en) * 2010-09-29 2012-06-25 대우조선해양 주식회사 Waste Heat Recovery System Using Engine Coolant of Vessel
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
US9658005B2 (en) 2010-11-18 2017-05-23 Hamilton Sundstrand Corporation Heat exchanger system
CN103234268A (en) * 2013-04-11 2013-08-07 王子忠 Environment-friendly energy-saving bathroom waste heat energy recycling heat pump water heater system
CN105257426A (en) * 2015-10-13 2016-01-20 哈尔滨工程大学 Marine diesel engine tail gas waste heat power generation system utilizing S-CO2 and ORC combined cycle
CN105240101A (en) * 2015-11-24 2016-01-13 安徽江淮汽车股份有限公司 Engine cooling system
JP2019138197A (en) * 2018-02-08 2019-08-22 いすゞ自動車株式会社 Radiator and engine cooling system
CN110185538A (en) * 2019-05-29 2019-08-30 海南民生管道燃气有限公司 One kind is provided multiple forms of energy to complement each other distributed energy resource system

Similar Documents

Publication Publication Date Title
US8459388B2 (en) Evaporation cycle heat exchange system for vehicle
CN101349515B (en) Exhaust heat recovery apparatus
CN100567712C (en) Exhaust heat recovery apparatus
US20110083920A1 (en) Vehicle with rankine cycle system and refrigerating cycle system
CN103906987A (en) Stacked plate exhaust gas recovery device
US6772602B2 (en) Cooling system for a vehicle
CN1227492C (en) Main body of absorbing air-conditioner
JPH0941957A (en) Waste heat recovery system of internal combustion engine
CN201258798Y (en) Heat pipe EGR cooler
CN101289976A (en) Hot pipe EGR cooler
JP2010018151A (en) Vehicular heat exchanger
CN101307736B (en) Two stage hot pipe EGR cooler
JP2548380B2 (en) Heat exchanger
JP2609649B2 (en) Engine cooling device with exhaust heat recovery device
WO2021148829A1 (en) Cooling system for vehicle
JP7212149B2 (en) An assembly that evaporates liquefied gas to provide combustion gases for an engine
CN210881595U (en) Thermal management system and vehicle
JP2762125B2 (en) Engine driven heat pump
JP5872329B2 (en) Ship fuel supply system
CN201311217Y (en) Two-stage heat pipe EGR cooler
US20240263885A1 (en) Heat Exchanger for an Internal Combustion Engine
WO1986005552A1 (en) Heat transfer bracket device
JP2017137841A (en) Gas cooler mounted with heat storage function and gas cooling device for internal combustion engine
US1632580A (en) Vapor-cooling system
JP2021063599A (en) Heat exchanger

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120