JPH0935705A - Polymer electrolyte-lithium battery and manufacture of its electrode - Google Patents

Polymer electrolyte-lithium battery and manufacture of its electrode

Info

Publication number
JPH0935705A
JPH0935705A JP7179835A JP17983595A JPH0935705A JP H0935705 A JPH0935705 A JP H0935705A JP 7179835 A JP7179835 A JP 7179835A JP 17983595 A JP17983595 A JP 17983595A JP H0935705 A JPH0935705 A JP H0935705A
Authority
JP
Japan
Prior art keywords
particles
active material
electrode
battery
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179835A
Other languages
Japanese (ja)
Other versions
JP3622276B2 (en
Inventor
Akiko Ishida
明子 石田
Masaru Nishimura
賢 西村
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17983595A priority Critical patent/JP3622276B2/en
Publication of JPH0935705A publication Critical patent/JPH0935705A/en
Application granted granted Critical
Publication of JP3622276B2 publication Critical patent/JP3622276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the reduction of the impedance of a battery, larger capacity and a longer lifetime by providing a material in which electric conduction agent particles are buried into the surface of active material particles by mechanical energy and an electrode comprising a gel-like polymer electrolyte. SOLUTION: Since electric conduction agent particles are buried and fixed into the surface of active material particles, electronic conductivity between the active material particles can be ensured by the minimum required quantity of the electric conduction agent particles without excessively adding the electric conduction agent particles thereto. Further, since a quantity close to the minimum required quantity of the electric conduction agent particles exists, the electric conduction agent excessively existing in an electrode absorbs an electrolytic solution in a gel-like electrolyte, so that it is not disturbed that lithium ions in the electrolytic solution reach the active material particles. The electronic conductivity and the ion conductivity of the electrode are enhanced by those actions, so that the impedance of a battery may be lowered. Also, the filling quantity of the active material inside the electrode can be increased by setting the quantity of the electric conduction agent particles to a minimum required quantity, so that the capacitive density and the cycle lifetime of a battery may be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリマー電解質を用いた
リチウム電池の、とくにその電極の構成に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery using a polymer electrolyte, and more particularly to the structure of its electrode.

【0002】[0002]

【従来の技術】ポリマー電解質を用いたリチウム電池
は、活物質の連続塗着法により長尺の薄膜電極の作製が
容易でしかも大電流での充放電が可能である。
2. Description of the Related Art In a lithium battery using a polymer electrolyte, a long thin film electrode can be easily manufactured by a continuous coating method of an active material and can be charged and discharged with a large current.

【0003】この電解質は固体としての特長を有し、特
に負極に金属リチウムを用いた二次電池の場合、電解液
として有機電解液を用いた時に問題となるリチウムデン
ドライト析出が抑制される。このため、内部短絡による
発熱・発火が非常に起こりにくく十分な安全性の確保が
可能となる。ポリマー電解質にはポリエチレンオキサイ
ド(PEO)やポリプロピレンオキサイド(PPO)に
リチウム塩を添加した型のものやリチウム塩を溶解した
非水電解液にポリアクリロニトリル(PAN)やポリフ
ッ化ビニリデン(PVdF)などを溶解させたものある
いは多官能性のモノマーを電磁波などにより三次元的に
重合させてゲル状にしたものがある。一方、正、負極に
はイオン伝導性を確保するために正、負極構成材料に前
記ポリマー電解質を混合したものを用いている。
This electrolyte has a characteristic of being solid, and particularly in the case of a secondary battery using metallic lithium for the negative electrode, lithium dendrite deposition, which is a problem when an organic electrolyte is used as the electrolyte, is suppressed. For this reason, it is possible to secure sufficient safety because heat generation and ignition due to an internal short circuit hardly occur. As the polymer electrolyte, polyethylene oxide (PEO) or polypropylene oxide (PPO) with a lithium salt added, or a non-aqueous electrolyte in which the lithium salt is dissolved, such as polyacrylonitrile (PAN) or polyvinylidene fluoride (PVdF) is dissolved. There is a gelled product obtained by three-dimensionally polymerizing a cured product or a polyfunctional monomer by electromagnetic waves. On the other hand, positive and negative electrodes are prepared by mixing the polymer electrolyte with the positive and negative electrode constituent materials in order to ensure ionic conductivity.

【0004】[0004]

【発明が解決しようとする課題】有機電解液を使用した
リチウム電池の場合、活物質、導電剤および結着剤等か
らなる正、負極構成材料の混合物を塗着または加圧成型
した正、負極に電解液を浸透させており、各構成成分と
電解液は密接に接触して電子伝導のパスを保持している
とともに、十分な反応界面を形成して良好なイオン伝導
性をも確保している。
In the case of a lithium battery using an organic electrolytic solution, a positive or negative electrode obtained by applying or pressure molding a mixture of positive and negative electrode constituent materials consisting of an active material, a conductive agent, a binder and the like. The electrolyte is permeated into the electrolyte, and each component and the electrolyte are in intimate contact with each other to maintain a path for electron conduction, and a sufficient reaction interface is formed to ensure good ionic conductivity. There is.

【0005】一方、ポリマー電解質を用いた電池では通
常、活物質粒子等にポリマー電解質を混合させているの
みであるので、活物質粒子等とポリマー電解質との接触
性が充分でなく、電池のインピーダンスは有機電解液を
用いた電池に比べて大きくなり電池作動時の電圧低下の
要因となっていた。このインピーダンスを低減させるた
めには正極中の導電剤の量を多くすることにより解決で
きるが正極中の導電剤量の増加は活物質量の減少をもた
らし正極の単位面積あるいは体積当たりの容量は減少す
ることになる。
On the other hand, in a battery using a polymer electrolyte, the polymer electrolyte is usually only mixed with the active material particles and the like, so that the contact between the active material particles and the polymer electrolyte is not sufficient and the impedance of the battery is impaired. Is larger than that of a battery using an organic electrolyte, which causes a voltage drop during battery operation. In order to reduce this impedance, it can be solved by increasing the amount of conductive agent in the positive electrode, but an increase in the amount of conductive agent in the positive electrode reduces the amount of active material, and the capacity per unit area or volume of the positive electrode decreases. Will be done.

【0006】また、添加された導電剤がゲル状電解質中
の電解液を吸収するのでインピーダンスも予想したほど
には改善されない。
Further, since the added conductive agent absorbs the electrolytic solution in the gel electrolyte, the impedance is not improved as expected.

【0007】一方、負極に炭素材料等の粉末を用いた場
合にも負極の構成材料の粒子間にポリマー粒子が混合さ
れるため、正極と同様の現象が見られ、電池のインピー
ダンスが増大する。
On the other hand, when a powder of a carbon material or the like is used for the negative electrode, polymer particles are mixed between the particles of the constituent material of the negative electrode, so that a phenomenon similar to that of the positive electrode is observed and the impedance of the battery increases.

【0008】本発明はこのような課題を解決するもので
あり、ポリマー電解質を用いた電池の電極の電子伝導性
とイオン伝導性を、電極中の導電剤粒子の量を増やすこ
となく向上させ、インピーダンスが小さく容量密度に優
れたリチウム電池を提供するものである。
The present invention is intended to solve such a problem by improving the electronic conductivity and ionic conductivity of an electrode of a battery using a polymer electrolyte without increasing the amount of conductive agent particles in the electrode, A lithium battery having a low impedance and an excellent capacity density is provided.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明のポリマー電解質・リチウム電池は活物質
粒子と導電剤粒子とゲル状ポリマー電解質を備え、前記
活物質粒子の表面に少なくとも導電剤粒子を機械的エネ
ルギーによって埋め込んだ材料を用いて電極としたもの
である。
In order to solve the above-mentioned problems, the polymer electrolyte / lithium battery of the present invention comprises active material particles, conductive agent particles and gel polymer electrolyte, and at least the surface of the active material particles. An electrode is formed by using a material in which conductive agent particles are embedded by mechanical energy.

【0010】[0010]

【作用】従来のポリマー電解質・リチウム電池に用いる
電極は、活物質粒子にポリマー電解質を単に混合させて
いるものであり、有機電解液を用いた場合に比べて電極
内の電子伝導性やイオン伝導性が低下し、結果として電
池の容量密度が低下していた。
[Function] The electrode used in the conventional polymer electrolyte / lithium battery is one in which the polymer electrolyte is simply mixed with the active material particles. Compared to the case where the organic electrolyte is used, the electron conductivity and ionic conductivity in the electrode are increased. Property was lowered, and as a result, the capacity density of the battery was lowered.

【0011】しかしながら、本発明では活物質粒子の表
面に導電剤粒子を機械的エネルギーによって埋め込み固
定しているので、活物質粒子相互間の電子伝導性を導電
剤粒子を過剰に添加することなく最少必要量で確保する
ことができる。
However, in the present invention, since the conductive material particles are embedded and fixed on the surface of the active material particles by mechanical energy, the electronic conductivity between the active material particles is minimized without adding the conductive material particles excessively. It can be secured in the required amount.

【0012】さらに、導電剤粒子は活物質粒子の表面に
最小必要量に近い量で存在するため、従来のように電極
中に過剰に存在する導電剤がゲル状電解質中の電解液を
吸収して電解液中のリチウムイオンが活物質粒子に到達
することを妨害することもない。そして、これらの作用
により電極の電子伝導性とイオン伝導性を向上させて電
池のインピーダンスを低下させることができる。また、
導電剤粒子の量を最小必要量にすることによって、電極
内の活物質の充填量を大きくすることができ、電池の容
量密度やサイクル寿命を向上させることができる。
Further, since the conductive agent particles are present on the surface of the active material particles in an amount close to the minimum required amount, the conductive agent excessively present in the electrode absorbs the electrolytic solution in the gel electrolyte as in the conventional case. Therefore, it does not prevent lithium ions in the electrolytic solution from reaching the active material particles. These actions can improve the electron conductivity and ionic conductivity of the electrode and reduce the impedance of the battery. Also,
By setting the amount of conductive agent particles to the minimum required amount, the filling amount of the active material in the electrode can be increased, and the capacity density and cycle life of the battery can be improved.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】[実施例1]図1に本発明の電池の断面図
を示す。図において1は高クロム含有量の耐食性ステン
レス製ケース、2はステンレス製封口板である。3はV
25を活物質に用いた正極である。この正極は以下のよ
うにして作製した。
[Embodiment 1] FIG. 1 shows a sectional view of a battery of the present invention. In the figure, 1 is a corrosion-resistant stainless steel case having a high chromium content, and 2 is a stainless steel sealing plate. 3 is V
It is a positive electrode using 2 O 5 as an active material. This positive electrode was manufactured as follows.

【0015】まず、活物質となるV25微粒子100重
量部とアセチレンブラック導電剤微粒子4重量部を準備
し、高速気流衝撃法、具体的にはハイブリダイゼーショ
ンシステムを用いて、V25微粒子の表面にアセチレン
ブラック導電剤微粒子を機械的エネルギーにより打ち込
み、固定化した。この表面処理を施したV25微粒子1
04重量部に対し水溶液分散型フッ素樹脂結着剤7重量
部を混合してスラリー状にした後、このスラリーをマル
チコーターにより集電体であるアルミニウム箔4上に8
0μmの厚みで塗布して乾燥させた。そして、炭酸プロ
ピレンと炭酸エチレンの等体積混合溶媒にLiPF6
1モル/lの濃度で溶解させてなる電解液80重量部に
架橋剤であるポリエチレングリコールジアクリレート1
8重量部とトリメチロールプロパントリアクリレート2
重量部および熱重合開始剤アゾビスイソブチロニトリル
(AIBN)0.5重量部からなる混合溶液を所定量、
減圧含浸した。最後にこれを80℃密封下にて熱硬化法
により正極をゲル化させ、円盤状に打ち抜いた後、ケー
ス1の内面に載置した。
First, 100 parts by weight of V 2 O 5 fine particles as an active material and 4 parts by weight of acetylene black conductive agent fine particles were prepared, and V 2 O 5 was prepared by using a high-speed air flow impact method, specifically, a hybridization system. Fine particles of acetylene black conductive agent were implanted on the surface of the fine particles by mechanical energy to be fixed. V 2 O 5 fine particles 1 subjected to this surface treatment
7 parts by weight of an aqueous solution-dispersible fluororesin binder was mixed with 04 parts by weight to form a slurry, and the slurry was placed on the aluminum foil 4 serving as a current collector by a multi-coater.
It was applied to a thickness of 0 μm and dried. Then, 80 parts by weight of an electrolytic solution prepared by dissolving LiPF 6 in an equal volume mixed solvent of propylene carbonate and ethylene carbonate at a concentration of 1 mol / l is used as a cross-linking agent, polyethylene glycol diacrylate 1.
8 parts by weight and trimethylolpropane triacrylate 2
A predetermined amount of a mixed solution containing 0.5 part by weight of a thermal polymerization initiator azobisisobutyronitrile (AIBN),
It was impregnated under reduced pressure. Finally, the positive electrode was gelled by a thermosetting method while hermetically sealed at 80 ° C., punched into a disk shape, and then placed on the inner surface of the case 1.

【0016】5は厚さ40μmのポリマー電解質であ
り、炭酸プロピレンと炭酸エチレンの等体積混合溶媒に
LiPF6を1モル/lの濃度で溶解させてなる電解液
80重量部にポリエチレングリコールジアクリレート1
8重量部、トリメチロールプロパントリアクリレート2
重量部および光重合開始剤ベンジルジメチルケタール
0.1重量部を添加混合し、この溶液を波長365nm
の紫外線照射により硬化させゲル状にしたものである。
Numeral 5 is a polymer electrolyte having a thickness of 40 μm, and polyethylene glycol diacrylate 1 is added to 80 parts by weight of an electrolytic solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of propylene carbonate and ethylene carbonate in an equal volume.
8 parts by weight, trimethylolpropane triacrylate 2
Parts by weight and 0.1 part by weight of the photopolymerization initiator benzyl dimethyl ketal are added and mixed, and this solution is irradiated at a wavelength of 365 nm.
It is a gel-like product that is cured by UV irradiation.

【0017】6は厚さ80μmの金属リチウム負極であ
り、7はポリプロピレン製のガスケットである。これを
本発明の電池Aとした。電池の評価は20℃にてインピ
ーダンス測定と充放電試験により行い、放電は電流密度
1.0mA/cm2で放電下限電圧2.0VもしくはV2
51モル当たり1ファラデー(1F)まで、充電は電
流密度0.28mA/cm2で充電上限電圧3.8Vの
範囲でサイクルさせて行った。
Reference numeral 6 is a metal lithium negative electrode having a thickness of 80 μm, and reference numeral 7 is a polypropylene gasket. This was designated as Battery A of the present invention. The battery was evaluated by impedance measurement and charge / discharge test at 20 ° C., and the discharge was carried out at a current density of 1.0 mA / cm 2 and a discharge lower limit voltage of 2.0 V or V 2.
Charging was performed at a current density of 0.28 mA / cm 2 and a charging upper limit voltage of 3.8 V in a cycle up to 1 Faraday (1 F) per mol of O 5 .

【0018】[実施例2]V25微粒子100重量部と
アセチレンブラック導電剤微粒子4重量部を準備し、高
速乾式粉砕機、具体的には圧縮力とせん断力を利用した
メカノフュージョンシステムを用い、この機械的エネル
ギーによってV25微粒子の表面にアセチレンブラック
微粒子を打ち込み固定化した。この表面処理を施したV
25微粒子を用いた以外は、(実施例1)と同様にして
電池を作製し、これを本発明の電池Bとした。また、電
池の充放電試験は(実施例1)と同様に行った。
Example 2 100 parts by weight of V 2 O 5 fine particles and 4 parts by weight of acetylene black conductive agent fine particles were prepared, and a high speed dry pulverizer, specifically, a mechanofusion system utilizing compression force and shearing force was used. By using this mechanical energy, acetylene black fine particles were implanted and fixed on the surface of the V 2 O 5 fine particles. V with this surface treatment
A battery was produced in the same manner as in (Example 1) except that 2 O 5 fine particles were used, and this was designated as battery B of the present invention. The battery charge / discharge test was performed in the same manner as in (Example 1).

【0019】[実施例3]以下のようにして正極を作製
した。
[Example 3] A positive electrode was prepared as follows.

【0020】まず、V25微粒子100重量部とアセチ
レンブラック導電剤微粒子2重量部を準備し、高速気流
衝撃法、具体的にはハイブリダイゼーションシステムを
用い、この機械的エネルギーによってV25微粒子の表
面にアセチレンブラック微粒子を打ち込み、固定化し
た。ついで、この表面処理を施したV25微粒子102
重量部と、ポリマー微粒子である平均分子量70万のポ
リメタクリル酸メチル(PMMA)微粒子4重量部を用
い、上記と同様の方法により機械的エネルギーによって
前記V25微粒子の表面にPMMA微粒子を打ち込み、
固定化した。そして、このようにして得られたV25
子104重量部に水溶液分散型フッ素樹脂結着剤7重量
部を混合しスラリー状にした後、このスラリーをマルチ
コーターにより集電体であるアルミニウム箔4上に80
μmの厚みで塗布した。そして、正極が半乾燥状態にあ
るとき、2本ローラーにより60μmの厚みまで加圧し
圧縮してその後乾燥させた。この正極の多孔度は33%
であった。
First, 100 parts by weight of V 2 O 5 fine particles and 2 parts by weight of acetylene black conductive agent fine particles are prepared, and V 2 O 5 is supplied by mechanical energy using a high-speed airflow impact method, specifically, a hybridization system. Acetylene black fine particles were implanted on the surface of the fine particles and fixed. Then, the surface-treated V 2 O 5 fine particles 102
Parts by weight and 4 parts by weight of polymethylmethacrylate (PMMA) fine particles having an average molecular weight of 700,000, which are polymer fine particles, are used to implant PMMA fine particles on the surface of the V 2 O 5 fine particles by mechanical energy in the same manner as above. ,
Immobilized. Then, 104 parts by weight of the V 2 O 5 particles thus obtained are mixed with 7 parts by weight of an aqueous solution-dispersible fluororesin binder to form a slurry, and the slurry is made into an aluminum current collector by a multi-coater. 80 on foil 4
It was applied with a thickness of μm. Then, when the positive electrode was in a semi-dried state, it was pressed by a two-roller roller to a thickness of 60 μm, compressed, and then dried. The porosity of this positive electrode is 33%
Met.

【0021】ついで、この正極を円盤状に打ち抜き、炭
酸プロピレンと炭酸エチレンの等体積混合溶媒にLiP
6を1モル/lの濃度で溶解させた電解液の所定量を
前記正極内に注液し、減圧含浸の後70℃にて加熱して
前記PMMA微粒子に前記電解液を吸収させてゲル状に
した。ゲル中のポリマー濃度は約15重量%であった。
Then, the positive electrode was punched out into a disk shape, and LiP was added to a mixed solvent of equal volume of propylene carbonate and ethylene carbonate.
A predetermined amount of an electrolytic solution in which F 6 was dissolved at a concentration of 1 mol / l was poured into the positive electrode, impregnated under reduced pressure, and heated at 70 ° C. to allow the PMMA fine particles to absorb the electrolytic solution and gel. I made it. The polymer concentration in the gel was about 15% by weight.

【0022】また、ポリマー電解質5は、前記ポリマー
微粒子と前記電解液を、ポリマー濃度が約15重量%と
なるように混合した後、90℃で加熱してゾル状とした
ものを徐冷してゲル状とし、これを円盤状に打ち抜いて
前記正極3の上に載置した。
The polymer electrolyte 5 is prepared by mixing the polymer fine particles and the electrolyte solution so that the polymer concentration becomes about 15% by weight, and then heating at 90 ° C. to form a sol, which is gradually cooled. A gel was formed, which was punched into a disk shape and placed on the positive electrode 3.

【0023】その他の構成は(実施例1)と同様にし、
この電池を本発明の電池Cとした。電池試験についても
(実施例1)と同様にして行った。
Other configurations are the same as those in the first embodiment,
This battery was designated as Battery C of the present invention. The battery test was performed in the same manner as in (Example 1).

【0024】[実施例4]V25微粒子100重量部と
アセチレンブラック導電剤微粒子2重量部を準備し、高
速乾式粉砕機、具体的には圧縮力とせん断力を利用した
メカノフュージョンシステムを用い、このときの機械的
エネルギーによってV25微粒子の表面にアセチレンブ
ラック微粒子を打ち込み、固定化した。
Example 4 100 parts by weight of V 2 O 5 fine particles and 2 parts by weight of acetylene black conductive agent particles were prepared, and a high speed dry pulverizer, specifically, a mechanofusion system utilizing compression force and shearing force was used. By using the mechanical energy at this time, acetylene black fine particles were implanted and fixed on the surface of the V 2 O 5 fine particles.

【0025】ついで、この表面処理を施したV25微粒
子102重量部とPMMA微粒子4重量部を用い、上記
と同様のメカノフュージョンシステムを使用し、機械的
エネルギーによって前記V25微粒子表面にPMMA微
粒子を打ち込み、固定化した。
Next, 102 parts by weight of the surface-treated V 2 O 5 fine particles and 4 parts by weight of PMMA fine particles were used, and the same mechanofusion system as described above was used, and mechanical energy was applied to the surface of the V 2 O 5 fine particles. PMMA fine particles were injected into and fixed.

【0026】その他の構成は(実施例3)と同様にし、
この電池を本発明の電池Dとした。電池試験についても
(実施例3)と同様にして行った。
The other structure is the same as that of the third embodiment,
This battery was designated as Battery D of the present invention. The battery test was performed in the same manner as in (Example 3).

【0027】[比較例1]比較の正極は以下のようにし
て作製した。
[Comparative Example 1] A comparative positive electrode was prepared as follows.

【0028】まずV25微粒子100重量部にアセチレ
ンブラック導電剤微粒子を単に混合し、この混合粉体の
比抵抗値を測定して電池にしたときに必要なアセチレン
ブラック微粒子の添加量を検討したところ10重量部が
最低限必要であることがわかった。
First, 100 parts by weight of V 2 O 5 fine particles are simply mixed with acetylene black conductive agent fine particles, and the specific resistance value of the mixed powder is measured to examine the amount of acetylene black fine particles to be added when the battery is used. It was found that 10 parts by weight was the minimum required.

【0029】そして、V25微粒子100重量部とアセ
チレンブラック微粒子10重量部を混合して合剤を作製
し、この合剤に、炭酸プロピレンと炭酸エチレンの等体
積混合溶媒にLiPF6を1モル/lの濃度で溶解させ
た電解液80重量部と架橋剤ポリエチレングリコールジ
アクリレート18重量部とトリメチロールプロパントリ
アクリレート2重量部および熱重合開始剤アゾビスイソ
ブチロニトリル(AIBN)0.5重量部からなる混合
溶液を混合した。ついで、この混合物をアルミニウム箔
上に80μmの厚みで塗布し、80℃密封下にて熱硬化
法により正極をゲル化させた後、円盤状に打ち抜きケー
ス内面に載置して正極を作製した。
Then, 100 parts by weight of V 2 O 5 fine particles and 10 parts by weight of acetylene black fine particles are mixed to prepare a mixture, and this mixture is mixed with 1 volume of LiPF 6 in an equal volume mixed solvent of propylene carbonate and ethylene carbonate. 80 parts by weight of an electrolytic solution dissolved at a concentration of mol / l, 18 parts by weight of a cross-linking agent polyethylene glycol diacrylate, 2 parts by weight of trimethylolpropane triacrylate and 0.5 parts of a thermal polymerization initiator azobisisobutyronitrile (AIBN). A mixed solution consisting of parts by weight was mixed. Then, this mixture was applied on an aluminum foil in a thickness of 80 μm, and the positive electrode was gelated by a thermosetting method while being sealed at 80 ° C., and then punched in a disk shape to be placed on the inner surface of the case to prepare a positive electrode.

【0030】その他の構成は(実施例1)と同様にし、
これを比較の電池Eとした。また、電池試験についても
(実施例1)と同様にして行った。
Other configurations are the same as those in (Example 1),
This was designated as Comparative Battery E. The battery test was also performed in the same manner as in (Example 1).

【0031】[比較例2]V25微粒子100重量部と
アセチレンブラック10重量部からなる混合合剤に対
し、水溶液分散型フッ素樹脂結着剤7重量部およびポリ
マー微粒子であるカルボキシメチルセルロース2.5重
量部を混合してスラリー状にした後、このスラリーをマ
ルチコーターにより集電体であるアルミニウム箔4上に
100μmの厚みで塗布した。
[Comparative Example 2] 7 parts by weight of an aqueous solution-dispersible fluororesin binder and carboxymethyl cellulose as polymer particles were added to a mixture of 100 parts by weight of V 2 O 5 particles and 10 parts by weight of acetylene black. After mixing 5 parts by weight to form a slurry, the slurry was applied to the aluminum foil 4 serving as a current collector with a thickness of 100 μm by a multi-coater.

【0032】そして、この正極が半乾燥状態にあると
き、2本ローラーにより70μmの厚みまで加圧圧縮し
乾燥させた。正極の多孔度は36%であった。
Then, when this positive electrode was in a semi-dried state, it was pressed and compressed to a thickness of 70 μm by two rollers and dried. The porosity of the positive electrode was 36%.

【0033】この正極を円盤状に打ち抜いた後、炭酸プ
ロピレンと炭酸エチレンの等体積混合溶媒にLiPF6
を1モル/lの濃度で溶解させた電解液を所定量、前記
電極上に注液し、減圧含浸後70℃で加熱して前記電解
液をゲル化し固定した。ゲル中のポリマー濃度は約15
重量%であった。
After punching this positive electrode into a disk shape, LiPF 6 was added to an equal volume mixed solvent of propylene carbonate and ethylene carbonate.
A predetermined amount of an electrolyte solution in which was dissolved at a concentration of 1 mol / l was poured on the electrode, impregnated under reduced pressure, and heated at 70 ° C. to gel and fix the electrolyte solution. Polymer concentration in gel is about 15
% By weight.

【0034】ポリマー電解質5は前記ポリマー微粒子と
前記電解液をポリマー濃度が約15重量%となるように
混合し、90℃で加熱してゾル状にしたものを徐冷によ
りゲル状とし、これを円盤上に打ち抜いたものを前記正
極3上に載置した。
As the polymer electrolyte 5, the polymer fine particles and the electrolyte solution are mixed so that the polymer concentration is about 15% by weight, and the mixture is heated at 90 ° C. to form a sol, which is gradually cooled to form a gel. What was punched out on a disk was placed on the positive electrode 3.

【0035】そして、この他の構成は(実施例1)と同
様にし、これを比較の電池Fとした。また、電池試験に
ついても(実施例1)と同様にして行った。
The other structure was the same as in (Example 1), and this was used as a comparative battery F. The battery test was also performed in the same manner as in (Example 1).

【0036】ついで、本発明の電池A〜Dおよび比較の
電池E、Fを用いて測定したインピーダンス値(ただ
し、1kHzにて測定した電池3個の平均値)を(表
1)に示す。
The impedance values measured using the batteries A to D of the present invention and the comparative batteries E and F (however, the average value of three batteries measured at 1 kHz) are shown in (Table 1).

【0037】[0037]

【表1】 [Table 1]

【0038】また、図2にこれらの電池の充放電サイク
ル寿命を示す。(表1)および図2に示したように、本
発明の電池では正極の活物質粒子の表面に導電剤粒子や
ポリマー粒子が埋め込み固定化されているので、正極内
の電子伝導度やリチウムイオン伝導度が向上し、インピ
ーダンス値が小さくなり電池の充放電サイクル寿命が向
上した。なお、本実施例では正極活物質にV25を用い
たが、これ以外にリチウム電池に通常用いられる正極活
物質であるLixMnO 2(0≦x≦0.5)やLiC
oO2、LiNiO2、LiMn24などであってもよ
い。また、正極活物質以外に負極活物質に適用してもよ
い。
FIG. 2 shows the charge / discharge cycle of these batteries.
Indicates the service life. As shown in (Table 1) and FIG.
In the battery of the invention, conductive agent particles or
Since the polymer particles are embedded and fixed in the positive electrode,
The electronic conductivity and lithium ion conductivity of the
This reduces the impedance value and improves the battery's charge / discharge cycle life.
I went up. In this embodiment, the positive electrode active material is VTwoOFiveUsing
However, in addition to this, the positive electrode active normally used in lithium batteries
The substance LixMnO Two(0 ≦ x ≦ 0.5) and LiC
oOTwo, LiNiOTwo, LiMnTwoOFourEven if
Yes. In addition to the positive electrode active material, it may be applied to the negative electrode active material.
Yes.

【0039】導電剤にはアセチレンブラックを用いたが
他のカーボンブラックやグラファイトなど他の炭素材あ
るいはそれらの混合物であってもよく、ポリマー粒子に
ついてもポリエチレンオキサイドやポリプロピレンオキ
サイド等の従来から用いられているポリマー粒子を用い
ても同様の効果が得られた。
Although acetylene black is used as the conductive agent, other carbon materials such as carbon black and graphite, or a mixture thereof may be used, and the polymer particles are conventionally used such as polyethylene oxide and polypropylene oxide. The same effect was obtained by using polymer particles.

【0040】さらに、活物質粒子に導電剤粒子等を打ち
込む際には、ハイブリダイゼーションシステムやメカノ
フージョンシステムを用いたが、これ以外にも粒子間に
主に圧縮力やせん断力による機械的エネルギーを作用さ
せるシステムであれば同様の効果が得られる。
Further, a hybridizing system and a mechanofusion system were used when driving the conductive material particles and the like into the active material particles. In addition to this, mechanical energy mainly due to compressive force or shearing force is applied between the particles. The same effect can be obtained if the system is operated.

【0041】また、電解液の溶質にはLiPF6を用い
たが、LiCF3SO3、LiClO4、LiN(CF3
22、LiAsF6、LiBF4など他のリチウム塩で
あってもよい。
Although LiPF 6 was used as the solute of the electrolytic solution, LiCF 3 SO 3 , LiClO 4 , and LiN (CF 3 S) were used.
Other lithium salts such as O 2 ) 2 , LiAsF 6 and LiBF 4 may be used.

【0042】また、リチウム電池用負極には金属リチウ
ムを用いたが、これ以外にリチウムを含む化合物、例え
ばLiAl合金やCxLi(リチウムを吸蔵した炭素あ
るいは黒鉛)などであってもよい。
Further, although metallic lithium was used for the negative electrode for the lithium battery, other compounds containing lithium such as LiAl alloy and C x Li (carbon or graphite occluding lithium) may be used.

【0043】[0043]

【発明の効果】以上のように、本発明の電池では電極の
活物質粒子の表面に導電剤粒子やポリマー粒子が機械的
エネルギーによって埋め込み固定化されているので、電
極内の電子伝導性やリチウムイオン伝導性を向上させる
ことができ、この結果、電池のインピーダンスを小さく
して電池容量や充放電サイクル寿命を向上させることが
できる。
As described above, in the battery of the present invention, the conductive material particles and the polymer particles are embedded and fixed by mechanical energy on the surface of the active material particles of the electrode. Ion conductivity can be improved, and as a result, battery impedance can be reduced and battery capacity and charge / discharge cycle life can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポリマー電解質・リチウム電池の断面
FIG. 1 is a sectional view of a polymer electrolyte / lithium battery of the present invention.

【図2】本発明と比較の電池の充放電サイクル寿命を示
す図
FIG. 2 is a diagram showing charge / discharge cycle life of a battery according to the present invention and a battery for comparison.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 V25正極 4 アルミニウム箔 5 ポリマー電解質 6 金属リチウム負極 7 ガスケット1 Case 2 Sealing Plate 3 V 2 O 5 Positive Electrode 4 Aluminum Foil 5 Polymer Electrolyte 6 Metal Lithium Negative Electrode 7 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuo Eda 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活物質粒子と導電剤粒子とゲル状ポリマー
電解質からなる電極を備え、 前記活物質粒子の表面には少なくとも導電剤粒子が機械
的エネルギーによって埋め込まれているポリマー電解質
・リチウム電池。
1. A polymer electrolyte / lithium battery comprising an electrode composed of active material particles, conductive agent particles and a gel polymer electrolyte, wherein at least conductive agent particles are embedded on the surface of the active material particles by mechanical energy.
【請求項2】活物質粒子と導電剤粒子とゲル状ポリマー
電解質からなる電極を備え、 前記活物質粒子の表面には、導電剤粒子とゲル状ポリマ
ー電解質を構成するポリマー粒子が機械的エネルギーに
よって埋め込まれている請求項1記載のポリマー電解質
・リチウム電池。
2. An electrode comprising an active material particle, a conductive agent particle and a gel-like polymer electrolyte, wherein the conductive material particle and the polymer particle constituting the gel-like polymer electrolyte are formed on the surface of the active material particle by mechanical energy. The polymer electrolyte / lithium battery according to claim 1, which is embedded.
【請求項3】ポリマー粒子にリチウム塩を溶解した電解
液が吸収され、膨潤または溶解し、架橋してゲル状にな
る請求項2記載のポリマー電解質・リチウム電池。
3. The polymer electrolyte / lithium battery according to claim 2, wherein an electrolytic solution in which a lithium salt is dissolved in polymer particles is absorbed, swells or dissolves, and is crosslinked to form a gel.
【請求項4】活物質粒子と、導電剤粒子または/および
ポリマー粒子の間に主に圧縮力、せん断力を作用させ
て、機械的エネルギーによって活物質粒子の表面に前記
導電剤粒子または/およびポリマー粒子を埋め込むポリ
マー電解質・リチウム電池用電極の製造法。
4. An active material particle and / or a conductive agent particle or / and a polymer particle are mainly subjected to a compressive force or a shearing force, and mechanical energy causes the surface of the active material particle to have the conductive agent particle and / or the conductive agent particle. A method for manufacturing a polymer electrolyte / lithium battery electrode in which polymer particles are embedded.
JP17983595A 1995-07-17 1995-07-17 Polymer electrolyte / lithium battery and method of manufacturing the electrode Expired - Fee Related JP3622276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17983595A JP3622276B2 (en) 1995-07-17 1995-07-17 Polymer electrolyte / lithium battery and method of manufacturing the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17983595A JP3622276B2 (en) 1995-07-17 1995-07-17 Polymer electrolyte / lithium battery and method of manufacturing the electrode

Publications (2)

Publication Number Publication Date
JPH0935705A true JPH0935705A (en) 1997-02-07
JP3622276B2 JP3622276B2 (en) 2005-02-23

Family

ID=16072736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17983595A Expired - Fee Related JP3622276B2 (en) 1995-07-17 1995-07-17 Polymer electrolyte / lithium battery and method of manufacturing the electrode

Country Status (1)

Country Link
JP (1) JP3622276B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
WO2008038930A1 (en) 2006-09-25 2008-04-03 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
JP2011129528A (en) * 1997-02-04 2011-06-30 Mitsubishi Electric Corp Method of manufacturing lithium ion secondary battery
JP2012054071A (en) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd Lithium ion conductive material, lithium ion conductive electrolyte membrane, lithium ion conductive electrolyte membrane-electrode assembly and lithium ion polymer battery
CN114122350A (en) * 2021-10-28 2022-03-01 汕头大学 Polymer electrolyte-electrode composite material and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129528A (en) * 1997-02-04 2011-06-30 Mitsubishi Electric Corp Method of manufacturing lithium ion secondary battery
JP4561041B2 (en) * 2002-03-28 2010-10-13 Tdk株式会社 Lithium secondary battery
JP2004006285A (en) * 2002-03-28 2004-01-08 Tdk Corp Lithium secondary battery
JP2005135872A (en) * 2003-10-31 2005-05-26 Hitachi Maxell Ltd Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
EP2070150A1 (en) * 2006-09-25 2009-06-17 LG Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
JP2010504624A (en) * 2006-09-25 2010-02-12 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
WO2008038930A1 (en) 2006-09-25 2008-04-03 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
EP2070150A4 (en) * 2006-09-25 2012-05-02 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device comprising the same
US8828611B2 (en) 2006-09-25 2014-09-09 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
US9722253B2 (en) 2006-09-25 2017-08-01 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
JP2012054071A (en) * 2010-08-31 2012-03-15 Sekisui Chem Co Ltd Lithium ion conductive material, lithium ion conductive electrolyte membrane, lithium ion conductive electrolyte membrane-electrode assembly and lithium ion polymer battery
CN114122350A (en) * 2021-10-28 2022-03-01 汕头大学 Polymer electrolyte-electrode composite material and preparation method and application thereof
CN114122350B (en) * 2021-10-28 2023-06-02 汕头大学 Polymer electrolyte-electrode composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3622276B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
KR100276959B1 (en) Lithium secondary battery
JP3872768B2 (en) Lithium secondary battery in which decomposition reaction of electrolyte is suppressed and method for manufacturing the same
JP4407211B2 (en) Nonaqueous electrolyte secondary battery
JP5748108B2 (en) Lithium secondary battery
JP4352475B2 (en) Solid electrolyte secondary battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
JP2002117899A (en) Lithium polymer battery and its manufacturing process
JP4014816B2 (en) Lithium polymer secondary battery
JP2007059387A (en) Electrode for lithium ion secondary battery
JPH10255842A (en) Lithium-polymer secondary battery
JP3279091B2 (en) Organic electrolyte lithium secondary battery and method for producing separator thereof
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JP4751502B2 (en) Polymer battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP3879140B2 (en) Lithium polymer secondary battery
JP2000156242A (en) Lithium secondary battery
JP2002008730A (en) Lithium secondary battery
JP4193248B2 (en) Gel electrolyte battery
JP3622276B2 (en) Polymer electrolyte / lithium battery and method of manufacturing the electrode
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000182606A (en) Lithium battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2002042874A (en) Polymer secondary battery
JP3407507B2 (en) Polymer electrolyte and lithium battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

LAPS Cancellation because of no payment of annual fees