JPH0938493A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH0938493A
JPH0938493A JP7197524A JP19752495A JPH0938493A JP H0938493 A JPH0938493 A JP H0938493A JP 7197524 A JP7197524 A JP 7197524A JP 19752495 A JP19752495 A JP 19752495A JP H0938493 A JPH0938493 A JP H0938493A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
carrier
weight
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197524A
Other languages
Japanese (ja)
Inventor
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7197524A priority Critical patent/JPH0938493A/en
Publication of JPH0938493A publication Critical patent/JPH0938493A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst excellent in durability and preventing the deterioration of NOx removing performance by carrying a catalytic noble metal and an NOx storage material on a carrier made of Co and/or La oxide combined with alumina. SOLUTION: At least one of Co and La is added to alumina and fired to form Co and/or La oxide combined with alumina. A catalytic noble metal such as Pt and an NOx storage material such as an alkali metal or an alkaline earth metal are carried on a carrier made of the combined oxide. Since the stability of the alumina is increased and the reaction of the alumina with the NOx storage material is prevented even at a high temp., the deterioration of the function of the NOx storage material is prevented. The specific surface area of the carrier is hardly reduced and the sintering of the catalytic noble metal is also prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関から排出
される排ガスを浄化する排ガス浄化用触媒に関し、さら
に詳しくは、排ガス中のNOx の吸収放出作用をもつN
x 吸蔵材を担持した排ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, and more specifically, N having an action of absorbing and releasing NO x in exhaust gas.
The present invention relates to an exhaust gas purifying catalyst carrying an O x storage material.

【0002】[0002]

【従来の技術】従来より排ガス浄化用触媒として、CO
及びHCの酸化とNOx の還元とを行って排ガスを浄化
する三元触媒が用いられている。このような三元触媒と
しては、例えばコーディエライトなどからなる耐熱性基
材にγ−アルミナからなる多孔質担体層を形成し、その
多孔質担体層に白金(Pt)、ロジウム(Rh)などの
触媒貴金属を担持させたものが広く知られている。
2. Description of the Related Art Conventionally, CO has been used as an exhaust gas purifying catalyst.
In addition, a three-way catalyst that purifies exhaust gas by oxidizing HC and reducing NO x is used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃料
の使用量が低減されるため燃費が向上し、また燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem, and as a solution to this problem, so-called lean combustion in which lean combustion is performed in an oxygen excess atmosphere is performed. Burn is promising. In this lean burn, the fuel consumption is reduced, so that the fuel efficiency is improved and the generation of CO 2 which is the combustion exhaust gas can be suppressed.

【0004】これに対し、従来の三元触媒は、理論空燃
比(ストイキ)に制御された混合気が燃焼した排ガス中
のCO,HC,NOx を同時に酸化・還元し、浄化する
ものであって、リーンバーン時の排ガスの酸素過剰雰囲
気下におけるNOx の還元除去に対しては充分な浄化性
能を示さない。このため、酸素過剰雰囲気下においても
効率よくNOx を浄化しうる排ガス浄化用触媒及び排ガ
ス浄化システムの開発が望まれている。
On the other hand, the conventional three-way catalyst purifies by simultaneously oxidizing and reducing CO, HC and NO x in the exhaust gas burned by the air-fuel mixture controlled to the stoichiometric air-fuel ratio (stoichiometric ratio). Therefore, it does not show sufficient purification performance for reducing and removing NO x in the oxygen rich atmosphere of exhaust gas during lean burn. Therefore, it is desired to develop an exhaust gas purifying catalyst and an exhaust gas purifying system that can efficiently purify NO x even in an oxygen excess atmosphere.

【0005】そこで本願出願人は、先にバリウム(NO
x 吸蔵材)とPtをアルミナに担持した排ガス浄化用触
媒(特開平6−142458号公報など)を提案してい
る。この排ガス浄化用触媒によれば、リーン側ではNO
x がNOx 吸蔵材に吸収され、それがストイキ又はリッ
チ側で放出されてHCやCOなどの還元性成分と反応す
るため、リーン側においてもNOx の良好な浄化性能が
得られる。
Therefore, the applicant of the present invention first found that barium (NO
A catalyst for exhaust gas purification in which x storage material) and Pt are supported on alumina (for example, JP-A-6-142458) is proposed. According to this exhaust gas purifying catalyst, NO on the lean side
Since x is absorbed by the NO x storage material, which is released on the stoichiometric or rich side and reacts with reducing components such as HC and CO, good purification performance of NO x can be obtained on the lean side as well.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来のNO
x 吸蔵材を担持した排ガス浄化用触媒においては、80
0℃前後の温度でNOx 吸蔵材とアルミナとの反応が生
じ、融点の低い化合物が生成するという現象が生じてい
た。その結果、アルミナ担体の比表面積の低下や細孔の
閉塞が生じ、また触媒貴金属のシンタリングも生じて、
排ガス中の特にNOx の浄化性能が低下する場合があっ
た。
However, the conventional NO
x In the exhaust gas purifying catalyst supporting the occlusion material, 80
At a temperature of around 0 ° C., a reaction occurs between the NO x storage material and alumina, and a compound having a low melting point is produced. As a result, the specific surface area of the alumina carrier is reduced and the pores are clogged, and the sintering of the catalytic precious metal also occurs,
In some cases, the purification performance of NO x in the exhaust gas may decrease.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、耐久後のNOx 浄化性能の低下を防止でき
る排ガス浄化用触媒とすることを目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide an exhaust gas purifying catalyst capable of preventing deterioration of NO x purification performance after endurance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、コバルト(Co)及び
ランタン(La)の少なくとも一方とアルミナとの複合
酸化物からなる担体と、担体に担持された触媒貴金属及
びNOx 吸蔵材と、からなる構成としたことにある。
The features of the exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems are that a carrier comprising a composite oxide of at least one of cobalt (Co) and lanthanum (La) and alumina, and a carrier. The catalyst is composed of a noble metal catalyst and an NO x storage material carried on the substrate.

【0009】[0009]

【発明の実施の形態】本発明の特徴をなす担体は、Co
及びLaの少なくとも一方とアルミナとの複合酸化物か
ら構成されている。このような担体とすることにより、
理由は不明であるがアルミナの安定性が増大すると考え
られ、高温下においてもNOx 吸蔵材とアルミナとの反
応が防止されるので、NOx 吸蔵材の機能が損なわれる
のが防止される。また担体の比表面積の低下が少なく触
媒貴金属のシンタリングも防止される。
BEST MODE FOR CARRYING OUT THE INVENTION The carrier characterizing the present invention is Co
And a composite oxide of at least one of La and alumina. By using such a carrier,
Although the reason is unknown, it is considered that the stability of alumina is increased, and the reaction between the NO x storage material and alumina is prevented even at high temperature, so that the function of the NO x storage material is prevented from being impaired. Further, the specific surface area of the carrier is less reduced, and the sintering of the catalytic noble metal is prevented.

【0010】この担体中のCo及びLaの少なくとも一
方の含有量は、いずれか一方のみ含まれる場合は含まれ
る一方の元素量として、両方とも含まれる場合は両方の
合計量として、担体100重量%中に3重量%を超え1
0重量%未満の範囲とするのが好ましい。3重量%以下
では添加効果が僅かとなり、NOx 吸蔵材とアルミナと
の反応が生じ易くなって熱安定性の向上が僅かとなる。
また10重量%以上では担体の比表面積が低下し、アル
ミナのみの従来の排ガス浄化用触媒より耐熱性がかえっ
て低下するようになる。
The content of at least one of Co and La in this carrier is 100% by weight of the carrier as the amount of one element contained when only one of them is contained, or as the total amount of both when both are contained. Over 3% by weight in 1
It is preferably in the range of less than 0% by weight. If it is 3% by weight or less, the effect of addition is small, the reaction between the NO x storage material and alumina is likely to occur, and the improvement of thermal stability is small.
On the other hand, if it is 10% by weight or more, the specific surface area of the carrier is reduced, and the heat resistance is rather reduced as compared with the conventional exhaust gas purifying catalyst containing only alumina.

【0011】担体をこのような複合酸化物とするには、
アルミナにCo及びLaの少なくとも一方の元素を添加
し、800℃以上で焼成することでアルミナとの複合酸
化物を形成できる。この焼成温度が800℃未満では、
形成された排ガス浄化用触媒がそれ以上の温度に晒され
た場合に比表面積の低下が生じるようになり、またアル
ミナとNOx 吸蔵材との反応も生じ易くなる。しかし焼
成温度が1000℃を超えると、得られる排ガス浄化用
触媒自体の比表面積が小さく、初期の浄化性能が低くな
ってしまう。したがって800〜1000℃の範囲の温
度で焼成することが望ましい。
To make the carrier such a composite oxide,
A composite oxide with alumina can be formed by adding at least one element of Co and La to alumina and firing at 800 ° C. or higher. If the firing temperature is less than 800 ° C,
When the formed exhaust gas-purifying catalyst is exposed to a temperature higher than that, the specific surface area is reduced, and the reaction between alumina and the NO x storage material is likely to occur. However, if the calcination temperature exceeds 1000 ° C., the specific surface area of the obtained exhaust gas-purifying catalyst itself is small, and the initial purification performance will be low. Therefore, it is desirable to perform firing at a temperature in the range of 800 to 1000 ° C.

【0012】触媒貴金属としては、例えばPt、Pd及
びRhの1種又は複数種を併用することができる。その
担持量は、触媒貴金属の合計量として、担体の材料10
0gに対して0.2〜40gが好ましく、1〜20gが
特に好ましい。排ガス浄化用触媒全体の体積1リットル
当たりに換算すれば、0.24〜48gが好ましく、
1.2〜24gが特に好ましい。
As the catalyst noble metal, for example, one or more of Pt, Pd and Rh can be used in combination. The supported amount is the amount of the carrier material 10 as the total amount of the noble metal catalyst.
0.2-40 g is preferable with respect to 0 g, and 1-20 g is particularly preferable. If converted to a volume of 1 liter of the exhaust gas purifying catalyst, 0.24 to 48 g is preferable,
1.2 to 24 g is particularly preferable.

【0013】触媒貴金属の担持量をこれ以上増加させて
も活性は向上せず、その有効利用が図れない。また触媒
貴金属の担持量がこれより少ないと、実用上十分な活性
が得られない。なお、触媒貴金属を担体に担持させるに
は、その塩化物や硝酸塩等の溶液を用いて、含浸法、噴
霧法、スラリー混合法などを利用して従来と同様に担持
させることができる。
Even if the supported amount of the catalytic noble metal is further increased, the activity is not improved and the effective utilization cannot be achieved. On the other hand, if the supported amount of the catalytic noble metal is less than this, practically sufficient activity cannot be obtained. In order to support the catalytic noble metal on the carrier, it is possible to carry it in the same manner as in the conventional method by using a solution of its chloride, nitrate or the like and utilizing an impregnation method, a spraying method, a slurry mixing method or the like.

【0014】NOx 吸蔵材としては、アルカリ金属、ア
ルカリ土類金属及び希土類元素から選ばれる少なくとも
一種を用いることができる。アルカリ金属としてはリチ
ウム、ナトリウム、カリウム、ルビジウム、セシウム、
フランシウムが挙げられる。また、アルカリ土類金属と
は周期表2A族元素をいい、バリウム、ベリリウム、マ
グネシウム、カルシウム、ストロンチウムが挙げられ
る。また希土類元素としては、スカンジウム、イットリ
ウム、ランタン、セリウム、プラセオジム、ネオジムな
どが例示される。
As the NO x storage material, at least one selected from alkali metals, alkaline earth metals and rare earth elements can be used. Alkali metals include lithium, sodium, potassium, rubidium, cesium,
Francium is mentioned. Further, the alkaline earth metal refers to an element of Group 2A of the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, and strontium. Examples of the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium.

【0015】このNOx 吸蔵材を担体に担持させるに
は、その酢酸塩などの水溶性塩の水溶液を用いて、含浸
法、噴霧法、スラリー混合法などを利用して従来と同様
に担持させることができる。
In order to support the NO x storage material on the carrier, an aqueous solution of a water-soluble salt such as acetate is used in the same manner as in the conventional method by using an impregnation method, a spraying method, a slurry mixing method or the like. be able to.

【0016】[0016]

【実施例】以下、実施例によりさらに具体的に説明す
る。 (実施例1)以下、実施例1の排ガス浄化用触媒の製造
方法を説明することにより、構成の詳細な説明に代え
る。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Embodiment 1) Hereinafter, a method for producing an exhaust gas purifying catalyst according to Embodiment 1 will be described to replace the detailed description of the structure.

【0017】アルミナ粉末に所定濃度の硝酸コバルト水
溶液の所定量を含浸させ、110℃で2時間乾燥後90
0℃で5時間焼成して、蒸発乾固法によりCoとアルミ
ナの複合酸化物からなる担体粉末を調製した。担体粉末
中のCoの含有量は1重量%である。次に、担体粉末に
所定濃度のジニトロジアンミン白金水溶液の所定量を含
浸させ110℃で2時間乾燥後、所定濃度の硝酸ロジウ
ム水溶液の所定量を含浸させ、110℃で2時間乾燥後
300℃で1時間焼成して、Ptを1.5重量%及びR
hを0.1重量%担持させた。さらに所定濃度の酢酸バ
リウム水溶液の所定量を含浸させ、110℃で2時間乾
燥後500℃で2時間焼成して、Baを20重量%担持
させた。
Alumina powder was impregnated with a predetermined amount of a cobalt nitrate aqueous solution having a predetermined concentration, dried at 110 ° C. for 2 hours, and then dried.
The powder was calcined at 0 ° C. for 5 hours, and a carrier powder composed of a composite oxide of Co and alumina was prepared by a dry evaporation method. The content of Co in the carrier powder is 1% by weight. Next, the carrier powder is impregnated with a predetermined amount of a dinitrodiammine platinum aqueous solution of a predetermined concentration and dried at 110 ° C. for 2 hours, then impregnated with a predetermined amount of a rhodium nitrate aqueous solution of a predetermined concentration, dried at 110 ° C. for 2 hours, and then at 300 ° C. Baking for 1 hour, 1.5 wt% Pt and R
0.1% by weight of h was supported. Further, a predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated, dried at 110 ° C. for 2 hours, and then baked at 500 ° C. for 2 hours to carry 20 wt% of Ba.

【0018】得られた触媒粉末を圧粉成形し、0.5〜
1mmのペレット触媒を調製して実施例1のペレット触
媒とした。 (実施例2)硝酸コバルト水溶液の濃度を変更してCo
の含有量を3重量%としたこと以外は実施例1と同様に
して、実施例2のペレット触媒を調製した。 (実施例3)硝酸コバルト水溶液の濃度を変更してCo
の含有量を5重量%とし、Coを含有させた後の焼成温
度を800℃としたこと以外は実施例1と同様にして、
実施例3のペレット触媒を調製した。 (実施例4)硝酸コバルト水溶液の濃度を変更してCo
の含有量を5重量%としたこと以外は実施例1と同様に
して、実施例4のペレット触媒を調製した。 (実施例5)硝酸コバルト水溶液の濃度を変更してCo
の含有量を7重量%としたこと以外は実施例1と同様に
して、実施例5のペレット触媒を調製した。 (実施例6)硝酸コバルト水溶液の濃度を変更してCo
の含有量を10重量%としたこと以外は実施例1と同様
にして、実施例6のペレット触媒を調製した。 (実施例7)硝酸コバルト水溶液の濃度を変更してCo
の含有量を5重量%とし、Coを含有させた後の焼成温
度を1000℃としたこと以外は実施例1と同様にし
て、実施例7のペレット触媒を調製した。 (比較例1)Coを用いず、アルミナ粉末を担体粉末と
して担体の焼成を行わなかったこと以外は実施例1と同
様にして、比較例1のペレット触媒を調製した。 (比較例2)硝酸コバルト水溶液の濃度を変更してCo
の含有量を5重量%とし、Coを含有させた後の焼成温
度を700℃としたこと以外は実施例1と同様にして、
比較例2のペレット触媒を調製した。 (試験・評価)上記のそれぞれのペレット触媒の初期の
NOx 浄化率を測定し、次いで表1に示すリーンの条件
の酸素過剰雰囲気中、900℃で5時間加熱する耐久処
理を行った後のNOx 浄化率を測定した。NOx 浄化率
の測定は、表1に示すリーン(A/F=18)とリッチ
(A/F=14)の2種類のモデルガスを各2分間ずつ
交互に流す過渡条件下で行った。入りガス温度は350
℃、空間速度SV=10万/hである。結果を表2に示
す。
The catalyst powder thus obtained is compacted to give 0.5-
A 1 mm pellet catalyst was prepared as the pellet catalyst of Example 1. (Example 2) Co was changed by changing the concentration of the cobalt nitrate aqueous solution.
A pellet catalyst of Example 2 was prepared in the same manner as in Example 1 except that the content of was 3% by weight. (Example 3) Changing the concentration of the cobalt nitrate aqueous solution to Co
Was set to 5% by weight, and the firing temperature after Co was set to 800 ° C.
The pellet catalyst of Example 3 was prepared. (Example 4) Changing the concentration of the cobalt nitrate aqueous solution to Co
A pellet catalyst of Example 4 was prepared in the same manner as in Example 1 except that the content of was 5% by weight. (Example 5) Co was prepared by changing the concentration of the cobalt nitrate aqueous solution.
A pellet catalyst of Example 5 was prepared in the same manner as in Example 1 except that the content of was 7% by weight. (Example 6) Co was prepared by changing the concentration of the cobalt nitrate aqueous solution.
A pellet catalyst of Example 6 was prepared in the same manner as in Example 1 except that the content of was 10% by weight. (Example 7) Co was prepared by changing the concentration of the cobalt nitrate aqueous solution.
The pellet catalyst of Example 7 was prepared in the same manner as in Example 1 except that the content of was set to 5% by weight and the calcination temperature after containing Co was set to 1000 ° C. (Comparative Example 1) A pellet catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that Co was not used and alumina powder was used as the carrier powder and the carrier was not calcined. (Comparative Example 2) Co was prepared by changing the concentration of the cobalt nitrate aqueous solution.
Was set to 5% by weight and the firing temperature after Co was set to 700 ° C.
The pellet catalyst of Comparative Example 2 was prepared. (Test / Evaluation) After the initial NO x purification rate of each of the above pellet catalysts was measured, and after the endurance treatment of heating at 900 ° C. for 5 hours in an oxygen excess atmosphere under lean conditions shown in Table 1 was performed. The NO x purification rate was measured. The measurement of the NO x purification rate was performed under transient conditions in which two kinds of lean (A / F = 18) and rich (A / F = 14) model gases shown in Table 1 were alternately flowed for 2 minutes each. Inlet gas temperature is 350
C., space velocity SV = 100,000 / h. Table 2 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 各実施例のペレット触媒は、実施例6を除き耐久後のN
x 浄化率が比較例1に比べて高く、NOx 浄化性能に
優れていることがわかる。これはCo−アルミナ担体と
した効果であることが明らかである。なお実施例6で
は、Coを10重量%と多量に含むために担体の比表面
積が低下し、耐久後のNOx 浄化率がCoをもたない比
較例1より低下してしまっている。ただ実施例6の場合
でも、焼成温度をもう少し高くすることで、耐久後のN
x 浄化率が向上する可能性がある。
[Table 2] Except for Example 6, the pellet catalyst of each Example had N after durability.
It can be seen that the O x purification rate is higher than that of Comparative Example 1, and the NO x purification performance is excellent. It is clear that this is the effect of using the Co-alumina carrier. In Example 6, the specific surface area of the carrier is reduced because Co is contained in a large amount of 10% by weight, and the NO x purification rate after endurance is lower than that of Comparative Example 1 having no Co. However, even in the case of Example 6, by increasing the firing temperature a little more, N
The O x purification rate may be improved.

【0021】さらに実施例どうしを比較すると、Coの
含有量が3重量%以下となると耐久後のNOx 浄化率が
50%未満となり、Coは3重量%を超えて10重量%
未満の範囲が特に好ましいことがわかる。また、比較例
2と実施例4とを比較すると、実施例4の方が耐久後の
NOx 浄化率に優れている。これは焼成温度の差異に起
因し、比較例2では700℃と低い温度で焼成したため
にCoとアルミナとは複合酸化物を形成していないのに
対し、実施例4では900℃で焼成しているのでCoと
アルミナとは複合酸化物として担体中に存在していると
いう差異に起因するものである。
Further comparing the examples, when the Co content is 3% by weight or less, the NO x purification rate after endurance is less than 50%, and Co exceeds 3% by weight and 10% by weight.
It can be seen that the range below is particularly preferable. Further, comparing with Comparative Example 2 and Example 4, towards the fourth embodiment is superior to the NO x purification ratio after endurance. This is due to the difference in firing temperature. In Comparative Example 2, since firing was performed at a low temperature of 700 ° C., Co and alumina did not form a composite oxide, whereas in Example 4, firing was performed at 900 ° C. Therefore, it is due to the difference that Co and alumina are present in the carrier as a complex oxide.

【0022】なお実施例3と実施例4及び実施例7の比
較より、800℃より900℃の方が耐久後のNOx
化率が高くなり、1000℃になるとかえって耐久後の
NO x 浄化率が低下することがわかる。したがって最適
な焼成温度は800〜1000℃の間にあることが推察
される。 (実施例8)アルミナ粉末100重量部と、アルミナ含
有率10重量%のアルミナゾル70重量部と、濃度40
重量%の硝酸アルミニウム水溶液15重量部と、水30
重量部を混合してスラリーとした。そしてコージェライ
ト質のハニカム状モノリス担体をこのスラリーに浸漬
し、引き上げて余分なスラリーを吹き払った後、110
℃で2時間乾燥し650℃で2時間焼成してアルミナコ
ーティング層を形成した。アルミナコーティング層はモ
ノリス担体1リットル当たり120g形成されている。
The ratio of Example 3 to Example 4 and Example 7
By comparison, 900 ℃ is more durable after 800 ℃ than NOxPurification
When the conversion rate becomes high and reaches 1000 ° C
NO xIt can be seen that the purification rate decreases. Therefore optimal
Presumably the firing temperature is between 800 and 1000 ℃
Is done. (Example 8) 100 parts by weight of alumina powder and alumina
70 parts by weight of 10% by weight alumina sol and 40% concentration
15 parts by weight of an aluminum nitrate aqueous solution of 30% by weight and 30 parts of water
Parts by weight were mixed to form a slurry. And Kojirai
Immerse a monolithic honeycomb monolith carrier in this slurry
Then, pull up and blow off the excess slurry.
Dry for 2 hours at ℃ and calcine for 2 hours at 650 ℃ to obtain alumina
The coating layer was formed. The alumina coating layer is
120 g are formed per liter of Norris carrier.

【0023】次に、上記アルミナコーティング層をもつ
モノリス担体を所定濃度の硝酸コバルト水溶液に浸漬
し、引き上げて余分な水滴を吹き払った後、110℃で
2時間乾燥し950℃で5時間焼成してCo−アルミナ
複合酸化物からなるコート層を形成した。コート層中の
Coの含有量は5重量%である。そしてコート層をもつ
モノリス担体を所定濃度のジニトロジアンミン白金水溶
液に浸漬し、引き上げて余分な水滴を吹き払った後、1
10℃で2時間乾燥した。さらに所定濃度の硝酸ロジウ
ム水溶液に浸漬し、引き上げて余分な水滴を吹き払った
後、110℃で2時間乾燥し、300℃で1時間焼成し
てPtを1.5重量%及びRhを0.1重量%担持させ
た。さらに所定濃度の酢酸バリウム水溶液に浸漬し、引
き上げて余分な水滴を吹き払った後、110℃で2時間
乾燥し500℃で2時間焼成してBaを20重量%担持
させ、本実施例のモノリス触媒を調製した。 (比較例3)Coを用いず、アルミナのみからコート層
を形成して担体の焼成を行わなかったこと以外は実施例
8と同様にして、比較例3のモノリス触媒を調製した。 (試験・評価)実施例8と比較例3のモノリス触媒を実
車(希薄燃焼エンジン(1.6リットル)リーンバーン
エンジン)の排気系に配置し、10・15モード走行し
た時の初期NOx 浄化率を測定した。またそれぞれ同じ
形式のエンジンの排気系に配置し、入りガス温度850
℃で20時間の耐久試験を行った後のNOx 浄化率を初
期浄化率と同様に測定した。結果を表3に示す。
Next, the monolith carrier having the above-mentioned alumina coating layer was dipped in a cobalt nitrate aqueous solution having a predetermined concentration, pulled up to blow off excess water drops, dried at 110 ° C. for 2 hours, and calcined at 950 ° C. for 5 hours. To form a coat layer made of Co-alumina composite oxide. The Co content in the coat layer is 5% by weight. Then, the monolith carrier having a coat layer is dipped in a dinitrodiammineplatinum aqueous solution having a predetermined concentration, pulled up and blown off excess water droplets, and then 1
It was dried at 10 ° C. for 2 hours. Further, after immersing in a rhodium nitrate aqueous solution having a predetermined concentration, pulling it up and blowing off excess water droplets, it was dried at 110 ° C. for 2 hours and calcined at 300 ° C. for 1 hour to obtain Pt of 1.5% by weight and Rh of 0. 1 wt% was supported. Further, after immersing in an aqueous solution of barium acetate having a predetermined concentration, pulling it up and blowing off excess water droplets, it was dried at 110 ° C. for 2 hours and baked at 500 ° C. for 2 hours to carry 20 wt% of Ba, and the monolith of the present example. A catalyst was prepared. (Comparative Example 3) A monolith catalyst of Comparative Example 3 was prepared in the same manner as in Example 8 except that Co was not used and the coating layer was formed only from alumina and the carrier was not baked. (Test / Evaluation) The monolith catalysts of Example 8 and Comparative Example 3 were arranged in the exhaust system of an actual vehicle (lean burn engine (1.6 liter) lean burn engine), and initial NO x purification was carried out when running in 10/15 mode. The rate was measured. Also, they are arranged in the exhaust system of the same type of engine, respectively, and the incoming gas temperature is 850
The NO x purification rate after a 20-hour durability test was measured in the same manner as the initial purification rate. The results are shown in Table 3.

【0024】[0024]

【表3】 表3より、実施例8のモノリス触媒は比較例3に比べて
耐久後のNOx 浄化率が高く、これはCo−アルミナ複
合酸化物担体としたことによる効果であることが明らか
である。 (実施例9)アルミナ粉末に所定濃度の硝酸ランタン水
溶液の所定量を含浸させ、110℃で2時間乾燥後90
0℃で5時間焼成して、蒸発乾固法によりLaとアルミ
ナの複合酸化物からなる担体粉末を調製した。担体粉末
中のLaの含有量は1重量%である。
[Table 3] From Table 3, it is clear that the monolith catalyst of Example 8 has a higher NO x purification rate after endurance as compared with Comparative Example 3, which is an effect of using the Co-alumina composite oxide carrier. (Example 9) Alumina powder was impregnated with a predetermined amount of a lanthanum nitrate aqueous solution having a predetermined concentration, and dried at 110 ° C for 2 hours, and then 90
The powder was calcined at 0 ° C. for 5 hours, and a carrier powder composed of a composite oxide of La and alumina was prepared by an evaporation-drying method. The content of La in the carrier powder is 1% by weight.

【0025】次に、担体粉末に所定濃度のジニトロジア
ンミン白金水溶液の所定量を含浸させ110℃で2時間
乾燥後、所定濃度の硝酸ロジウム水溶液の所定量を含浸
させ、110℃で2時間乾燥後300℃で1時間焼成し
て、Ptを1.5重量%及びRhを0.1重量%担持さ
せた。さらに所定濃度の酢酸バリウム水溶液の所定量を
含浸させ、110℃で2時間乾燥後500℃で2時間焼
成して、Baを20重量%担持させた。
Next, the carrier powder was impregnated with a predetermined amount of a dinitrodiammineplatinum aqueous solution of a predetermined concentration and dried at 110 ° C. for 2 hours, and then impregnated with a predetermined amount of a rhodium nitrate aqueous solution of a predetermined concentration and dried at 110 ° C. for 2 hours. It was calcined at 300 ° C. for 1 hour to carry 1.5 wt% of Pt and 0.1 wt% of Rh. Further, a predetermined amount of a barium acetate aqueous solution having a predetermined concentration was impregnated, dried at 110 ° C. for 2 hours, and then baked at 500 ° C. for 2 hours to carry 20 wt% of Ba.

【0026】得られた触媒粉末を圧粉成形し、0.5〜
1mmのペレット触媒を調製して実施例9のペレット触
媒とした。 (実施例10)硝酸ランタン水溶液の濃度を変更してL
aの含有量を3重量%としたこと以外は実施例9と同様
にして、実施例10のペレット触媒を調製した。 (実施例11)硝酸ランタン水溶液の濃度を変更してL
aの含有量を5重量%とし、Laを含有させた後の焼成
温度を800℃としたこと以外は実施例9と同様にし
て、実施例11のペレット触媒を調製した。 (実施例12)硝酸ランタン水溶液の濃度を変更してL
aの含有量を5重量%としたこと以外は実施例9と同様
にして、実施例12のペレット触媒を調製した。 (実施例13)硝酸ランタン水溶液の濃度を変更してL
aの含有量を7重量%としたこと以外は実施例9と同様
にして、実施例13のペレット触媒を調製した。 (実施例14)硝酸ランタン水溶液の濃度を変更してL
aの含有量を10重量%としたこと以外は実施例9と同
様にして、実施例14のペレット触媒を調製した。 (実施例15)硝酸ランタン水溶液の濃度を変更してL
aの含有量を5重量%とし、Laを含有させた後の焼成
温度を1000℃としたこと以外は実施例9と同様にし
て、実施例15のペレット触媒を調製した。 (比較例4)Laを用いず、アルミナ粉末を担体粉末と
したこと以外は実施例9と同様にして、比較例4のペレ
ット触媒を調製した。なお、この比較例4のペレット触
媒は比較例1と同一である。 (比較例5)硝酸ランタン水溶液の濃度を変更してLa
の含有量を5重量%とし、Laを含有させた後の焼成温
度を700℃としたこと以外は実施例9と同様にして、
比較例5のペレット触媒を調製した。 (試験・評価)上記のそれぞれのペレット触媒につい
て、実施例1〜7と同様にして初期及び耐久後のNOx
浄化率を測定した。結果を表4に示す。
The obtained catalyst powder is compacted into a powder, and 0.5 to
A 1 mm pellet catalyst was prepared and used as the pellet catalyst of Example 9. (Example 10) L was changed by changing the concentration of the lanthanum nitrate aqueous solution.
A pellet catalyst of Example 10 was prepared in the same manner as in Example 9 except that the content of a was 3% by weight. (Example 11) L was changed by changing the concentration of the lanthanum nitrate aqueous solution.
A pellet catalyst of Example 11 was prepared in the same manner as in Example 9 except that the content of a was 5% by weight and the calcination temperature after containing La was 800 ° C. (Example 12) Changing the concentration of the lanthanum nitrate aqueous solution to L
A pellet catalyst of Example 12 was prepared in the same manner as in Example 9 except that the content of a was 5% by weight. (Example 13) L was changed by changing the concentration of the lanthanum nitrate aqueous solution.
A pellet catalyst of Example 13 was prepared in the same manner as in Example 9 except that the content of a was 7% by weight. Example 14 L was changed by changing the concentration of the lanthanum nitrate aqueous solution.
A pellet catalyst of Example 14 was prepared in the same manner as in Example 9 except that the content of a was 10% by weight. (Example 15) L was changed by changing the concentration of the lanthanum nitrate aqueous solution.
A pellet catalyst of Example 15 was prepared in the same manner as in Example 9 except that the content of a was 5% by weight, and the calcination temperature after containing La was 1000 ° C. (Comparative Example 4) A pellet catalyst of Comparative Example 4 was prepared in the same manner as in Example 9 except that La was not used and alumina powder was used as the carrier powder. The pellet catalyst of Comparative Example 4 is the same as that of Comparative Example 1. (Comparative Example 5) The concentration of the lanthanum nitrate aqueous solution was changed to La.
Was set to 5% by weight, and the firing temperature after adding La was set to 700 ° C. in the same manner as in Example 9,
The pellet catalyst of Comparative Example 5 was prepared. (Test / Evaluation) With respect to each of the above pellet catalysts, NO x after initial stage and after durability test was performed in the same manner as in Examples 1 to 7.
The purification rate was measured. The results are shown in Table 4.

【0027】[0027]

【表4】 各実施例のペレット触媒は、実施例14を除き耐久後の
NOx 浄化率が比較例4に比べて高く、NOx 浄化性能
に優れていることがわかる。これはLa−アルミナ担体
とした効果であることが明らかである。なお実施例14
では、Laを10重量%と多量に含むために担体の比表
面積が低下し、耐久後のNOx 浄化率がLaをもたない
比較例4より低下してしまっている。ただ実施例14の
場合でも、焼成温度をもう少し高くすることで、耐久後
のNOx 浄化率が向上する可能性がある。
[Table 4] It is understood that the pellet catalysts of the respective examples have a higher NO x purification rate after endurance as compared with Comparative Example 4 except for Example 14, and are excellent in NO x purification performance. It is clear that this is the effect of using the La-alumina carrier. Example 14
In Comparative Example 4, since a large amount of La was contained at 10% by weight, the specific surface area of the carrier was reduced, and the NO x purification rate after endurance was lower than in Comparative Example 4 having no La. However, even in the case of Example 14, there is a possibility that the NO x purification rate after endurance will be improved by making the firing temperature a little higher.

【0028】さらに実施例どうしを比較すると、Laの
含有量が3重量%以下となると耐久後のNOx 浄化率が
50%未満となり、Laは3重量%を超えて10重量%
未満の範囲が特に好ましいことがわかる。また、比較例
5と実施例12とを比較すると、実施例12の方が耐久
後のNO x 浄化率に優れている。これは焼成温度の差異
に起因し、比較例5では700℃と低い温度で焼成した
ためにLaとアルミナとは複合酸化物を形成していない
のに対し、実施例12では900℃で焼成しているので
Laとアルミナとは複合酸化物として担体中に存在して
いるという差異に起因するものである。
Further comparing the examples, the La
If the content is less than 3% by weight, NO after endurancexPurification rate
Less than 50%, La exceeds 3% by weight and 10% by weight
It can be seen that the range below is particularly preferable. Also, a comparative example
Comparing 5 and Example 12, Example 12 is more durable.
Later NO xExcellent purification rate. This is the difference in firing temperature
Due to the above, in Comparative Example 5, firing was performed at a low temperature of 700 ° C.
Therefore, La and alumina do not form a composite oxide.
On the other hand, in Example 12, since the baking was performed at 900 ° C.
La and alumina are present in the carrier as complex oxides.
It is due to the difference that there is.

【0029】なお実施例11と実施例12及び実施例1
5の比較より、800℃より900℃の方が耐久後のN
x 浄化率が高くなり、1000℃になるとかえって耐
久後のNOx 浄化率が低下することがわかる。したがっ
て最適な焼成温度は800〜1000℃の間にあること
が推察される。 (実施例16)アルミナ粉末100重量部と、アルミナ
含有率10重量%のアルミナゾル70重量部と、濃度4
0重量%の硝酸アルミニウム水溶液15重量部と、水3
0重量部を混合してスラリーとした。そしてコージェラ
イト質のハニカム状モノリス担体をこのスラリーに浸漬
し、引き上げて余分なスラリーを吹き払った後、110
℃で2時間乾燥し650℃で2時間焼成してアルミナコ
ーティング層を形成した。アルミナコーティング層はモ
ノリス担体1リットル当たり120g形成されている。
The eleventh embodiment, the twelfth embodiment, and the first embodiment.
From the comparison of No. 5, N after the endurance at 900 ℃ than 800 ℃
It can be seen that the O x purification rate becomes high, and the NO x purification rate after endurance decreases rather at 1000 ° C. Therefore, it is assumed that the optimum firing temperature is between 800 and 1000 ° C. (Example 16) 100 parts by weight of alumina powder, 70 parts by weight of alumina sol having an alumina content of 10% by weight, and a concentration of 4
15 parts by weight of 0% by weight aluminum nitrate aqueous solution and 3 parts of water
0 parts by weight was mixed to form a slurry. Then, a cordierite honeycomb monolithic carrier is dipped in this slurry and pulled up to blow off excess slurry.
The alumina coating layer was formed by drying at 2 ° C. for 2 hours and baking at 650 ° C. for 2 hours. The alumina coating layer is formed in an amount of 120 g per liter of the monolith carrier.

【0030】次に、上記アルミナコーティング層をもつ
モノリス担体を所定濃度の硝酸ランタン水溶液に浸漬
し、引き上げて余分な水滴を吹き払った後、110℃で
2時間乾燥し950℃で5時間焼成してLa−アルミナ
複合酸化物からなるコート層を形成した。コート層中の
Laの含有量は5重量%である。そしてコート層をもつ
モノリス担体を所定濃度のジニトロジアンミン白金水溶
液に浸漬し、引き上げて余分な水滴を吹き払った後、1
10℃で2時間乾燥した。さらに所定濃度の硝酸ロジウ
ム水溶液に浸漬し、引き上げて余分な水滴を吹き払った
後、110℃で2時間乾燥し、300℃で1時間焼成し
てPtを1.5重量%及びRhを0.1重量%担持させ
た。さらに所定濃度の酢酸バリウム水溶液に浸漬し、引
き上げて余分な水滴を吹き払った後、110℃で2時間
乾燥し500℃で2時間焼成してBaを酸化物換算で2
0重量%担持させ、本実施例のモノリス触媒を調製し
た。 (比較例6)Laを用いず、アルミナのみからコート層
を形成して担体の焼成を行わなかったこと以外は実施例
16と同様にして、比較例6のモノリス触媒を調製し
た。なおこの比較例6のモノリス触媒は、比較例3と同
一である。 (試験・評価)実施例16と比較例6のモノリス触媒に
ついて、実施例8及び比較例3と同様に初期及び耐久後
のNOx 浄化率を測定し、結果を表5に示す。
Next, the monolith carrier having the above-mentioned alumina coating layer was immersed in an aqueous lanthanum nitrate solution having a predetermined concentration, pulled up to blow off excess water droplets, dried at 110 ° C. for 2 hours, and calcined at 950 ° C. for 5 hours. To form a coat layer made of La-alumina composite oxide. The content of La in the coat layer is 5% by weight. Then, the monolith carrier having a coat layer is dipped in a dinitrodiammineplatinum aqueous solution having a predetermined concentration, pulled up and blown off excess water droplets, and then 1
It was dried at 10 ° C. for 2 hours. Further, after immersing in a rhodium nitrate aqueous solution having a predetermined concentration, pulling it up and blowing off excess water droplets, it was dried at 110 ° C. for 2 hours and calcined at 300 ° C. for 1 hour to obtain Pt of 1.5% by weight and Rh of 0. 1 wt% was supported. Further, after immersing in a barium acetate aqueous solution having a predetermined concentration, pulling it up and blowing off excess water droplets, it is dried at 110 ° C. for 2 hours and baked at 500 ° C. for 2 hours to convert Ba into an oxide of 2
The monolith catalyst of this example was prepared by supporting 0% by weight. (Comparative Example 6) A monolith catalyst of Comparative Example 6 was prepared in the same manner as in Example 16 except that La was not used and the support was not baked by forming the coat layer from only alumina. The monolith catalyst of Comparative Example 6 is the same as that of Comparative Example 3. (Test / Evaluation) With respect to the monolith catalysts of Example 16 and Comparative Example 6, the NO x purification rates at the initial stage and after the durability test were measured in the same manner as in Example 8 and Comparative Example 3, and the results are shown in Table 5.

【0031】[0031]

【表5】 表5より、実施例16のモノリス触媒は比較例6に比べ
て耐久後のNOx 浄化率が高く、これはLa−アルミナ
複合酸化物担体としたことによる効果であることが明ら
かである。
[Table 5] From Table 5, it is clear that the monolith catalyst of Example 16 has a higher NO x purification rate after endurance than that of Comparative Example 6, and this is due to the effect of using the La-alumina composite oxide carrier.

【0032】[0032]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、初期のNOx 浄化性能に優れるとともに耐久後の
NOx 浄化率の低下度合いが小さく、耐久性に優れてい
る。
According to the exhaust gas purifying catalyst of the present invention, the initial NO x purification performance is excellent, and the degree of decrease in the NO x purification rate after endurance is small, and the durability is excellent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/63 B01D 53/36 ZABH // B01J 32/00 102B 102H B01J 23/56 301A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01J 23/63 B01D 53/36 ZABH // B01J 32/00 102B 102H B01J 23/56 301A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コバルト及びランタンの少なくとも一方
とアルミナとの複合酸化物からなる担体と、該担体に担
持された触媒貴金属及びNOx 吸蔵材と、からなること
を特徴とする排ガス浄化用触媒。
1. A catalyst for purifying exhaust gas, comprising a carrier composed of a composite oxide of at least one of cobalt and lanthanum and alumina, and a catalytic noble metal and a NO x storage material carried on the carrier.
JP7197524A 1995-08-02 1995-08-02 Catalyst for purification of exhaust gas Pending JPH0938493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197524A JPH0938493A (en) 1995-08-02 1995-08-02 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197524A JPH0938493A (en) 1995-08-02 1995-08-02 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH0938493A true JPH0938493A (en) 1997-02-10

Family

ID=16375905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197524A Pending JPH0938493A (en) 1995-08-02 1995-08-02 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH0938493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221804B1 (en) 1998-01-27 2001-04-24 Mazda Motor Corporation Catalyst for purifying exhaust gas and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221804B1 (en) 1998-01-27 2001-04-24 Mazda Motor Corporation Catalyst for purifying exhaust gas and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP2002177781A (en) Exhaust gas cleaning catalyst
JP3821343B2 (en) Exhaust gas purification device
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3473295B2 (en) Catalyst carrier and catalyst for exhaust gas purification
JP3430823B2 (en) Exhaust gas purification catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP2002191988A (en) Catalyst for cleaning exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JPH07171392A (en) Catalyst for exhaust gas purification
JP3272015B2 (en) Exhaust gas purification catalyst
JP2001079405A (en) Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method
JP3775080B2 (en) Exhaust gas purification catalyst
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JPH0938493A (en) Catalyst for purification of exhaust gas
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst
JP4079622B2 (en) Exhaust gas purification catalyst
JP2000042369A (en) Purifying device for exhaust gas from internal combustion engine, purifying method of exhaust gas and purifying catalyst for exhaust gas
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3817679B2 (en) Exhaust gas purification catalyst
JP2698288B2 (en) Exhaust gas purification catalyst
JP3830011B2 (en) Exhaust gas purification catalyst