JPH0938503A - Photocatalyst device - Google Patents

Photocatalyst device

Info

Publication number
JPH0938503A
JPH0938503A JP7192819A JP19281995A JPH0938503A JP H0938503 A JPH0938503 A JP H0938503A JP 7192819 A JP7192819 A JP 7192819A JP 19281995 A JP19281995 A JP 19281995A JP H0938503 A JPH0938503 A JP H0938503A
Authority
JP
Japan
Prior art keywords
light
light guide
emitting diode
photocatalyst
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7192819A
Other languages
Japanese (ja)
Other versions
JP3689939B2 (en
Inventor
Osamu Yamanaka
修 山中
Tadanobu Iwasa
忠信 岩佐
Masato Tamaki
真人 田牧
Kazuhiro Sakai
和宏 酒井
Toshio Yamaguchi
寿夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP19281995A priority Critical patent/JP3689939B2/en
Priority to US08/687,667 priority patent/US5919422A/en
Publication of JPH0938503A publication Critical patent/JPH0938503A/en
Application granted granted Critical
Publication of JP3689939B2 publication Critical patent/JP3689939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

PROBLEM TO BE SOLVED: To provide a compact photocatalyst device of high utilizing efficiency of ultraviolet rays and applicable to a small site and the like in which the photocatalyst reaction of a photocatalyst is utilized for purification and sterilization of water and air and the like. SOLUTION: A device comprises a light guide 1 formed by a transparent material, a titanium dioxide film 4 used as a photocatalyst formed on the surface of the light guide 1 and a light-emitting diode 3 set close to the light guide 1 and emitting ultraviolet rays of wave length of 360-400nm to the light guide 1. As the light-emitting diode 3 is used as an ultraviolet source for activating the film 4, the whole of the device can be formed compact. Also, as the ultraviolet rays are transmitted through the inside of the light guide 1, the majority of ultraviolet rays is emitted to the film 4, and the efficiency of use of ultraviolet rays is high. The purification and sterilization of water and the like, therefore, can be carried out efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は二酸化チタンの薄膜
からなる光触媒反応による光触媒反応を利用した光触媒
装置及に関するもので、具体的には、脱臭、殺菌(抗
菌)、防汚、飲料水等の水の浄化等に応用可能な光触媒
装置に関するものである。
TECHNICAL FIELD The present invention relates to a photocatalytic device utilizing a photocatalytic reaction by a photocatalytic reaction composed of a thin film of titanium dioxide, and more specifically, to deodorizing, sterilizing (antibacterial), antifouling, drinking water, etc. The present invention relates to a photocatalytic device applicable to water purification and the like.

【0002】[0002]

【従来の技術】近年、二酸化チタンTiO2 に代表され
る光半導体の微粒子による光触媒作用、特にその強い酸
化触媒作用に高い注目が集められている。即ち、二酸化
チタン等の光半導性を有する粒子状物質をそのバンドキ
ャップエネルギ以上の光(二酸化チタンの場合は400
nm以下の光、即ち、紫外線)で照射すると、価電子帯
の電子が光励起されて伝導帯に移り、伝導帯には自由電
子が生成すると共に、価電子帯には正の電荷を帯びた粒
子(正孔)が生成する。これらの正孔と電子とは半導体
粒子内部を運動し、時間の経過と共に再結合して消滅す
る。しかしその粒子表面に空気または水、或いはそれら
の正孔や電子よりもエネルギの低い空順位を有する化合
物やイオンが存在すると、その粒子表面を通してそれら
の正孔と電子が化合物やイオンに移動し、その結果、正
孔は粒子表面に接触する化合物やイオンを直接酸化し、
或いは活性酸素の1つである水酸基ラジカルを生成す
る。
2. Description of the Related Art In recent years, much attention has been paid to the photocatalytic action of fine particles of an optical semiconductor represented by titanium dioxide TiO 2 , and particularly to its strong oxidation catalytic action. That is, a particulate matter having a light semiconducting property such as titanium dioxide is converted into light having a band cap energy equal to or more than that (in the case of titanium dioxide,
When irradiated with light having a wavelength of nm or less, that is, ultraviolet rays, electrons in the valence band are photoexcited and move to the conduction band, free electrons are generated in the conduction band, and particles having a positive charge in the valence band. (Hole) is generated. These holes and electrons move inside the semiconductor particles and recombine with time to disappear. However, if air or water, or a compound or ion having a lower vacancy than the holes or electrons exists on the particle surface, those holes and electrons move to the compound or ion through the particle surface, As a result, the holes directly oxidize compounds and ions that come into contact with the particle surface,
Alternatively, a hydroxyl radical, which is one of active oxygen, is generated.

【0003】また、電子による還元反応は主に酸素の還
元であり、電子が付加された酸化性のある酸素種が生成
される。こうして、光半導体微粒子は光が照射されるこ
とによって酸化性の活性表面を形成し、有機化合物の分
解等に触媒として作用する(「季刊 化学総説 『光が
関わる触媒化学』No.23,1994)。このような
光半導体微粒子による酸化触媒作用は、光半導体の中で
も二酸化チタンが特に高い。また、二酸化チタンは安定
性や安全性にも優れている。そして、この二酸化チタン
の微粉末を薄膜として基体表面に担持して光触媒を形成
し、紫外線照射時のその高い酸化力を有機化合物等の分
解に利用した種々の応用が既に知られている。
Further, the reduction reaction by electrons is mainly reduction of oxygen, and oxidative oxygen species to which electrons are added are generated. In this way, the photo-semiconductor fine particles form an oxidative active surface when irradiated with light, and act as a catalyst for decomposition of organic compounds, etc. Among the optical semiconductors, titanium dioxide is particularly high in the oxidation catalytic action by such optical semiconductor fine particles, and titanium dioxide is also excellent in stability and safety. Various applications have already been known in which a photocatalyst is formed by supporting it on the surface of a substrate, and its high oxidizing power during irradiation of ultraviolet rays is utilized for decomposing organic compounds and the like.

【0004】例えば、二酸化チタンの薄膜からなる光触
媒をコーティングした中空のガラスビーズは海上に流出
した原油の分解剤として知られている。すなわち、ガラ
スビーズ表面に付着した原油は太陽光中の紫外線によっ
て活性化された二酸化チタンの強い酸化触媒作用によっ
て分解される。また最近では、室内空気の脱臭または消
臭、殺菌(抗菌)、タバコのヤニや油膜等の汚れの分解
にもその応用が試みられ、自然光または蛍光灯の光に含
まれる紫外線を利用してその光触媒を活性化させ、それ
の酸触媒反応によって接触するメルカブタン等の臭気化
合物、或いはタバコのヤニ等の有機物を分解し、また
は、細菌等の微生物を死滅させ、またはその繁殖を抑え
るものである。
For example, hollow glass beads coated with a photocatalyst consisting of a thin film of titanium dioxide are known as a decomposing agent for crude oil that has flowed out to the sea. That is, the crude oil attached to the surface of the glass beads is decomposed by the strong oxidation catalytic action of titanium dioxide activated by ultraviolet rays in sunlight. Recently, its application has been tried for deodorization or deodorization of indoor air, sterilization (antibacterial), and decomposition of stains such as tars and oil slicks of cigarettes, using ultraviolet light contained in natural light or fluorescent light. It activates a photocatalyst and decomposes an odorous compound such as mercaptan or an organic substance such as tobacco tar that is brought into contact by its acid-catalyzed reaction, or kills microorganisms such as bacteria, or suppresses the growth thereof.

【0005】[0005]

【発明が解決しようとする課題】従来は、二酸化チタン
(TiO2 )の薄膜を活性化させる紫外線源として、太
陽光や蛍光灯に頼っていた。このため、太陽で照射され
ていない所では利用できないとか、大きな蛍光灯を必要
とした。本発明はかかる不都合を解消するもので、手軽
に利用できかつ効率的に紫外線を二酸化チタン(TiO
2 )の薄膜に照射できる光触媒装置を提供するものであ
る。
Conventionally, sunlight or a fluorescent lamp has been used as an ultraviolet ray source for activating a thin film of titanium dioxide (TiO 2 ). For this reason, it cannot be used in places not illuminated by the sun, and a large fluorescent lamp was required. The present invention eliminates such inconvenience, and it can be easily used and efficiently emits ultraviolet rays of titanium dioxide (TiO 2).
The present invention provides a photocatalytic device capable of irradiating the thin film of 2 ).

【0006】[0006]

【課題を解決するための手段】本発明の光触媒装置は、
透明材料で形成された導光体と、該導光体の表面に形成
された光触媒となる二酸化チタンの薄膜と、導光体に近
接して設けられ該導光体に波長360〜400nmの紫
外線を放射する発光ダイオ−ドと、を具備することを特
徴とする。すなわち、本発明の光触媒装置は、光を通す
導光体を用い、導光体内部を通る紫外線がその導光体表
面に形成された光触媒を直接活性化する。また、紫外線
源として発光ダイオ−ドを用いている。これら導光体お
よび発光ダイオ−ドを用いることにより、紫外線を有効
に利用できるとともに、コンパクト化でき、手軽な利用
を可能としている。
The photocatalytic device of the present invention comprises:
A light guide formed of a transparent material, a thin film of titanium dioxide serving as a photocatalyst formed on the surface of the light guide, and an ultraviolet ray having a wavelength of 360 to 400 nm provided in the vicinity of the light guide And a light emitting diode that emits light. That is, the photocatalyst device of the present invention uses a light guide that allows light to pass, and the ultraviolet rays passing through the inside of the light guide directly activate the photocatalyst formed on the surface of the light guide. Further, a light emitting diode is used as an ultraviolet ray source. By using the light guide and the light emitting diode, ultraviolet rays can be effectively used and can be made compact, which enables easy use.

【0007】本発明の導光体は、通常光を導くものとし
て利用されているもので、具体的には、紫外線が通過す
る透明ガラスまたは透明樹脂で形成されている。導光体
の形状は、棒状、繊維状、板状あるいはバルク状とする
ことができる。なお、導光体は、単に光を透過させるも
のではなく、光を導くもので、光は表面とほぼ平行に導
かれる。例えば、窓ガラスは光がガラス表面を横断する
方向に通過する。このため窓ガラスは導光体ではない。
しかし側端面に光源を配置し、側端面より光を導入して
ガラス板の伸びる方向、すなわち、ガラス面とほぼ平行
にガラス内を光を通過させる場合、このガラス板は導光
体となる。
The light guide of the present invention is generally used for guiding light, and is specifically made of transparent glass or transparent resin through which ultraviolet rays pass. The light guide may have a rod shape, a fiber shape, a plate shape, or a bulk shape. It should be noted that the light guide body guides light rather than merely transmitting light, and the light is guided substantially parallel to the surface. For example, glazing passes through light in a direction transverse to the glass surface. Therefore, the window glass is not a light guide.
However, when a light source is arranged on the side end face and light is introduced from the side end face to allow the light to pass through the glass in a direction in which the glass plate extends, that is, substantially parallel to the glass face, the glass plate serves as a light guide.

【0008】光触媒となる二酸化チタンの薄膜は、空気
あるいは水等の触媒作用を受ける流体と接触する導光体
の表面に形成されている。この二酸化チタンの薄膜を形
成する二酸化チタンの粒子径は、十分に小さいほど「量
子サイズ効果」等によって光触媒作用が高い。そのた
め、その薄膜は、二酸化チタンのコロイドを基体表面に
塗布し焼成する等の方法によって、一般に0.3μm以
下、好ましくは0.2μm以下の膜厚の透明な薄膜とし
て、またはそのような薄膜を多層化した薄膜として形成
するのが好ましい。また、物理的蒸着法(PVD)や化
学的蒸着法(CVD)等の方法によって形成することも
できる。
A thin film of titanium dioxide, which serves as a photocatalyst, is formed on the surface of the light guide body which comes into contact with a fluid such as air or water which is subjected to a catalytic action. The smaller the particle size of titanium dioxide forming the titanium dioxide thin film, the higher the photocatalytic action due to the "quantum size effect" or the like. Therefore, the thin film is formed as a transparent thin film having a thickness of generally 0.3 μm or less, preferably 0.2 μm or less by a method such as coating a titanium dioxide colloid on the surface of the substrate and baking, or forming such a thin film. It is preferably formed as a multi-layered thin film. It can also be formed by a method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).

【0009】本発明の発光ダイオ−ドは、紫外線を放出
できるもので、具体的にはpn接合された窒化ガリウム
(GaN)系光半導体の結晶体で構成することができ
る。このpn接合された窒化ガリウム(GaN)系光半
導体の結晶体は、波長360〜400nmの光(電磁
波)、即ち、紫外線を放射する。本発明の光触媒装置
は、導光体に近接して発光ダイオ−ドが設けられてい
る。導光体の端面に発光ダイオードを固着してもよい。
また、導光体の端部にケースを固定し、このケース内に
発光ダイオードを収納してもよい。また、ケース内には
発光ダイオードに電流を供給する電池、電池のホンオフ
スイッチ等を設けてもよい。
The light emitting diode of the present invention is capable of emitting ultraviolet rays, and specifically, can be formed of a pn-junction gallium nitride (GaN) optical semiconductor crystal. This pn-junction gallium nitride (GaN) optical semiconductor crystal emits light (electromagnetic wave) having a wavelength of 360 to 400 nm, that is, ultraviolet rays. The photocatalyst device of the present invention is provided with a light emitting diode near the light guide. A light emitting diode may be fixed to the end surface of the light guide.
Further, a case may be fixed to the end portion of the light guide, and the light emitting diode may be housed in this case. Further, a battery for supplying a current to the light emitting diode, a battery off switch for the battery, and the like may be provided in the case.

【0010】本発明の光触媒装置として。下記の実施例
に示すように、導光体を棒状のガラスで形成し、この棒
状のガラスの一端にこのガラスより太いケースを設け、
このケース内に発光ダイオードおよび発光ダイオードに
電流を供給する電池を収納したものとすることができ
る。このものはマドラーとして使用することができる。
また、この装置は、空気あるいは水が通過する流体中に
配置し、空気または水の脱臭または消臭、殺菌(抗
菌)、有機物の分解等に使用できる。
As the photocatalytic device of the present invention. As shown in the following examples, the light guide body is formed of rod-shaped glass, and a case thicker than this glass is provided at one end of the rod-shaped glass,
In this case, a light emitting diode and a battery for supplying a current to the light emitting diode may be housed. This can be used as a muddler.
Further, this device is arranged in a fluid through which air or water passes, and can be used for deodorization or deodorization of air or water, sterilization (antibacterial), decomposition of organic substances, and the like.

【0011】また、導光体を繊維状とし、その一端を基
部に固定し、かつ基部中に発光ダイオードを収納し、紫
外線を繊維状の導光体に導き、導光体を発光させる光装
飾体として使用することができる。この場合には、発光
ダイオードは紫外線以外に可視光線を放射するものであ
ることが必要となる。
Further, the light guide is made into a fibrous shape, one end of which is fixed to the base part, and a light emitting diode is housed in the base part to guide ultraviolet rays to the fibrous light guide body so that the light guide body emits light. Can be used as a body. In this case, the light emitting diode needs to emit visible light in addition to ultraviolet light.

【0012】[0012]

【作用】本発明の光触媒装置は、波長360〜400n
mの光(紫外線)を主に放射する発光ダイオ−ドを備え
るので、太陽光が当たらない場所であっても使用でき
る。また、発光ダイオ−ドは非常に小さな発光素子であ
ると共に、作動電圧が小さいため、乾電池等によっても
発光させることができる。そのため、発光ダイオ−ドは
設置のための空間を多く必要としないので、狭い場所を
含むあらゆる場所に容易に適用することができ、また、
光触媒を担持した基体と合わせた光触媒装置全体を、コ
ンパクトな構造に形成することができる。
The photocatalytic device of the present invention has a wavelength of 360 to 400n.
Since it is equipped with a light-emitting diode that mainly emits m light (ultraviolet rays), it can be used even in a place not exposed to sunlight. Further, the light emitting diode is a very small light emitting element and has a low operating voltage, so that it can be made to emit light by a dry battery or the like. Therefore, the light emitting diode does not require a lot of space for installation, so it can be easily applied to any place including a narrow place.
The entire photocatalyst device including the substrate supporting the photocatalyst can be formed in a compact structure.

【0013】更に、本発明の光触媒装置は、発光ダイオ
−ドによって放射された紫外線が導光体を通して導光体
の表面に担持された二酸化チタンの薄膜に送られる。こ
のため紫外線が外部に漏れることが少なく、効率的に二
酸化チタンの薄膜を照射できる。そのため、消費電力の
少ない光触媒装置を形成することができる。
Further, in the photocatalyst device of the present invention, the ultraviolet light emitted by the light emitting diode is sent to the titanium dioxide thin film carried on the surface of the light guide through the light guide. For this reason, ultraviolet rays rarely leak to the outside, and the thin film of titanium dioxide can be efficiently irradiated. Therefore, a photocatalytic device with low power consumption can be formed.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。 (第一実施例)図1は本発明の第一実施例の光触媒装置
を示す。この光触媒装置はマドラー(攪拌器)として構
成したもので図1は一部を断面で示している。このマド
ラーは、本発明の導光体を構成する棒状ガラス1とこの
棒状ガラス1の一端に固定されたケース2とこのケース
2内に棒状ガラス1の一端と対向して配置固定された発
光ダイオード3と発光ダイオード3と同軸的にケース2
内に収納される電池(図示せず)とからなる。ケース2
には発光ダイオード3に送る電流を断続するスイッチ3
1が設けられ、棒状ガラス1の外周面には光触媒を形成
する二酸化チタンの薄膜4が形成されている。この薄膜
はPVDで蒸着したもので、半透明の薄い黄色をしてい
る。
Embodiments of the present invention will be described below. (First Embodiment) FIG. 1 shows a photocatalyst device according to a first embodiment of the present invention. This photocatalyst device is configured as a mudler (stirrer), and FIG. 1 shows a part thereof in cross section. This muddler comprises a rod-shaped glass 1 constituting the light guide of the present invention, a case 2 fixed to one end of the rod-shaped glass 1, and a light-emitting diode arranged and fixed inside the case 2 so as to face one end of the rod-shaped glass 1. 3 and the light emitting diode 3 coaxially with the case 2
And a battery (not shown) housed inside. Case 2
Is a switch 3 that connects and disconnects the current sent to the light emitting diode 3.
1 is provided, and a thin film 4 of titanium dioxide forming a photocatalyst is formed on the outer peripheral surface of the rod-shaped glass 1. This thin film is deposited by PVD and has a semi-transparent pale yellow color.

【0015】発光ダイオード3はpn接合された窒化ガ
リウム(GaN)系光半導体の結晶体からなる光を放射
するチップと、このチップを封止すると共に放射された
光に指向性を与えるモ−ルドレンズとを主要部として備
える小さな発光素子である。この発光ダイオ−ド3は、
波長360〜400nmの光(電磁波)、即ち、紫外線
とともに強い青い光を放射する。
The light-emitting diode 3 is a pn-junction gallium nitride (GaN) optical semiconductor crystal emitting chip, and a mold lens for sealing the chip and giving a directivity to the emitted light. It is a small light-emitting device that includes and as main parts. This light emitting diode 3
It emits light (electromagnetic waves) having a wavelength of 360 to 400 nm, that is, strong blue light together with ultraviolet rays.

【0016】なお、発光ダイオ−ド3は、波長360〜
400nmのスペクトル範囲の光のみ放射するものであ
ることが、発光効率及び電力消費の点で好ましい。しか
し、実際には、発光ダイオ−ドの放射する光は、半導体
レーザの場合とは異なり、一般に少なくとも50nmの
スペクトル範囲を有するため、波長360〜400nm
のみの光を放射する発光ダイオ−ドを得ることは困難で
ある。そのため、ここで使用する発光ダイオ−ド3とし
ては、波長360〜400nmの紫外線を十分に含む光
(電磁波)を放射するものであれば、どのような発光ダ
イオ−ドでも使用することができる。
The light emitting diode 3 has wavelengths of 360 to 360.
It is preferable to emit only light in the spectral range of 400 nm in terms of luminous efficiency and power consumption. However, in practice, the light emitted by the light emitting diode generally has a spectral range of at least 50 nm, which is different from the case of the semiconductor laser.
It is difficult to obtain a light emitting diode that emits only light. Therefore, as the light emitting diode 3 used here, any light emitting diode can be used as long as it emits light (electromagnetic wave) sufficiently containing ultraviolet rays having a wavelength of 360 to 400 nm.

【0017】しかし、この発光ダイオ−ド3としては、
好ましくは、人体に有害な紫外線、即ち、320nm以
下の波長の遠紫外線(UV−B、UV−C)を放射しな
いものが好ましい。そして、このような発光ダイオ−ド
3によれば、人体に無害な光触媒装置を形成することが
でき、日常生活における用途にも安全に使用することが
できる。
However, as the light emitting diode 3,
Preferably, it does not emit ultraviolet rays harmful to the human body, that is, far ultraviolet rays (UV-B, UV-C) having a wavelength of 320 nm or less. According to such a light emitting diode 3, a photocatalyst device which is harmless to the human body can be formed and can be safely used for daily use.

【0018】これに対して、可視光である400nm以
上の波長の光は人体に無害であるため、このような可視
光を含む光を放射する発光ダイオ−ドは、何等問題なく
使用することができる。また、そのような発光ダイオ−
ド3を使用することによって、その発光ダイオ−ド3が
作動していることを容易に確認することができ、更に、
その可視光が明彩色である場合には照明や表示としての
効果を得ることができる。ただし、400nm以下の波
長の光(紫外線)であっても、380nm程度までの光
はぼんやりとした背景(暗い紫色)を呈するため、発光
ダイオ−ド3が400nm以下の波長の光のみ放射する
場合でも、その光は完全なブラック光ではなく、一般に
視認可能なものである。
On the other hand, since visible light having a wavelength of 400 nm or more is harmless to the human body, such a light emitting diode which emits light containing visible light can be used without any problem. it can. Also, such a light emitting diode
By using the diode 3, it is possible to easily confirm that the light emitting diode 3 is operating.
When the visible light has a bright color, it is possible to obtain an effect as illumination or display. However, even if the light with wavelength of 400 nm or less (ultraviolet rays), the light up to about 380 nm has a dim background (dark purple), so that the light emitting diode 3 emits only light with wavelength of 400 nm or less. However, the light is not completely black light and is generally visible.

【0019】本実施例のマドラーは、ケース2内に電池
を収納し、スイッチをオンにすることにより発光ダイオ
−ド3が発光し、波長360〜400nmの紫外線とと
もに強い青い光を照射する。この紫外線は棒状ガラス1
の一端の端面より棒状ガラス1に入り、棒状ガラス1内
を直進する。そして棒状ガラス1の側面、端面で一部が
外部に放出され、一部は屈折されて、反射され、最終的
には側面および端面から放出される。この側面および端
面から放出される紫外線は二酸化チタンの薄膜4に入
り、紫外線により二酸化チタンの薄膜4には酸化性の活
性表面が形成される。
In the muddler of this embodiment, a battery is housed in a case 2, and a light emitting diode 3 emits light when a switch is turned on, and radiates intense blue light together with ultraviolet rays having a wavelength of 360 to 400 nm. This ultraviolet light is glass rod 1
Entering the rod-shaped glass 1 from the end face at one end of the, the glass moves straight in the rod-shaped glass 1. Then, a part of the side surface and the end surface of the rod-shaped glass 1 is emitted to the outside, a part is refracted, reflected, and finally emitted from the side surface and the end surface. Ultraviolet rays emitted from the side surfaces and the end faces enter the titanium dioxide thin film 4, and the ultraviolet rays form an oxidative active surface on the titanium dioxide thin film 4.

【0020】なお、棒状ガラス1の側面、端面からは薄
く淡い青色の可視光も放出され、暗所ではその光が確認
できる。この活性化された表面をもつマドラーを用い
て、水を攪拌することにより、水中の有機物が分解さ
れ、水が浄化される。なお、第一実施例の光触媒装置を
マドラーとしたが、同じ構成の光触媒装置を脱臭、殺菌
(抗菌)、防汚、飲料水等の空気および水の浄化等に応
用可能な光触媒装置として使用することもできる。 (第二実施例)図2は本発明の第二実施例の光触媒装置
を示す。この光触媒装置は光装飾体ととして構成したも
ので図2は一部を断面で示している。この光装飾体は、
多数のガラス繊維11、基部21と基部21内に収納さ
れた複数の発光ダイオード3とからなる。基部21は箱
状のケース22とこのケースの蓋を形成する透明上部2
3とからなる。この透明上部23には全てのガラス繊維
11の一端が埋設固定されている。また、発光ダイオー
ド3の下方には図示しない電池が収納されている。
A thin light blue visible light is also emitted from the side surface and the end surface of the rod-shaped glass 1, and the light can be confirmed in a dark place. By stirring the water using the activated mudler, the organic matter in the water is decomposed and the water is purified. Although the photocatalytic device of the first embodiment is a muddler, the photocatalytic device having the same configuration is used as a photocatalytic device applicable to deodorization, sterilization (antibacterial), antifouling, purification of air and water such as drinking water, etc. You can also (Second Embodiment) FIG. 2 shows a photocatalyst device according to a second embodiment of the present invention. This photocatalyst device is constructed as a photo-decoration body, and FIG. This light decoration is
It is composed of a large number of glass fibers 11, a base portion 21, and a plurality of light emitting diodes 3 housed in the base portion 21. The base 21 is a box-shaped case 22 and a transparent upper part 2 which forms a lid of this case.
3 and 3. One end of all the glass fibers 11 is embedded and fixed in the transparent upper portion 23. A battery (not shown) is housed below the light emitting diode 3.

【0021】ガラス繊維11はその一部断面拡大図を図
3に示すように、その表面全体に光触媒を形成する二酸
化チタンの薄膜41が形成されている。この薄膜はPV
Dで蒸着したもので、半透明の薄い黄色をしている。発
光ダイオード3はpn接合された窒化ガリウム(Ga
N)系光半導体の結晶体からなる光を放射するチップ
と、このチップを封止すると共に放射された光に指向性
を与えるモ−ルドレンズとを主要部として備える小さな
発光素子である。この発光ダイオ−ド3は、波長360
〜400nmの光(電磁波)、即ち、紫外線とともに強
い青い光を放射する。
The glass fiber 11 has a thin film 41 of titanium dioxide forming a photocatalyst formed on the entire surface thereof, as shown in the partially enlarged cross-sectional view of FIG. This thin film is PV
It was vapor-deposited in D and has a semi-transparent pale yellow color. The light emitting diode 3 is a pn junction gallium nitride (Ga)
N) A small light-emitting element having as a main part a chip that emits light made of a crystal of an optical semiconductor and a mold lens that seals this chip and gives directivity to the emitted light. This light emitting diode 3 has a wavelength of 360
It emits light (electromagnetic wave) of 400 nm, that is, strong blue light together with ultraviolet rays.

【0022】強い青い光は透明上部23からガラス繊維
11に入り、ガラス繊維11の中心部を進んで他端に送
られる。この途中で一部の光が二酸化チタンの薄膜41
に入り、そこから外部に放出される。このためガラス繊
維11全体が青く光り、装飾機能を奏する。なお、紫外
線も青い光と同様に進み、一部の紫外線が二酸化チタン
の薄膜41に入る。このため二酸化チタンの薄膜41が
活性化され、回りの空気中に含まれる煙草の煙の成分等
の有機物を分解し、空気を浄化する。
The intense blue light enters the glass fiber 11 from the transparent upper portion 23, travels through the central portion of the glass fiber 11 and is sent to the other end. In the middle of this, part of the light was a thin film of titanium dioxide 41.
Enters and is released from there. For this reason, the entire glass fiber 11 shines blue and has a decorative function. It should be noted that the ultraviolet rays also proceed in the same manner as the blue light, and some of the ultraviolet rays enter the titanium dioxide thin film 41. For this reason, the titanium dioxide thin film 41 is activated, and decomposes organic substances such as cigarette smoke components contained in the surrounding air to purify the air.

【0023】[0023]

【発明の効果】本発明の光触媒装置は、光を通す導光体
を用い、導光体内部を通る紫外線がその導光体表面に形
成された光触媒を直接活性化する。また、紫外線源とし
て発光ダイオ−ドを用いている。これら導光体および発
光ダイオ−ドを用いることにより、紫外線を有効に利用
できるとともに、コンパクト化でき、手軽な利用を可能
としている。
The photocatalyst device of the present invention uses a light guide that allows light to pass, and the ultraviolet rays passing through the inside of the light guide directly activate the photocatalyst formed on the surface of the light guide. Further, a light emitting diode is used as an ultraviolet ray source. By using the light guide and the light emitting diode, ultraviolet rays can be effectively used and can be made compact, which enables easy use.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の第一実施例の光触媒装置でマ
ドラーとして形成したものの一部を断面とした全体図で
ある。
FIG. 1 is an overall cross-sectional view of a part of what is formed as a mudler in the photocatalytic device of the first embodiment of the present invention.

【図2】 図2は本発明の第二実施例の光触媒装置で光
装飾体として形成したものの一部を断面とした全体図で
ある。
FIG. 2 is an overall view in which a part of a photocatalyst device formed as a photodecorative body according to a second embodiment of the present invention is shown in section.

【図3】 図3は図2のの第二実施例のガラス繊維の部
分拡大断面図である。
FIG. 3 is a partially enlarged sectional view of the glass fiber of the second embodiment of FIG.

【符号の説明】[Explanation of symbols]

1:棒状ガラス 2:ケース 3:発光ダイオード 4:二酸化チタンの薄膜 11:ガラス繊維 2
1:基部 22:ケース 23:透明上部23 41:二
酸化チタンの薄膜
1: Bar glass 2: Case 3: Light emitting diode 4: Titanium dioxide thin film 11: Glass fiber 2
1: Base 22: Case 23: Transparent upper part 23 41: Titanium dioxide thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田牧 真人 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 酒井 和宏 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 山口 寿夫 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Tamaki 1 Ochiai, Nagahata, Kasuga-cho, Nishikasugai-gun, Aichi Toyoda Gosei Co., Ltd. Inside Toyoda Gosei Co., Ltd. (72) Inventor Toshio Yamaguchi No. 1 Nagahata, Ochiai, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture Inside Toyoda Gosei Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透明材料で形成された導光体と、 該導光体の表面に形成された光触媒となる二酸化チタン
の薄膜と、 該導光体に近接して設けられ該導光体に波長360〜4
00nmの紫外線を放射する発光ダイオ−ドと、 を具備することを特徴とする光触媒装置。
1. A light guide body formed of a transparent material, a thin film of titanium dioxide serving as a photocatalyst formed on the surface of the light guide body, and provided on the light guide body in the vicinity of the light guide body. Wavelength 360-4
A photocatalytic device comprising: a light emitting diode that emits ultraviolet rays of 00 nm.
【請求項2】前記導光体は透明ガラスまたは透明樹脂で
形成されている請求項1に記載の光触媒装置。
2. The photocatalyst device according to claim 1, wherein the light guide body is formed of transparent glass or transparent resin.
【請求項3】前記導光体は棒状のガラスで形成され、該
棒状のガラスの一端に該棒状のガラスより太いケースが
設けられ、該ケース内に前記発光ダイオードおよび該発
光ダイオードに電流を供給する電池が収納され、マドラ
ーとして使用される請求項1に記載の光触媒装置。
3. The light guide is formed of rod-shaped glass, a case thicker than the rod-shaped glass is provided at one end of the rod-shaped glass, and the light-emitting diode and the light-emitting diode are supplied with current in the case. A photocatalyst device according to claim 1, wherein the photocatalytic device is housed in a battery and used as a muddler.
【請求項4】基部を有し前記導光体は繊維状でその一端
が該基部に固定されかつ該基部に前記発光ダイオードが
収納され、光装飾体として使用される請求項1に記載の
光触媒装置。
4. The photocatalyst according to claim 1, wherein the light guide having a base is fibrous, one end of which is fixed to the base, and the light emitting diode is housed in the base to be used as a light ornament. apparatus.
【請求項5】前記発光ダイオ−ドは、pn接合された窒
化ガリウム(GaN)系光半導体の結晶体からなる請求
項1、請求項3または請求項4に記載の光触媒装置。
5. The photocatalyst device according to claim 1, wherein the light emitting diode is made of a pn-junction gallium nitride (GaN) optical semiconductor crystal.
JP19281995A 1995-07-28 1995-07-28 Photocatalytic device Expired - Lifetime JP3689939B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19281995A JP3689939B2 (en) 1995-07-28 1995-07-28 Photocatalytic device
US08/687,667 US5919422A (en) 1995-07-28 1996-07-26 Titanium dioxide photo-catalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19281995A JP3689939B2 (en) 1995-07-28 1995-07-28 Photocatalytic device

Publications (2)

Publication Number Publication Date
JPH0938503A true JPH0938503A (en) 1997-02-10
JP3689939B2 JP3689939B2 (en) 2005-08-31

Family

ID=16297517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19281995A Expired - Lifetime JP3689939B2 (en) 1995-07-28 1995-07-28 Photocatalytic device

Country Status (1)

Country Link
JP (1) JP3689939B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031703A1 (en) * 1996-02-28 1997-09-04 Hoya Corporation Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
JPH11230964A (en) * 1998-02-17 1999-08-27 Toto Ltd Urine analyzer
US6324329B1 (en) * 1998-08-28 2001-11-27 Sony Corporation Photocatalyst excitation apparatus
JP2002350646A (en) * 2001-05-25 2002-12-04 Hiroshima Pref Gov Glass structure for carrying photocatalyst
KR100376045B1 (en) * 2000-05-13 2003-03-15 주식회사 이츠웰 photo-catalytic ecology diode lamp and gas purification system using this
JP2007038131A (en) * 2005-08-03 2007-02-15 Yoshitoshi Maeda Stirring rod for coagulating sedimentation of turbid water
JP2013006608A (en) * 2011-06-23 2013-01-10 Photoscience Japan Corp Sterilizing device for container with cap
US8951561B2 (en) 2007-08-06 2015-02-10 Duke University Methods and systems for treating cell proliferation disorders using plasmonics enhanced photospectral therapy (PEPST) and exciton-plasmon enhanced phototherapy (EPEP)
JP2016511138A (en) * 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド Method and apparatus for liquid disinfection with light emitted from light emitting diodes
US9352040B2 (en) 2007-04-08 2016-05-31 Immunolight, Llc. Methods and systems for treating cell proliferation disorders
US9993661B2 (en) 2008-04-04 2018-06-12 Immunolight, Llc. Modulating a biological activity of a target structure by energy generation in-situ within a medium
US10391330B2 (en) 2007-11-06 2019-08-27 Immunolight, Llc Non-invasive systems and methods for in-situ photobiomodulation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031703A1 (en) * 1996-02-28 1997-09-04 Hoya Corporation Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
JPH11230964A (en) * 1998-02-17 1999-08-27 Toto Ltd Urine analyzer
US6324329B1 (en) * 1998-08-28 2001-11-27 Sony Corporation Photocatalyst excitation apparatus
KR100376045B1 (en) * 2000-05-13 2003-03-15 주식회사 이츠웰 photo-catalytic ecology diode lamp and gas purification system using this
JP2002350646A (en) * 2001-05-25 2002-12-04 Hiroshima Pref Gov Glass structure for carrying photocatalyst
JP2007038131A (en) * 2005-08-03 2007-02-15 Yoshitoshi Maeda Stirring rod for coagulating sedimentation of turbid water
JP4584791B2 (en) * 2005-08-03 2010-11-24 芳聰 前田 Stirring bar for turbid water coagulation sedimentation
US9352040B2 (en) 2007-04-08 2016-05-31 Immunolight, Llc. Methods and systems for treating cell proliferation disorders
US9682146B2 (en) 2007-04-08 2017-06-20 Immunolight, Llc. Methods and systems for treating cell proliferation related disorders
US9358292B2 (en) 2007-04-08 2016-06-07 Immunolight, Llc Methods and systems for treating cell proliferation disorders
US8951561B2 (en) 2007-08-06 2015-02-10 Duke University Methods and systems for treating cell proliferation disorders using plasmonics enhanced photospectral therapy (PEPST) and exciton-plasmon enhanced phototherapy (EPEP)
US9662388B2 (en) 2007-08-06 2017-05-30 Duke University Methods and systems for treating cell proliferation disorders using plasmonics enhanced photospectral therapy (PEPST) and exciton-plasmon enhanced phototherapy (EPEP)
US10391330B2 (en) 2007-11-06 2019-08-27 Immunolight, Llc Non-invasive systems and methods for in-situ photobiomodulation
US9993661B2 (en) 2008-04-04 2018-06-12 Immunolight, Llc. Modulating a biological activity of a target structure by energy generation in-situ within a medium
US10272262B2 (en) 2008-04-04 2019-04-30 Immunolight, Llc. Method for modulating a biological activity of a target structure by energy generation in-situ within a medium
JP2013006608A (en) * 2011-06-23 2013-01-10 Photoscience Japan Corp Sterilizing device for container with cap
JP2016511138A (en) * 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド Method and apparatus for liquid disinfection with light emitted from light emitting diodes
US10294124B2 (en) 2013-01-24 2019-05-21 Atlantium Technologies Ltd. Method and apparatus for liquid disinfection by light emitted from light emitting diodes

Also Published As

Publication number Publication date
JP3689939B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
Wang et al. Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation
JPH0938503A (en) Photocatalyst device
WO2008088853A1 (en) System and methods for self-decontaminating a surface
JP3658800B2 (en) Light emitting diode
KR102337156B1 (en) Photocatalytic LED module lighting device
JPH09940A (en) Photocatalytst device and its application device
US20150147240A1 (en) Led Lamp Having Photocatalyst Agents
KR20060004629A (en) Air clean sensor lamp use ultra violet led
US20230045428A1 (en) System And Method For Treating Microorganisms
JPH0938189A (en) Fan having air cleaning function
JP3912806B2 (en) Photocatalytic device
KR101249885B1 (en) Photocatalyst water purifier using plasmon
CN104456237A (en) All-weather photocatalyst air-purifying LED daylight lamp
EP1491218A1 (en) Illuminator capable of cleaning air
JPH0929103A (en) Photocatalytic body, photocatalytic device, light source and lightening equipment
JP3674987B2 (en) Antibacterial deodorization box
KR100355667B1 (en) photocatalytic purifier for LED
JPH0938192A (en) Air cleaner
JPH0938191A (en) Antibacterial deodorizing sheet
JP2004195461A (en) Water cleaner
JP2006255701A (en) Photocatalyst device
JP3850916B2 (en) Toilet seat sterilizer
KR200339155Y1 (en) electric light apparatus coated with a layer containing photo-catalyzer material
JPH09299456A (en) Photocatalyst apparatus
KR102357755B1 (en) Air circulation and purification lighting equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5