JPH0936389A - Switching element and its manufacturing method - Google Patents

Switching element and its manufacturing method

Info

Publication number
JPH0936389A
JPH0936389A JP7187357A JP18735795A JPH0936389A JP H0936389 A JPH0936389 A JP H0936389A JP 7187357 A JP7187357 A JP 7187357A JP 18735795 A JP18735795 A JP 18735795A JP H0936389 A JPH0936389 A JP H0936389A
Authority
JP
Japan
Prior art keywords
switching element
group
embedded image
manufacturing
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7187357A
Other languages
Japanese (ja)
Other versions
JP2728123B2 (en
Inventor
Satoru Momose
悟 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7187357A priority Critical patent/JP2728123B2/en
Publication of JPH0936389A publication Critical patent/JPH0936389A/en
Application granted granted Critical
Publication of JP2728123B2 publication Critical patent/JP2728123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Volatile Memory (AREA)
  • Electronic Switches (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a totally new function for freely inverting a polarity as a rectification element by allowing an organic molecular film to have a characteristic group indicated by two specific structural formulae and the oxidation or reduction form and R to be alkyl group with an arbitrary functional group at a specific position. SOLUTION: An organic molecular film has a characteristic group which is shown by formulae 1 and 2 and the oxidation or reduction form and R consists of alkyl group with an arbitrary functional group at each position with the number of carbons being 1-8. Then, when a potential difference exceeds a certain threshold with quinone part side as a cathode and hydroquinone part side as an anode, the cathode is reduced by one electron and the anode is oxidized by one electron and tunnel current flows between radicals. When the potential difference is enlarged, tunneling in a molecule cannot follow the giving/ reception of electrons from the outside of the molecule at a certain value and the cathode is further reduced by one electron and the anode is further oxidized by one electron, thus resulting in non-conduction state. By applying a voltage with the upper electrode as an anode and the lower electrode as a cathode from this state, the molecule returns to an initial state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,電子回路の要素と
なる整流素子および記憶素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectifying element and a memory element which are elements of an electronic circuit.

【0002】[0002]

【従来の技術】近年,有機分子の機能性を電子デバイス
に応用しようという研究は盛んに行われており,絶縁体
として有機薄膜を用いた,金属・絶縁体・金属(MI
M)構造をもつスイッチング素子がいくつか開発され
た。用いられた有機薄膜の例を挙げると,Cu・TCN
Q(テトラシアノキノジメタン),鉛フタロシアニン,
ポリイミドなどである。現在は,これらの実績を踏まえ
て,有機分子の,自由に物性を設計できるという利点を
活かすため,さらに高機能な電子デバイスを開発する研
究が行われつつある。
2. Description of the Related Art In recent years, researches have been actively conducted to apply the functionality of organic molecules to electronic devices, and a metal-insulator-metal (MI
Several switching devices having M) structure have been developed. An example of the organic thin film used is Cu-TCN.
Q (tetracyanoquinodimethane), lead phthalocyanine,
Examples include polyimide. Based on these achievements, research is currently underway to develop higher-performance electronic devices in order to take advantage of the ability of organic molecules to freely design their physical properties.

【0003】[0003]

【発明が解決しようとする課題】そこで,本発明の技術
的課題は,上記の事情に鑑み,新規な物性を持つように
設計された有機分子を用いて,整流素子としての極性を
自由に逆転させることのできる,全く新しい機能を持つ
スイッチング素子と,このスイッチング素子を情報の記
憶に応用した記憶素子とを提供することにある。
Therefore, in view of the above circumstances, the technical problem of the present invention is to freely reverse the polarity as a rectifying element by using an organic molecule designed to have novel physical properties. It is to provide a switching element having a completely new function that can be performed, and a storage element in which the switching element is applied to information storage.

【0004】[0004]

【課題を解決するための手段】本発明によれば,接点部
に有機分子膜を備えたスイッチング素子において,前記
有機分子膜は,下記化11式及び化12式及びこれらの
酸化もしくは還元形で示される特性基を有し,Rは炭素
数が1から8の各位に任意の官能基を有するアルキル基
からなることを特徴とするスイッチング素子が得られ
る。
According to the present invention, in a switching element having an organic molecular film at a contact portion, the organic molecular film is represented by the following chemical formulas (11) and (12) and their oxidized or reduced forms. A switching element is obtained which has the characteristic groups shown and R is an alkyl group having an arbitrary functional group at each position of 1 to 8 carbon atoms.

【0005】[0005]

【化11】 Embedded image

【0006】[0006]

【化12】 また,本発明によれば,前記スイッチング素子におい
て,前記有機分子は,1,4−ナフトキノン基又はこの
特性基の5,6,7,8位の置換もしくは付加による誘
導体及び2−Rチオ−1,4−ヒドロナフトキノン基又
はこの特性基の5,6,7,8位の置換もしくは付加に
よる誘導体からなることを特徴とするスイッチング素子
が得られる。
[Chemical 12] Further, according to the present invention, in the switching element, the organic molecule is a 1,4-naphthoquinone group or a derivative thereof by substitution or addition at the 5,6,7,8 position of this characteristic group and 2-Rthio-1. A switching element is obtained which comprises a 4,4-hydronaphthoquinone group or a derivative of this characteristic group by substitution or addition at the 5,6,7,8 positions.

【0007】また,本発明によれば,前記スイッチング
素子において,前記有機分子は,下記化13式,化14
式,又は化15式で示されるものからなる群の内の少な
くとも一種からなり,R1 は炭素数1から8のアルキル
基又はアリール基でありR=R2 であることを特徴とす
るスイッチング素子が得られる。
According to the present invention, in the switching element, the organic molecules are represented by the following chemical formulas
A switching element characterized by comprising at least one member selected from the group consisting of the groups represented by the following formulas or Chemical Formula 15, wherein R 1 is an alkyl group or aryl group having 1 to 8 carbon atoms and R = R 2. Is obtained.

【0008】[0008]

【化13】 Embedded image

【0009】[0009]

【化14】 Embedded image

【0010】[0010]

【化15】 また,本発明によれば,前記した内のいずれかのスイッ
チング素子において,前記有機高分子膜が一対の電極に
挟み込まれている構造を有することを特徴とするスイッ
チング素子が得られる。
Embedded image Further, according to the present invention, in any one of the switching elements described above, a switching element having a structure in which the organic polymer film is sandwiched between a pair of electrodes can be obtained.

【0011】また,本発明によれば,前記スイッチング
素子において,前記一対の電極の内の一方は,当該スイ
ッチング素子の担体となる基板上に成膜された,厚さ1
nm以上の導電膜であることを特徴とするスイッチング
素子が得られる。
According to the present invention, in the switching element, one of the pair of electrodes has a thickness of 1 formed on a substrate which is a carrier of the switching element.
A switching element is obtained which is a conductive film having a thickness of at least nm.

【0012】また,本発明によれば,前記スイッチング
素子に,1〜15Vの電圧を加えて,前記スイッチング
素子の極性を反転することを特徴とするスイッチング素
子の使用方法が得られる。
Further, according to the present invention, there is provided a method of using a switching element characterized by inverting the polarity of the switching element by applying a voltage of 1 to 15 V to the switching element.

【0013】また,本発明によれば,前記スイッチング
素子をメモリーセルとしたことを特徴とする記憶素子が
得られる。
Further, according to the present invention, a memory element is obtained in which the switching element is a memory cell.

【0014】また,本発明によれば,表面に導電膜から
なる第1の電極を形成した基板を,下記化16式及び化
17式及びこれらの酸化もしくは還元形で示される特性
基を有し,Rは炭素数が1から8の各位に任意の官能基
を有するアルキル基からなる有機分子を含むアルコール
溶液に浸漬し,アルコール溶液で洗浄することを特徴と
するスイッチング素子の製造方法が得られる。
Further, according to the present invention, a substrate having a first electrode made of a conductive film formed on the surface thereof has a characteristic group represented by the following chemical formulas 16 and 17 and their oxidized or reduced forms. , R are immersed in an alcohol solution containing an organic molecule consisting of an alkyl group having an arbitrary functional group at each position having 1 to 8 carbon atoms and washed with the alcohol solution to obtain a method for manufacturing a switching element. .

【0015】[0015]

【化16】 Embedded image

【0016】[0016]

【化17】 また,本発明によれば,前記スイッチング素子の製造方
法において,前記有機分子は,1,4−ナフトキノン基
又はこの特性基の5,6,7,8の置換もしくは付加に
よる誘導体及び2−Rチオ−1,4−ヒドロナフトキノ
ン基又はこの特性基の5,6,7,8の置換もしくは付
加による誘導体からなることを特徴とするスイッチング
素子の製造方法が得られる。
Embedded image Further, according to the present invention, in the method of manufacturing the switching element, the organic molecule is a 1,4-naphthoquinone group or a derivative of the characteristic group by substitution or addition of 5,6,7,8 and 2-Rthiol group. A method for producing a switching element is obtained, which comprises a -1,4-hydronaphthoquinone group or a derivative of this characteristic group by substitution or addition of 5,6,7,8.

【0017】また,本発明によれば,前記スイッチング
素子の製造方法において,前記有機分子は,下記化18
式,化19式,又は化20式で示されるものからなる群
の内の少なくとも一種からなり,R1 は炭素数1から8
のアルキル基又はアリール基でありR=R2 であること
を特徴とするスイッチング素子の製造方法が得られる。
According to the present invention, in the method of manufacturing the switching element, the organic molecule is
At least one member selected from the group consisting of those represented by the formula, formula 19 or formula 20 and R 1 has 1 to 8 carbon atoms
Which is an alkyl group or an aryl group and R = R 2 is obtained.

【0018】[0018]

【化18】 Embedded image

【0019】[0019]

【化19】 Embedded image

【0020】[0020]

【化20】 また,本発明によれば,前記した内のいずれかのスイッ
チング素子の製造方法において,前記有機分子を含むア
ルコール溶液に浸漬する工程は,前記有機分子を前記導
電膜面に対して垂直に配向させることを含むことを特徴
とするスイッチング素子の製造方法が得られる。
Embedded image Further, according to the present invention, in any one of the above-described methods for manufacturing a switching element, the step of immersing in the alcohol solution containing the organic molecules causes the organic molecules to be oriented perpendicular to the conductive film surface. A method of manufacturing a switching element is obtained, which includes:

【0021】また,本発明によれば,前記スイッチング
素子の製造方法において,前記有機分子膜上に,第2の
電極として厚さ1〜1000nmの導電膜をスパッタ法
又は蒸着法によって形成することを特徴とするスイッチ
ング素子の製造方法が得られる。
According to the present invention, in the method of manufacturing the switching element, a conductive film having a thickness of 1 to 1000 nm is formed as a second electrode on the organic molecular film by a sputtering method or a vapor deposition method. A method of manufacturing a characteristic switching element is obtained.

【0022】また,本発明によれば,前記スイッチング
素子の製造方法において,前記第1及び第2の電極の内
の少なくとも一方は,リソグラフィーにより形成された
微細電極であることを特徴とするスイッチング素子の製
造方法が得られる。
Further, according to the present invention, in the method for manufacturing a switching element, at least one of the first and second electrodes is a fine electrode formed by lithography. Can be obtained.

【0023】[0023]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0024】図1は本発明の実施の一形態におけるスイ
ッチング素子1を示す断面図である。
FIG. 1 is a sectional view showing a switching element 1 according to an embodiment of the present invention.

【0025】図1に示すように,スイッチング素子1
は,基板2上に形成された下部電極3と,下部電極3を
覆うように形成された単分子膜4と,単分子膜4とこの
単分子膜4の周囲の基板1の表面を覆うように形成され
た上部電極5とを備えている。
As shown in FIG. 1, the switching element 1
Covers the lower electrode 3 formed on the substrate 2, the monomolecular film 4 formed so as to cover the lower electrode 3, the monomolecular film 4 and the surface of the substrate 1 around the monomolecular film 4. And the upper electrode 5 formed on.

【0026】このスイッチング素子1は,下記のように
形成されている。
The switching element 1 is formed as follows.

【0027】まず,洗浄した基板2上に前処理して,ベ
ーキングを行う。この基板2に,スピンナー塗布し,ベ
ーキングを行った後,ネガ型レジスト材料をスピンナー
塗布し,プリベークを行う。続いて,露光,現像,ポス
トベークを行い,レジストパターンを作製した。この基
板1上に,下引き層を真空蒸着法により堆積させ,更に
導電層を同法により蒸着した。この基板2を,洗浄及び
ベーキングを行い,リフトオフにより下部電極3を形成
した。
First, the cleaned substrate 2 is pretreated and baked. The substrate 2 is spinner-coated and baked, then a negative resist material is spinner-coated and pre-baked. Subsequently, exposure, development and post-baking were performed to form a resist pattern. An undercoat layer was deposited on the substrate 1 by a vacuum deposition method, and a conductive layer was further deposited by the same method. The substrate 2 was washed and baked, and the lower electrode 3 was formed by lift-off.

【0028】この基板を下記化21式(R1 =CH3
2 =CH2 CH2 COOH)の有機分子をアルコール
に溶解した溶液に浸漬し,続いて基板を取り出してアル
コールで洗浄し,乾燥し,下部電極3上単分子膜4を得
た。
This substrate is represented by the following formula 21 (R 1 = CH 3 ,
An organic molecule of R 2 ═CH 2 CH 2 COOH) was immersed in a solution in which alcohol was dissolved, and then the substrate was taken out, washed with alcohol and dried to obtain a monomolecular film 4 on the lower electrode 3.

【0029】[0029]

【化21】 この基板上に,真空蒸着法によってAlを堆積させる。
次に,ポジ型レジスト材料をスピンナー塗布し,露光,
潜像,ポストベークを行う。その後,H3 PO4 ,HN
3 ,CH3 COOH,H2 Oの混合溶液でAlを所望
のパターンにエッチングする。この基板を洗浄して,レ
ジストを剥離し,ベーキングを行って上部電極5を作製
した。
[Chemical 21] Al is deposited on this substrate by a vacuum evaporation method.
Next, spin coat a positive resist material, expose,
Perform latent image and post bake. After that, H 3 PO 4 , HN
Al is etched into a desired pattern with a mixed solution of O 3 , CH 3 COOH and H 2 O. This substrate was washed, the resist was peeled off, and baking was performed to form the upper electrode 5.

【0030】ここで,下記化22式,化23式,及び化
24式で示される有機分子は,一対の電極に挟んで操作
することにより,整流素子として動作する。
Here, the organic molecules represented by the following formulas (22), (23), and (24) operate as a rectifying device by operating by sandwiching them between a pair of electrodes.

【0031】[0031]

【化22】 Embedded image

【0032】[0032]

【化23】 Embedded image

【0033】[0033]

【化24】 上記化22式の分子を例として,有機分子の動作を図2
に従って説明する。
Embedded image The behavior of organic molecules is shown in FIG.
It will be described according to.

【0034】キノン環は還元を受け易く(電子を受けと
り易く),ヒドロキノン環は逆に電子を放出し易い性質
を有している。この性質に着目すると,次のようなメカ
ニズムで分子の電気伝導性は変化する。
The quinone ring has a property of being easily reduced (accepting an electron), and the hydroquinone ring has a property of easily releasing an electron. Focusing on this property, the electrical conductivity of the molecule changes by the following mechanism.

【0035】(1)まず,図2(a)に示すようにキノ
ン部側を陰極,ヒドロキノン部側を陽極にして電圧を印
加する。
(1) First, as shown in FIG. 2A, a voltage is applied with the quinone portion side as the cathode and the hydroquinone portion side as the anode.

【0036】(2)次に,図2(b)に示すように,電
位差がある閾値を超えると,キノン部分が1電子還元,
ヒドロキノン部分が1電子酸化されてビラジカルが形成
される。
(2) Next, as shown in FIG. 2B, when the potential difference exceeds a certain threshold value, the quinone portion is reduced by one electron,
The hydroquinone moiety is one-electron oxidized to form a biradical.

【0037】(3)このビラジカルは,有機電導体であ
り,ラジカル間でトンネル電流が流れる(導通状態)。
(3) The biradical is an organic conductor, and a tunnel current flows between the radicals (conduction state).

【0038】(4)次に,図2(c)のように電極の極
性を反転した場合は,キノン部分は酸化されにくく,ヒ
ドロキノン部を還元されにくいため,トンネル電流は流
れない。すなわち,この分子は整流作用を持つことにな
る。ここで, (5)図2(b)の導通状態の分子に対して,電位差を
さらに大きくしていくと,ある値で分子内でのトンネリ
ングが分子外部からの電子授受に追随し得ず,図1
(c)に示すように,キノン部はさらに1電子還元,ヒ
ドロキノン部はさらに1電子酸化される。
(4) Next, when the polarities of the electrodes are reversed as shown in FIG. 2C, the quinone portion is less likely to be oxidized and the hydroquinone portion is less likely to be reduced, so that no tunnel current flows. That is, this molecule has a rectifying effect. Here, (5) When the potential difference is further increased for the molecule in the conducting state of FIG. 2 (b), tunneling in the molecule cannot follow electron transfer from the outside of the molecule at a certain value. Figure 1
As shown in (c), the quinone portion is further reduced by one electron and the hydroquinone portion is further oxidized by one electron.

【0039】(6)前記(5)の状態は図2(d)の状
態に対応し,非導通状態になる。
(6) The state of (5) corresponds to the state of FIG. 2 (d) and is a non-conductive state.

【0040】(7)前記(5)の状態から,上部電極を
陽極,下部電極を陰極として電圧を加えると,(2)乃
至(6)と同様の過程を経て,分子は初期状態へ戻る。
(7) When a voltage is applied from the state (5) using the upper electrode as the anode and the lower electrode as the cathode, the molecules return to the initial state through the same steps as (2) to (6).

【0041】以上の過程を上部および下部電極と,分子
間に加える電圧によって制御できれば,分子配向の逆転
により,整流素子としての極性を逆転することができ
る。
If the above process can be controlled by the upper and lower electrodes and the voltage applied between the molecules, the polarity of the rectifying element can be reversed by reversing the molecular orientation.

【0042】また,この極性の方向を1と0に対応させ
ることにより,この整流素子は記憶素子として応用でき
る。この際の読み出しは,例えば上部電極を陰極,基板
電極を陽極とし,次に上部電極を陽極,下部電極を陰極
として低い電位差を加えたときに,どちらの方向に電流
が流れたかを見ることにより行うことが出来る。
Further, by making the polar directions correspond to 1 and 0, this rectifying element can be applied as a memory element. The reading at this time is performed by observing in which direction the current flows when a low potential difference is applied with the upper electrode as the cathode, the substrate electrode as the anode, the upper electrode as the anode, and the lower electrode as the cathode. You can do it.

【0043】ところで,キノン環とヒドロキノン環との
距離は,長い程環の間のトンネリングが起きにくいため
に分子の導電性が低くなり,同時に極性反転の操作が容
易になる。この2つの性質の組み合わせを必要に応じて
選ぶため,上記化22式及び化23式に示す分子を設計
した。
By the way, as the distance between the quinone ring and the hydroquinone ring is longer, the tunneling between the rings is less likely to occur, so that the conductivity of the molecule is lowered, and at the same time, the operation of polarity reversal is facilitated. In order to select the combination of these two properties as necessary, the molecules shown in the above chemical formulas 22 and 23 were designed.

【0044】ここで,記憶分子各部の機能を説明する。
上記化22式,化23式,及び化24式のR2 は,この
置換基が結合している環の酸化を防ぐ目的で,R2 と同
じ炭素上の水酸基は,分子が初期状態から導通状態,極
性反転状態へ変化する際にヒドロキノン環からキノン環
へのプロトンの移動を助ける目的で導入したものであ
る。置換基−SR2 は,硫黄が金属に対して化学吸着す
る事から導入した吸着官能基であり,金属基板に対し
て,硫黄原子を下端として垂直方向に配向させることを
目的としたものである。
Here, the function of each part of the memory molecule will be described.
R 2 in the above chemical formulas 22, 23, and 24 is for the purpose of preventing oxidation of the ring to which this substituent is bonded, the hydroxyl group on the same carbon as R 2 is a molecule that conducts from the initial state. It was introduced for the purpose of assisting the transfer of protons from the hydroquinone ring to the quinone ring when the state changes to the polarity inversion state. Substituents -SR 2, the sulfur is adsorbed functional group introduced from the fact that chemically adsorbed to the metal, it is intended that the metal substrate, is oriented in a vertical direction a sulfur atom as the lower end .

【0045】分子が吸着官能基を持っているために,上
記化22式〜化24式の記憶分子は,適当な溶媒に溶解
し,金属基板をこの溶液に浸漬することで,金属基板に
対して垂直方向に配向して吸着し,基板を取り出して表
面を洗浄する事で,金属基板上に垂直に配向した単分子
膜を与える。
Since the molecule has an adsorptive functional group, the memory molecules of the above formulas (22) to (24) are dissolved in an appropriate solvent and the metal substrate is immersed in this solution, so that Vertically oriented and adsorbed, the substrate is taken out and the surface is washed to give a vertically oriented monomolecular film on the metal substrate.

【0046】整流作用を持った有機分子の合成中間体,
1,4,5,8−テトラヒドロキシアントラキノンは下
記化25式に従って,上記化22式,化23式,及び化
24式の整流作用を持った有機分子は,それぞれ化26
式,化27式,化28式によって合成される(特願平6
−180056)。
A synthetic intermediate of an organic molecule having a rectifying action,
According to the following chemical formula 25, 1,4,5,8-tetrahydroxyanthraquinone is represented by the chemical formula 26, the chemical formula 23, and the chemical molecule having the rectifying action of the chemical formula 24.
Formula 27, Formula 27, and Formula 28 are combined (Japanese Patent Application No.
-180056).

【0047】[0047]

【化25】 Embedded image

【0048】[0048]

【化26】 [Chemical formula 26]

【0049】[0049]

【化27】 Embedded image

【0050】[0050]

【化28】 本発明においては,下部電極は有機分子に含まれる硫黄
原子の吸着能を利用する必要性から,金(Au)が最も
適しているが,上部電極は高い伝導性を有するものであ
ればよく,例えばAu,Pt,Ag,Pd,Al,I
n,Sn,Pbなどの金属や,これらの合金といった数
多くの材料の適用が考えられる。
Embedded image In the present invention, gold (Au) is most suitable for the lower electrode because it is necessary to utilize the adsorption ability of the sulfur atom contained in the organic molecule, but the upper electrode may be any one having high conductivity, For example, Au, Pt, Ag, Pd, Al, I
Numerous materials such as metals such as n, Sn and Pb and alloys of these can be considered.

【0051】また,本発明のスイッチング素子におい
て,電極はマスク蒸着あるいはリソグラフィー技術を用
いて形成する。このリソグラフィー技術はリフトオフプ
ロセス,フォトエッチングプロセスなど,従来公知の技
術で十分である。これらの技術により,電極の幅は10
0nm〜1mmの範囲で形成することができる。
In the switching element of the present invention, the electrodes are formed by mask vapor deposition or lithography technique. As the lithography technique, conventionally known techniques such as a lift-off process and a photoetching process are sufficient. With these techniques, the electrode width is 10
It can be formed in the range of 0 nm to 1 mm.

【0052】[0052]

【実施例】次に,本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0053】(実施例1〜18)以下に示す手順で,前
述した図1に示す断面を持つスイッチング素子1の作製
を行った。
(Examples 1 to 18) The switching element 1 having the above-described cross section shown in FIG. 1 was manufactured by the following procedure.

【0054】洗浄したガラス基板2上に前処理として酢
酸ブチルを用いて超音波処理,ベーキングを行う。この
基板2にヘキサメチルジシラザン(HMDS)をスピン
ナー塗布し,ベーキングを行った後,ネガ型レジスト材
料をスピンナー塗布し,プリベークを行う。この時膜厚
は約1μmになるようにした。続いて,露光,現像,ポ
ストベークを行い,所望のレジストパターンを作製し
た。この基板1上に,下引き層としてCrを真空蒸着法
により10nm堆積させ,更にAuを同法により膜厚1
00nmとなるように蒸着した。この基板をアセトン超
音波処理,ジメチルホルムアミド(DMF)超音波処
理,純水洗浄,ベーキングを行い,リフトオフによる幅
10μmの下部電極3を形成した。
On the cleaned glass substrate 2, ultrasonic treatment and baking are performed using butyl acetate as a pretreatment. Hexamethyldisilazane (HMDS) is spinner-coated on this substrate 2 and baked, and then a negative resist material is spinner-coated and prebaked. At this time, the film thickness was set to about 1 μm. Subsequently, exposure, development and post-baking were performed to produce a desired resist pattern. Cr was deposited on the substrate 1 as a subbing layer to a thickness of 10 nm by a vacuum evaporation method, and Au was further formed to a film thickness of 1 nm by the same method.
It vapor-deposited so that it might be set to 00 nm. This substrate was subjected to acetone ultrasonic treatment, dimethylformamide (DMF) ultrasonic treatment, pure water cleaning, and baking to form a lower electrode 3 having a width of 10 μm by lift-off.

【0055】この基板を下記化29式(R1 =CH3
2 =CH2 CH2 COOH)の有機分子0.132g
をエタノール3mlに溶解した溶液に24時間浸漬し,
続いて基板を取り出してエタノールで2回洗浄し,乾燥
し,下部電極3上単分子膜4を得た。
This substrate is represented by the following formula 29 (R 1 = CH 3 ,
R 2 = CH 2 CH 2 COOH) organic molecule 0.132 g
Soaked in 3 ml of ethanol for 24 hours,
Subsequently, the substrate was taken out, washed twice with ethanol and dried to obtain a monomolecular film 4 on the lower electrode 3.

【0056】[0056]

【化29】 この基板上に,真空蒸着法によってAlを膜厚100n
mとなるように堆積させる。次にポジ型レジスト材料を
膜厚1.2μmとなるようにスピンナー塗布し,露光,
潜像,ポストベークを行う。その後,H3 PO4 :HN
3 :CH3 COOH:H2 O=16:1:2:1の溶
液でAlを所望のパターンにエッチングする。この基板
をアセトン超音波処理,DMF超音波処理,純水洗浄に
よりレジストを剥離し,ベーキングを行って上部電極5
を作製した。
[Chemical 29] An Al film having a thickness of 100 n is formed on this substrate by a vacuum deposition method.
m is deposited. Next, a positive resist material was applied to the spinner so as to have a film thickness of 1.2 μm, exposed,
Perform latent image and post bake. After that, H 3 PO 4 : HN
Etch Al into a desired pattern with a solution of O 3 : CH 3 COOH: H 2 O = 16: 1: 2: 1. This substrate is subjected to ultrasonic treatment with acetone, ultrasonic treatment with DMF and washing with pure water to remove the resist, and baking to remove the upper electrode 5
Was produced.

【0057】以上のようにして作製した試料の上下電極
5,3間に電圧を印加したところ,以下のような特性が
確認された。初期状態では,電位差1V以下では,上部
電極5を陽極,下部電極3を陰極とした場合には高抵
抗,逆の極性では低抵抗であり,この2つの場合の抵抗
の比は103 以上であった。ここで,上部電極5を陰
極,下部電極3を陽極として,2Vの電圧をかけると,
一瞬だけ電流が流れた後に,高抵抗状態となった。この
状態は電位差1V以下では上部電極を陽極,下部電極を
陰極とした場合には低抵抗,逆の極性では高抵抗であ
り,この2つの場合の抵抗の比は103 以上であった。
この状態の整流素子に対して上部電極5を陽極として2
Vの電圧をかけると初期状態に戻った。
When a voltage was applied between the upper and lower electrodes 5 and 3 of the sample manufactured as described above, the following characteristics were confirmed. In the initial state, when the potential difference is 1 V or less, the resistance is high when the upper electrode 5 is the anode and the lower electrode 3 is the cathode, and the resistance is low in the opposite polarity, and the resistance ratio between the two is 10 3 or more. there were. Here, when a voltage of 2V is applied with the upper electrode 5 as a cathode and the lower electrode 3 as an anode,
After a momentary current flow, the high resistance state is entered. In this state, when the potential difference was 1 V or less, the upper electrode was an anode and the lower electrode was a cathode, the resistance was low, and the opposite polarity was high resistance, and the resistance ratio between the two cases was 10 3 or more.
The upper electrode 5 is used as an anode for the rectifying device in this state
When the voltage of V was applied, it returned to the initial state.

【0058】上記と同様な操作により下記表1に示す素
子を作製し,上記と同様な結果を得た。
The elements shown in Table 1 below were produced by the same operation as above, and the same results as above were obtained.

【0059】[0059]

【表1】 (実施例19〜36)実施例1と同様の方法で下部電極
を作製したガラス基板を,化30式(R1 =CH3 ,R
2 =(CH2 2 COOH)の有機分子0.269gを
エタノール5mlに溶解した溶液に24時間浸漬し,基
板を取り出してエタノールで2回洗浄し,乾燥した。こ
の基板上に,実施例1と同様にして膜厚100nmのア
ルミニウムからなる上部電極を作製した。
[Table 1] (Examples 19 to 36) A glass substrate having a lower electrode manufactured in the same manner as in Example 1 was prepared by the following chemical formula (R 1 = CH 3 , R
2 = (CH 2 ) 2 COOH) 0.269 g of organic molecules was immersed in a solution of 5 ml of ethanol for 24 hours, the substrate was taken out, washed twice with ethanol, and dried. An upper electrode made of aluminum and having a film thickness of 100 nm was formed on this substrate in the same manner as in Example 1.

【0060】[0060]

【化30】 以上のようにして作製した試料の上下電極に対して電圧
を印加したところ,以下のような特性が確認された。初
期状態では,電位差0.8V以下では,上部電極を陽
極,下部電極を陰極とした場合には高抵抗,逆の極性で
は低抵抗であり,この2つの場合の抵抗の比は103
上であった。ここで,上部電極を陰極として,1.5V
の電圧をかけると,一瞬だけ電流が流れた後に,高抵抗
状態となった。この状態は電位差0.8V以下では上部
電極を陽極,下部電極を陰極とした場合には低抵抗,逆
の極性では高抵抗であり,この2つの場合の抵抗の比は
103 倍以上であった。この状態の整流素子に対して上
部電極を陽極として1.5Vの電圧をかけると初期状態
に戻った。
Embedded image When a voltage was applied to the upper and lower electrodes of the sample manufactured as described above, the following characteristics were confirmed. In the initial state, when the potential difference is 0.8 V or less, the resistance is high when the upper electrode is the anode and the lower electrode is the cathode, and is low when the polarities are opposite, and the resistance ratio between the two is 10 3 or more. there were. Here, with the upper electrode as the cathode, 1.5 V
When the voltage was applied, the current flowed for a moment and then became a high resistance state. This state has a low resistance when the upper electrode is an anode and a lower electrode is a cathode when the potential difference is 0.8 V or less, and a high resistance when the polarities are opposite, and the ratio of the resistance in these two cases is 10 3 times or more. It was When a voltage of 1.5 V was applied to the rectifying element in this state with the upper electrode serving as an anode, the state returned to the initial state.

【0061】上記と同様の操作により下記表2に示す素
子を作製し,上記と同様な結果を得た。
The elements shown in Table 2 below were produced by the same operation as above, and the same results as above were obtained.

【0062】[0062]

【表2】 (実施例37〜54)実施例1と同様の方法で下部電極
を作製したガラス基板を,下記化31式(R1 =C
3 ,R2 =(CH2 2 COOH)の有機分子0.3
00gをエタノール5mlに溶解した溶液に24時間浸
漬し,基板を取り出してエタノールで2回洗浄し,乾燥
した。
[Table 2] (Examples 37 to 54) A glass substrate having a lower electrode manufactured in the same manner as in Example 1 was prepared by the following chemical formula 31 (R 1 = C).
H 3 , R 2 = (CH 2 ) 2 COOH) organic molecule 0.3
It was immersed in a solution of 00 g in 5 ml of ethanol for 24 hours, the substrate was taken out, washed twice with ethanol, and dried.

【0063】[0063]

【化31】 この基板上に,実施例1と同様にして膜厚100nmの
アルミニウムからなる上部電極を作製した。
[Chemical 31] An upper electrode made of aluminum and having a film thickness of 100 nm was formed on this substrate in the same manner as in Example 1.

【0064】以上のようにして作製した試料の上下電極
に対して電圧を印加したところ,以下のような特性が確
認された。初期状態では,電位差0.6V以下では,上
部電極を陽極,下部電極を陰極とした場合には高抵抗,
逆の極性では低抵抗であり,この2つの場合の抵抗の比
は103 以上であった。ここで,上部電極を陰極とし
て,1Vの電圧をかけると,一瞬だけ電流が流れた後
に,高抵抗状態となった。この状態は電位差0.6V以
下では上部電極を陽極,下部電極を陰極とした場合には
低抵抗,逆の極性では高抵抗であり,この2つの場合の
抵抗の比は103 倍以上であった。この状態の整流素子
に対して上部電極を陽極として1Vの電圧をかけると初
期状態に戻った。
When a voltage was applied to the upper and lower electrodes of the sample manufactured as described above, the following characteristics were confirmed. In the initial state, when the potential difference is 0.6 V or less, when the upper electrode is the anode and the lower electrode is the cathode, high resistance,
When the polarities were opposite, the resistance was low, and the resistance ratio between the two cases was 10 3 or more. Here, when a voltage of 1 V was applied using the upper electrode as a cathode, a high resistance state was obtained after a current flowed for a moment. This state has a low resistance when the upper electrode is an anode and a lower electrode is a cathode when the potential difference is 0.6 V or less, and a high resistance when the polarities are opposite, and the resistance ratio between the two is 10 3 times or more. It was When a voltage of 1 V was applied to the rectifying element in this state with the upper electrode serving as an anode, the state returned to the initial state.

【0065】上記と同様な操作により下記表3に示す素
子を作製し,上記と同様な結果を得た。
The elements shown in Table 3 below were prepared by the same operation as above, and the same results as above were obtained.

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【発明の効果】以上,説明したように,本発明では分子
1個でスイッチング機能を示す有機分子を用い,この分
子の単分子膜を金属電極ではさんだ構成の素子を開発す
ることにより,整流素子としての極性を自由に逆転させ
ることが出来るという,これまでにない特性を持つスイ
ッチング素子を作ることを可能とした。また,リソグラ
フィー技術を用いて,微細な電極で有機分子の単分子膜
をはさんだ構造のスイッチング素子を作製する方法を開
発することにより,このスイッチング素子を大容量の記
憶素子として応用することを可能とした。
As described above, according to the present invention, an organic molecule having a switching function by one molecule is used, and by developing a device in which a monomolecular film of this molecule is sandwiched by metal electrodes, a rectifying device is obtained. It is possible to create a switching device with unprecedented characteristics that the polarity of can be freely reversed. In addition, by developing a method for producing a switching element having a structure in which a monomolecular film of organic molecules is sandwiched between fine electrodes using lithography technology, this switching element can be applied as a large-capacity memory element. And

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係るスイッチング素子
の断面図である。
FIG. 1 is a cross-sectional view of a switching element according to an embodiment of the present invention.

【図2】(a),(b),(c),(d),及び(e)
は整流作用を持つ有機分子の動作を説明するための図で
ある。
2 (a), (b), (c), (d), and (e)
FIG. 4 is a diagram for explaining the operation of an organic molecule having a rectifying action.

【符号の説明】[Explanation of symbols]

1 スイッチング素子 2 基板 3 下部電極 4 単分子膜 5 上部電極 1 switching element 2 substrate 3 lower electrode 4 monomolecular film 5 upper electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/792 H01L 29/88 F 29/88 H03K 17/51 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 29/792 H01L 29/88 F 29/88 H03K 17/51

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 接点部に有機分子膜を備えたスイッチン
グ素子において,前記有機分子膜は,下記化1式及び化
2式及びこれらの酸化もしくは還元形で示される特性基
を有し,Rは炭素数が1から8の各位に任意の官能基を
有するアルキル基からなることを特徴とするスイッチン
グ素子。 【化1】 【化2】
1. In a switching device having an organic molecular film at a contact portion, the organic molecular film has a characteristic group represented by the following chemical formulas 1 and 2 and their oxidized or reduced forms, and R is A switching element comprising an alkyl group having an arbitrary functional group at each position having 1 to 8 carbon atoms. Embedded image Embedded image
【請求項2】 請求項1記載のスイッチング素子におい
て,前記有機分子は,1,4−ナフトキノン基又はこの
特性基の5,6,7,8位の置換もしくは付加による誘
導体及び2−Rチオ−1,4−ヒドロナフトキノン基又
はこの特性基の5,6,7,8位の置換もしくは付加に
よる誘導体からなることを特徴とするスイッチング素
子。
2. The switching element according to claim 1, wherein the organic molecule is a 1,4-naphthoquinone group or a derivative thereof by substitution or addition of the 5,6,7,8-position of this characteristic group and 2-Rthio-. A switching element comprising a 1,4-hydronaphthoquinone group or a derivative of this characteristic group by substitution or addition at the 5,6,7,8 positions.
【請求項3】 請求項2記載のスイッチング素子におい
て,前記有機分子は,下記化3式,化4式,又は化5式
で示されるものからなる群の内の少なくとも一種からな
り,R1 は炭素数1から8のアルキル基又はアリール基
でありR=R2 であることを特徴とするスイッチング素
子。 【化3】 【化4】 【化5】
3. The switching element according to claim 2, wherein the organic molecule is at least one member selected from the group consisting of compounds represented by the following chemical formula 3, chemical formula 4, and chemical formula 5, and R 1 is A switching element, which is an alkyl group or an aryl group having 1 to 8 carbon atoms and R = R 2 . Embedded image Embedded image Embedded image
【請求項4】 請求項1乃至3の内のいずれかに記載の
スイッチング素子において,前記有機高分子膜が一対の
電極に挟み込まれている構造を有することを特徴とする
スイッチング素子。
4. The switching element according to claim 1, wherein the organic polymer film has a structure sandwiched between a pair of electrodes.
【請求項5】 請求項4記載のスイッチング素子におい
て,前記一対の電極の内の一方は,当該スイッチング素
子の担体となる基板上に成膜された,厚さ1nm以上の
導電膜であることを特徴とするスイッチング素子。
5. The switching element according to claim 4, wherein one of the pair of electrodes is a conductive film having a thickness of 1 nm or more formed on a substrate which is a carrier of the switching element. Characteristic switching element.
【請求項6】 請求項5記載のスイッチング素子に,1
〜15Vの電圧を加えて,前記スイッチング素子の極性
を反転することを特徴とするスイッチング素子の使用方
法。
6. The switching element according to claim 5, wherein
A method of using a switching element, which comprises inverting the polarity of the switching element by applying a voltage of ~ 15V.
【請求項7】 請求項5記載のスイッチング素子をメモ
リーセルとしたことを特徴とする記憶素子。
7. A memory element, wherein the switching element according to claim 5 is a memory cell.
【請求項8】 表面に導電膜からなる第1の電極を形成
した基板を,下記化6式及び化7式及びこれらの酸化も
しくは還元形で示される特性基を有し,Rは炭素数が1
から8の各位に任意の官能基を有するアルキル基からな
る有機分子を含むアルコール溶液に浸漬し,アルコール
溶液で洗浄することを特徴とするスイッチング素子の製
造方法。 【化6】 【化7】
8. A substrate having a first electrode made of a conductive film formed on the surface thereof has a characteristic group represented by the following chemical formulas 6 and 7 and their oxidized or reduced forms, and R is a carbon number. 1
To 8 are immersed in an alcohol solution containing an organic molecule composed of an alkyl group having an arbitrary functional group at each position and washed with the alcohol solution. [Chemical 6] [Chemical 7]
【請求項9】 請求項8記載のスイッチング素子の製造
方法において,前記有機分子は,1,4−ナフトキノン
基又はこの特性基の5,6,7,8位の置換もしくは付
加による誘導体及び2−Rチオ−1,4−ヒドロナフト
キノン基又はこの特性基の5,6,7,8位の置換もし
くは付加による誘導体からなることを特徴とするスイッ
チング素子の製造方法。
9. The method for manufacturing a switching element according to claim 8, wherein the organic molecule is a 1,4-naphthoquinone group or a derivative of the characteristic group by substitution or addition at the 5,6,7,8 position and 2- A method for producing a switching element, which comprises an R thio-1,4-hydronaphthoquinone group or a derivative of this characteristic group by substitution or addition at the 5,6,7,8 positions.
【請求項10】 請求項9記載のスイッチング素子の製
造方法において,前記有機分子は,下記化8式,化9
式,又は化10式で示されるものからなる群の内の少な
くとも一種からなり,R1 は炭素数1から8のアルキル
基又はアリール基でありR=R2 であることを特徴とす
るスイッチング素子の製造方法。 【化8】 【化9】 【化10】
10. The method of manufacturing a switching element according to claim 9, wherein the organic molecules are represented by the following chemical formulas:
A switching element characterized by comprising at least one member selected from the group consisting of those represented by the following formulas or Chemical Formula 10, wherein R 1 is an alkyl group or aryl group having 1 to 8 carbon atoms and R = R 2. Manufacturing method. Embedded image Embedded image Embedded image
【請求項11】 請求項8乃至9の内のいずれかに記載
のスイッチング素子の製造方法において,前記有機分子
を含むアルコール溶液に浸漬する工程は,前記有機分子
を前記導電膜面に対して垂直に配向させることを含むこ
とを特徴とするスイッチング素子の製造方法。
11. The method of manufacturing a switching element according to claim 8, wherein the step of immersing the switching element in the alcohol solution containing the organic molecule is performed by applying the organic molecule perpendicularly to the conductive film surface. A method of manufacturing a switching element, comprising:
【請求項12】 請求項11記載のスイッチング素子の
製造方法において,前記有機分子膜上に,第2の電極と
して厚さ1〜1000nmの導電膜をスパッタ法又は蒸
着法によって形成することを特徴とするスイッチング素
子の製造方法。
12. The method of manufacturing a switching element according to claim 11, wherein a conductive film having a thickness of 1 to 1000 nm is formed as a second electrode on the organic molecular film by a sputtering method or a vapor deposition method. Method for manufacturing switching element.
【請求項13】 請求項12記載のスイッチング素子の
製造方法において,前記第1及び第2の電極の内の少な
くとも一方は,リソグラフィーにより形成された微細電
極であることを特徴とするスイッチング素子の製造方
法。
13. The method of manufacturing a switching element according to claim 12, wherein at least one of the first and second electrodes is a fine electrode formed by lithography. Method.
JP7187357A 1995-07-24 1995-07-24 Switching element and manufacturing method thereof Expired - Fee Related JP2728123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7187357A JP2728123B2 (en) 1995-07-24 1995-07-24 Switching element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7187357A JP2728123B2 (en) 1995-07-24 1995-07-24 Switching element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0936389A true JPH0936389A (en) 1997-02-07
JP2728123B2 JP2728123B2 (en) 1998-03-18

Family

ID=16204588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7187357A Expired - Fee Related JP2728123B2 (en) 1995-07-24 1995-07-24 Switching element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2728123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504839A (en) * 1999-07-01 2003-02-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High density nonvolatile storage device
JP2004304179A (en) * 2003-03-19 2004-10-28 Dainippon Printing Co Ltd Organic bistable element, organic bistable memory using it, and their driving methods
JP2005501398A (en) * 2001-05-07 2005-01-13 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Floating gate memory device using composite molecular materials
WO2006049261A1 (en) * 2004-11-08 2006-05-11 Waseda University Memory element and method for manufacturing same
US7611916B2 (en) 2008-03-05 2009-11-03 Mitsubishi Electric Corporation Method of manufacturing semiconductor optical element
JP2010157769A (en) * 2003-10-01 2010-07-15 Spansion Llc Method of processing organic memory device
JP2013102204A (en) * 2006-11-29 2013-05-23 Semiconductor Energy Lab Co Ltd Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714438B2 (en) 2000-12-14 2010-05-11 Hewlett-Packard Development Company, L.P. Bistable molecular mechanical devices with a band gap change activated by an electrical field for electronic switching, gating, and memory applications

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504839A (en) * 1999-07-01 2003-02-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア High density nonvolatile storage device
JP2005501398A (en) * 2001-05-07 2005-01-13 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Floating gate memory device using composite molecular materials
JP2004304179A (en) * 2003-03-19 2004-10-28 Dainippon Printing Co Ltd Organic bistable element, organic bistable memory using it, and their driving methods
JP2010157769A (en) * 2003-10-01 2010-07-15 Spansion Llc Method of processing organic memory device
WO2006049261A1 (en) * 2004-11-08 2006-05-11 Waseda University Memory element and method for manufacturing same
US7876596B2 (en) 2004-11-08 2011-01-25 Waseda University Memory element and method for manufacturing same
JP5007566B2 (en) * 2004-11-08 2012-08-22 学校法人早稲田大学 Memory device and manufacturing method thereof
JP2013102204A (en) * 2006-11-29 2013-05-23 Semiconductor Energy Lab Co Ltd Semiconductor device
US7611916B2 (en) 2008-03-05 2009-11-03 Mitsubishi Electric Corporation Method of manufacturing semiconductor optical element

Also Published As

Publication number Publication date
JP2728123B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
US20110162968A1 (en) Production device and production method for conductive nano-wire
KR100642113B1 (en) Organic electronic device and its manufacturing method
JPH0795052B2 (en) Molecular-based microelectronic device
EP0335630A2 (en) Switching device and method of preparing it
JP2010040783A (en) Photoelectric conversion device and photoelectric conversion element
WO2008047896A1 (en) Field-effect transistor
US7064054B2 (en) Contact structure and manufacturing method thereof
JP2728123B2 (en) Switching element and manufacturing method thereof
JP2008277375A (en) Field-effect transistor, and manufacturing method thereof
JPWO2007015364A1 (en) Thin film transistor manufacturing method
JP2006245559A (en) Field-effect transistor and manufacturing method thereof
US4835083A (en) Method for patterning electroconductive film and patterned electroconductive film
JPH02239664A (en) Electric memory
JP5008048B2 (en) Transistors using conductive nanowires
US20060094198A1 (en) Integrated analog circuit using switched capacitor technology
JP4892810B2 (en) Field effect transistor
JP5276992B2 (en) Manufacturing method of semiconductor device
US20020146556A1 (en) Resistor foil
JPH0638492B2 (en) Field effect transistor
JPH0434833B2 (en)
JP5449829B2 (en) Manufacturing method of organic transistor
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP5158010B2 (en) Method for manufacturing field effect transistor
JP2005158775A (en) Manufacturing method of organic thin film field effect transistor
JP2003309307A (en) Organic electronic device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees