JPH0938075A - Radial rays exposure device - Google Patents

Radial rays exposure device

Info

Publication number
JPH0938075A
JPH0938075A JP7192135A JP19213595A JPH0938075A JP H0938075 A JPH0938075 A JP H0938075A JP 7192135 A JP7192135 A JP 7192135A JP 19213595 A JP19213595 A JP 19213595A JP H0938075 A JPH0938075 A JP H0938075A
Authority
JP
Japan
Prior art keywords
radiation
calibration
sensitivity data
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7192135A
Other languages
Japanese (ja)
Inventor
Mikio Wada
幹生 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7192135A priority Critical patent/JPH0938075A/en
Publication of JPH0938075A publication Critical patent/JPH0938075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To always obtain correct images by compensating deviation in a short time which occurs with time for each detection element of the line sensor. SOLUTION: A calibration radial ray source 8 is installed at the front of a radial ray detector 4 of the X-ray CT device, a calibration radial ray 11 from the calibration radial ray source 8 is irradiated to detection elements 7 during no exposure and sensitivity data is obtained and stored in a sensitivity data memory 22, and the calibration radial ray source 8 is stored in a shield box 12 during exposure. An output of an output detection circuit 21 is compensated by a compensator 23 based on sensitivity data memorized, so sensitivity deviation among the detection elements is eliminated, and a tomograpy image without arlifact can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は医療用の画像診断装
置であるX線CT装置やデジタル撮像装置、ガンマカメ
ラなどの放射線撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation imaging apparatus such as an X-ray CT apparatus which is a medical image diagnostic apparatus, a digital imaging apparatus, and a gamma camera.

【0002】[0002]

【従来の技術】例えばX線CT装置に使われているよう
な、放射線が入射することによって発光する蛍光素子
と、そこからの光を受けて電気信号を出力する光電変換
素子の組み合わせからなる検出素子を多数個一次元状に
並べて構成した放射線検出器は、個々の検出素子の製造
上のばらつきに起因する個体差のほかに、放射線の被照
射量に応じて検出素子の感度(特に蛍光素子の感度)が
低下するという現象があった。このために、この放射線
検出器を用いた放射線撮像装置を継続的に使用して行く
にしたがって各検出素子(各チャンネル)の感度の低下
やばらつきが大きくなり、X線CT装置などでは最終的
に得られる断層像に虚像を生じるという問題があった。
従来は、被写体がない場合の検出素子の出力が所定の値
になるように補正する操作、いわゆるキャリブレーショ
ンを定期的あるいは撮像の開始直前に行うことによって
この問題を回避していたが、このキャリブレーションを
行うためには余分な時間がかかり、診断を一時中断する
ことになり非常に効率が悪かった。
2. Description of the Related Art Detection, which is composed of a combination of a fluorescent element that emits light upon incidence of radiation and a photoelectric conversion element that receives light from the fluorescent element and outputs an electric signal, as used in an X-ray CT apparatus A radiation detector composed of a large number of elements arranged in a one-dimensional array is not only an individual difference due to manufacturing variations of individual detection elements, but also the sensitivity of detection elements (especially fluorescent elements) depending on the radiation dose. However, there was a phenomenon that the For this reason, as the radiation imaging apparatus using this radiation detector is continuously used, the sensitivity of each detection element (each channel) decreases and the variation becomes large, and finally in an X-ray CT apparatus or the like. There is a problem that a virtual image is generated in the obtained tomographic image.
In the past, this problem was circumvented by performing a so-called calibration operation for correcting the output of the detection element to a predetermined value when there is no subject, so-called calibration, which has been performed. It took extra time to perform the operation, and the diagnosis was temporarily suspended, which was very inefficient.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来技術
に伴う問題点に鑑みて発明されたものであり、本発明が
解決しようとする課題は、検出素子の製造上のばらつき
に起因する固体差や、放射線の被照射量に応じて起こる
放射線検出器の個々の検出素子の感度変化を克服し、診
断途中での余分なキャリブレーションのために時間を費
やすことなく、常に良好な画像を得ることができる放射
線撮像装置を提供することである。
The present invention has been invented in view of the problems associated with the above-mentioned prior art, and the problem to be solved by the present invention is a solid state caused by variations in manufacturing of detection elements. Overcome differences and sensitivity changes of individual detection elements of the radiation detector that occur depending on the radiation dose, and always obtain good images without spending time for extra calibration during diagnosis It is to provide a radiation imaging apparatus capable of performing the above.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、放射線の検出素子を一次元または二次元
的に複数個並べてなる放射線検出器を有する放射線撮像
装置において、前記放射線検出器の前面に前記検出素子
の並び方向に走査可能に設置された較正用放射線源と、
前記各検出素子の感度データを格納する記憶手段と、こ
の感度データに基づき各検出素子の出力を補正する補正
手段を備え、前記較正用放射線源を前記放射線検出器の
前面で走査することによって得られる各検出素子の感度
データに基づいて、撮像段階における各検出素子の出力
を補正するようにした。
In order to solve the above problems, the present invention provides a radiation imaging apparatus having a radiation detector in which a plurality of radiation detection elements are arranged one-dimensionally or two-dimensionally. A calibration radiation source installed on the front surface of the vessel so as to be scannable in the arrangement direction of the detection elements,
Storage means for storing the sensitivity data of each of the detection elements and correction means for correcting the output of each of the detection elements based on the sensitivity data are provided, and are obtained by scanning the calibration radiation source in front of the radiation detector. The output of each detection element in the imaging stage is corrected based on the sensitivity data of each detection element.

【0005】撮像をしていないときに、放射線量が安定
した較正用放射線源を放射線検出器の前面で走査しなが
ら各検出素子の出力を測定することによって感度記憶メ
モリに各検出素子の感度データを記憶し、撮像をすると
きにはその記憶されている最新の感度データに基づき各
検出素子の出力を補正するので、撮像を中断するような
余分なキャリブレーションのために時間を費やすことな
く虚像のない良好な撮影像を常に得ることができる。
The sensitivity data of each detection element is stored in the sensitivity storage memory by measuring the output of each detection element while scanning the calibration radiation source with a stable radiation dose on the front surface of the radiation detector when the imaging is not performed. Is stored, and the output of each detection element is corrected based on the latest sensitivity data stored when imaging, so there is no virtual image without spending time for extra calibration that interrupts imaging. A good captured image can always be obtained.

【0006】[0006]

【発明の実施の形態】図1は本発明の一実施例であるX
線CT装置の概略図である。X線管1から放射されたX
線2は被検体3を透過して円弧状の一次元的ラインセン
サである放射線検出器4によって検出される。この放射
線検出器4は、X線があたると光を発する蛍光素子5
と、この蛍光素子5からの光を電気的信号に変換する例
えばフォトダイオードなどの光電変換素子6の組からな
る検出素子7をX線管を中心とする円弧状に1000個
程度の複数個並べて形成したものである。放射線検出器
4の前面(X線が当たる面)付近には較正用放射線源8
が配置されており、この較正用放射線源8は円弧状のレ
ール9と駆動モータ10などからなる走査機構により放
射線検出器4の前面で検出素子の並び方向に沿って走査
されるようになっている。さらに放射線検出器4の端近
傍には較正用放射線源8を収納でき、鉛板などで囲われ
て放射線が漏れないように作られた遮蔽箱12が備えら
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows an embodiment X of the present invention.
It is a schematic diagram of a line CT device. X emitted from the X-ray tube 1
The line 2 passes through the subject 3 and is detected by a radiation detector 4 which is an arc-shaped one-dimensional line sensor. The radiation detector 4 includes a fluorescent element 5 that emits light when exposed to X-rays.
And a plurality of detection elements 7, each of which is composed of a set of photoelectric conversion elements 6 such as photodiodes, for converting the light from the fluorescent element 5 into an electric signal, are arranged in an arc shape around the X-ray tube. It was formed. A calibration radiation source 8 is provided near the front surface of the radiation detector 4 (the surface on which the X-rays strike).
Is arranged, and the calibration radiation source 8 is configured to be scanned on the front surface of the radiation detector 4 along the direction in which the detection elements are arranged by a scanning mechanism including an arcuate rail 9 and a drive motor 10. There is. Further, near the end of the radiation detector 4, a calibration radiation source 8 can be housed, and a shielding box 12 surrounded by a lead plate or the like to prevent radiation from leaking is provided.

【0007】この較正用放射線源8はCs137 などの放
射性同位体から構成され一定の強さの較正用放射線11
を常に放射しているものである。撮像をしていない合間
に、この較正用放射線源8が放射線検出器4の前面に沿
って走査されることにより、較正用放射線11が放射線
検出器4を構成する各検出素子に次々に入射し、そのと
きの各検出素子からの出力が測定される。照射される放
射線の強度は一定であるから放射線検出器4からの出力
(あるいはその最大値を1として規格化した値)は各検
出素子の感度のばらつきを表すものとなる。これらの出
力は出力検出回路21、スイッチS1を介して感度デー
タメモリ22に記憶される。ここで出力検出回路21は
放射線検出器4の各検出素子からのアナログ出力を増幅
・デジタル化などを行いデジタルデータとして出力する
ものである。
The calibration radiation source 8 is composed of a radioactive isotope such as Cs137 and has a constant intensity.
Is always radiated. The calibration radiation source 8 is scanned along the front surface of the radiation detector 4 during the period when the imaging is not performed, so that the calibration radiation 11 is sequentially incident on each detection element constituting the radiation detector 4. The output from each detection element at that time is measured. Since the intensity of the applied radiation is constant, the output from the radiation detector 4 (or the value standardized with its maximum value being 1) represents the variation in the sensitivity of each detection element. These outputs are stored in the sensitivity data memory 22 via the output detection circuit 21 and the switch S1. Here, the output detection circuit 21 amplifies and digitizes the analog output from each detection element of the radiation detector 4 and outputs it as digital data.

【0008】実際の撮像を行う場合には、較正用放射線
源8は放射線検出器4の脇に配置された遮蔽箱12の中
に収納される。そうすることによって較正用放射線11
は遮蔽箱12から漏れ出すことがないので、測定時にバ
ックグラウンドとなるような余分の放射線を放射線検出
器4に照射することがなく、測定データに余分なノイズ
が入ることはない。ただし、この遮蔽箱12は必ずしも
必要ではなく、放射線検出器4の前から避けた場所に退
避した較正用放射線源8の収容容器の放射線放出口に蓋
をするようにしてもよい。
When performing an actual image pickup, the calibration radiation source 8 is housed in a shielding box 12 arranged beside the radiation detector 4. By doing so, the calibration radiation 11
Does not leak from the shielding box 12, so that the radiation detector 4 is not irradiated with extra radiation that becomes the background during measurement, and no extra noise is included in the measurement data. However, the shielding box 12 is not always necessary, and the radiation emitting port of the container for the calibration radiation source 8 that has been retracted from the front of the radiation detector 4 may be covered.

【0009】撮像時においては放射線検出器4の出力は
出力検出回路21とスイッチS1を介して補正器33に
接続される。得られた撮像用のデータは、補正器33に
よって感度データメモリ22に記憶されている較正用感
度データで割り算することにより補正され各検出素子間
の特性のばらつきの影響を受けないデータとなる。この
データは、制御器24によって断層画像データとして再
構成され、CRTなどからなる表示器25に画像が表示
される。ここで制御器24は感度データメモリ22や補
正器23、スイッチS1などをそれぞれの役割を果たす
ように制御する動作も行っている。なお、制御器24、
補正器23、感度データメモリ22、スイッチS1など
の機能はまとめて一つのコンピュータによってソフト的
に処理することもできる。
During imaging, the output of the radiation detector 4 is connected to the corrector 33 via the output detection circuit 21 and the switch S1. The obtained imaging data is corrected by being divided by the calibration sensitivity data stored in the sensitivity data memory 22 by the compensator 33 to be corrected, and becomes data which is not affected by the characteristic variation among the detection elements. This data is reconstructed as tomographic image data by the controller 24, and the image is displayed on the display 25 such as a CRT. Here, the controller 24 also performs an operation of controlling the sensitivity data memory 22, the compensator 23, the switch S1 and the like so as to play their respective roles. The controller 24,
The functions of the compensator 23, the sensitivity data memory 22, the switch S1 and the like can be collectively processed by one computer as software.

【0010】本発明は次のような構成を含むものであ
る。蛍光素子と光電変換素子との組み合わせからなる検
出素子を複数個並べてなる放射線検出器を有するX線C
T装置において、前記放射線検出器の前面に前記検出素
子の並列方向に走査可能に設置された較正用放射線源
と、この較正用放射線源を収納する放射線遮蔽箱と、前
記各検出素子の感度データを格納する記憶手段と、この
感度データに基づき各検出素子の出力を補正する演算手
段を備え、撮像の準備段階で前記較正用放射線源を前記
放射線検出器の前面で走査しながら各検出素子の出力を
測定することによって前記記憶手段に各検出素子の感度
データを記憶し、撮像の段階では前記較正用放射線源を
前記遮蔽箱に収納し、撮像のときに得られる各検出素子
の出力を前記感度データに基づいて前記演算手段によっ
て補正することを特徴とするX線CT装置。
The present invention includes the following configurations. X-ray C having a radiation detector formed by arranging a plurality of detection elements each including a combination of a fluorescent element and a photoelectric conversion element
In the T apparatus, a calibration radiation source installed on the front surface of the radiation detector so as to be able to scan in the parallel direction of the detection elements, a radiation shielding box housing the calibration radiation source, and sensitivity data of each of the detection elements. And a calculation means for correcting the output of each detection element based on this sensitivity data, and while scanning the calibration radiation source on the front surface of the radiation detector in the preparation stage of imaging, Sensitivity data of each detection element is stored in the storage means by measuring the output, the calibration radiation source is housed in the shielding box at the time of imaging, and the output of each detection element obtained at the time of imaging is described above. An X-ray CT apparatus characterized in that it is corrected by the calculation means based on sensitivity data.

【0011】[0011]

【発明の効果】本発明では較正用放射線源とその走査機
構によって、放射線検出器の各検出素子の特性のばらつ
きおよび感度の低下を撮像の合間や準備段階で簡単に補
正しておくことができるので、診断のための撮影を中断
したり余分な時間を費やすことなく、常に良好な画像が
得られる。
According to the present invention, the calibration radiation source and its scanning mechanism make it possible to easily correct variations in the characteristics of the detection elements of the radiation detector and a reduction in sensitivity during the imaging or during the preparation stage. Therefore, a good image can always be obtained without interrupting photographing for diagnosis or spending extra time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すX線CT装置の概略図
である。
FIG. 1 is a schematic diagram of an X-ray CT apparatus showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線管 2…X線 3…被検体 4…放射線検出器 5…蛍光素子 6…光電変換素子 7…検出素子 8…較正用放射線源 9…レール 10…モータ 11…較正用放射線 12…遮蔽箱 21…出力検出回路 22…感度データメモリ 23…補正器 24…制御器 25…表示器 DESCRIPTION OF SYMBOLS 1 ... X-ray tube 2 ... X-ray 3 ... Test object 4 ... Radiation detector 5 ... Fluorescent element 6 ... Photoelectric conversion element 7 ... Detection element 8 ... Calibration radiation source 9 ... Rail 10 ... Motor 11 ... Calibration radiation 12 ... Shield box 21 ... Output detection circuit 22 ... Sensitivity data memory 23 ... Corrector 24 ... Controller 25 ... Indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線の検出素子を一次元または二次元
的に複数個並べてなる放射線検出器を有する放射線撮像
装置において、前記放射線検出器の前面に前記検出素子
の並び方向に走査可能に設置された較正用放射線源と、
前記各検出素子の感度データを格納する記憶手段と、こ
の感度データに基づき各検出素子の出力を補正する補正
手段を備え、前記較正用放射線源を前記放射線検出器の
前面で走査することによって得られる各検出素子の感度
データに基づいて、撮像段階における各検出素子の出力
を補正することを特徴とする放射線撮像装置。
1. A radiation imaging apparatus having a radiation detector in which a plurality of radiation detection elements are arranged one-dimensionally or two-dimensionally, and is installed on the front surface of the radiation detector so as to be scannable in the arrangement direction of the detection elements. A calibration radiation source,
Storage means for storing the sensitivity data of each of the detection elements and correction means for correcting the output of each of the detection elements based on the sensitivity data are provided, and are obtained by scanning the calibration radiation source in front of the radiation detector. A radiation imaging apparatus characterized by correcting the output of each detection element in the imaging stage based on the sensitivity data of each detection element.
JP7192135A 1995-07-27 1995-07-27 Radial rays exposure device Pending JPH0938075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7192135A JPH0938075A (en) 1995-07-27 1995-07-27 Radial rays exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7192135A JPH0938075A (en) 1995-07-27 1995-07-27 Radial rays exposure device

Publications (1)

Publication Number Publication Date
JPH0938075A true JPH0938075A (en) 1997-02-10

Family

ID=16286273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7192135A Pending JPH0938075A (en) 1995-07-27 1995-07-27 Radial rays exposure device

Country Status (1)

Country Link
JP (1) JPH0938075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518147A (en) * 2011-07-12 2014-07-28 コーニンクレッカ フィリップス エヌ ヴェ Calibration of detectors in imaging systems
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518147A (en) * 2011-07-12 2014-07-28 コーニンクレッカ フィリップス エヌ ヴェ Calibration of detectors in imaging systems
JP2016014579A (en) * 2014-07-02 2016-01-28 株式会社堀場製作所 Gamma camera adjusting device and gamma camera system

Similar Documents

Publication Publication Date Title
JP2525162B2 (en) X-ray equipment
JP3381223B2 (en) Electronically enhanced X-ray detector
JP3197559B2 (en) Computer X-ray tomography apparatus using image enhanced detector
JP3197560B2 (en) Method for improving the dynamic range of an imaging device
JP5283718B2 (en) Radiation image detection apparatus and gain setting method used for radiation image detection apparatus
WO2017130552A1 (en) Radiation image capturing device, control method for same, and program
US9234967B2 (en) System and method for linearization of multi-camera flat panel X-ray detectors
JP4152748B2 (en) Digital detector method for dual energy imaging.
JP5579505B2 (en) X-ray CT system
US20120121063A1 (en) X-ray examination device and method
JP3527381B2 (en) X-ray CT system
JP4150906B2 (en) Method for monitoring changes in quantum detection efficiency of an X-ray detector
JPH10509069A (en) Normalization of tomographic image data
US5402463A (en) Apparatus and method for radiation imaging
US5818900A (en) Image spot noise reduction employing rank order
JPH0938075A (en) Radial rays exposure device
RU83623U1 (en) DEVICE FOR FORMATION AND REGISTRATION OF X-RAY IMAGES
JPH08266532A (en) X-ray ct system
JP2598037B2 (en) Tomographic imaging device
JPH0866388A (en) Radiation image pick-up device
JPH0910191A (en) Radiation camera apparatus
JPH1114757A (en) Gamma camera
JP4007607B2 (en) Radiation CT imaging apparatus, radiation CT imaging system, and radiation CT imaging method using the same
JP2023157887A (en) Photon counting ct apparatus, photon counting ct method, and program
JPH062370Y2 (en) X-ray dose detector for concentration calibration