JPH0935342A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0935342A
JPH0935342A JP18402795A JP18402795A JPH0935342A JP H0935342 A JPH0935342 A JP H0935342A JP 18402795 A JP18402795 A JP 18402795A JP 18402795 A JP18402795 A JP 18402795A JP H0935342 A JPH0935342 A JP H0935342A
Authority
JP
Japan
Prior art keywords
magnetic layer
recording
magnetic
magnetic field
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18402795A
Other languages
Japanese (ja)
Inventor
Hirokazu Takada
宏和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical NKK Corp
Priority to JP18402795A priority Critical patent/JPH0935342A/en
Publication of JPH0935342A publication Critical patent/JPH0935342A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magento-optical recording medium having high sensitivity to a magnetic field and a high C-N ratio in a wide intensity range of an external magnetic field by regulating the compensation temp. of a 2nd magnetic layer to a specified range and the thickness of a 1st magnetic layer to a specified range. SOLUTION: A dielectric layer 2 is formed on a transparent substrate 1 of glass, plastic, etc., and a thin film 3 of an amorphous ferrimagnetic rare earth element-transition metal alloy such as GdFe, GdFeCo, GdCo or GdTbFeCo is laminated. A thin film 4 of an amorphous ferrimagnetic heavy rare earth element-transition metal alloy having high perpendicular anisotropy and high coercive force, e.g., TbFeCo, DyFeCo, TbDyFeCo or DyGdFeCo is then formed. The compensation temp. of the 2nd magnetic layer 3 is regulated to 80-150 deg.C and the thickness of the 1st magnetic layer 4 is regulated to 15-30nm to obtain the objective magneto-optical recording medium having high sensitivity to a magnetic field and a high C-N ratio in a wide intensity range of an external magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は集光したレーザー光
と磁界を用いて垂直磁化膜に情報の記録、再生、消去を
行う光磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording, reproducing and erasing information on a perpendicular magnetization film by using a focused laser beam and a magnetic field.

【0002】[0002]

【従来の技術】レーザー光を用いて基板上に設けられた
垂直磁化膜に記録を行う、いわゆる光磁気記録方式は書
き換えが可能で大容量の記録を行う方法として従来より
広く利用されている。現在この光磁気記録媒体の記録膜
に用いられる磁性膜としては膜面に垂直な磁化容易軸を
有する希土類−遷移金属アモルファス合金薄膜が最も多
く用いられている。
2. Description of the Related Art A so-called magneto-optical recording method, in which recording is performed on a perpendicularly magnetized film provided on a substrate by using a laser beam, has been widely used as a rewritable and large-capacity recording method. At present, as the magnetic film used for the recording film of this magneto-optical recording medium, a rare earth-transition metal amorphous alloy thin film having an easy axis of magnetization perpendicular to the film surface is most often used.

【0003】上記の記録膜を用いた光磁気記録方式とし
ては200〜400(Oe)程度の磁界を作用させなが
ら、レーザービームを記録すべきデータに従ってパルス
変調し記録を行う光変調方式が多く用いられている。し
かしこの方式の場合、既に記録が行われている場所に新
たなデータの記録を行おうとすると、一旦、既に記録さ
れているデータの消去を行ってから新しいデータの記録
を行わなければならず、これが光磁気記録媒体のデータ
転送速度向上の障害となっていた。
As a magneto-optical recording method using the above recording film, an optical modulation method in which a laser beam is pulse-modulated according to data to be recorded and recording is often used while a magnetic field of about 200 to 400 (Oe) is applied. Has been. However, in the case of this method, when trying to record new data in a place where recording has already been performed, it is necessary to once erase the already recorded data and then record new data. This has been an obstacle to improving the data transfer rate of the magneto-optical recording medium.

【0004】これに対し、上記光変調方式とは逆に、一
定の強さのレーザービームを連続照射しつつ、外部磁界
の磁界の方向を記録すべきデータに従って高速で変調し
て記録を行う磁界変調方式が知られている。この方式は
旧データが記録されている部分に直接新しいデータの記
録を行うこと(ダイレクト・オーバーライト)ができる
ため、光磁気記録媒体のデーター転送速度を向上させる
方法として近年特に注目されている。
On the other hand, contrary to the above-mentioned optical modulation method, while continuously irradiating a laser beam of a constant intensity, the direction of the magnetic field of the external magnetic field is modulated at high speed according to the data to be recorded, and the magnetic field is recorded. A modulation method is known. In this method, since new data can be directly recorded on the portion where old data is recorded (direct overwrite), it has been particularly noted in recent years as a method for improving the data transfer rate of a magneto-optical recording medium.

【0005】この磁界変調方式の場合、外部磁界を発生
させる電磁石を高速でスイッチングさせなければなら
ず、磁気ヘッドのインダクタンスを小さくする必要があ
る。そのため浮上ヘッド方式に見られるように、小型の
ヘッドを記録層に近接した位置に配置し、これにより記
録を行う方法が一般に用いられるが、その発生磁界は小
さくなるという欠点がある。一方、従来の光変調方式で
は比較的大きな磁界を印加して記録を行うことができる
ため、200(Oe)程度の磁界で記録を行うことがで
きる光磁気記録媒体であれば十分であったが、磁界変調
方式に用いられる記録媒体の場合、上記の理由で記録磁
界に対する感度がさらに高い媒体が求められている。
In the case of this magnetic field modulation method, the electromagnet for generating the external magnetic field must be switched at high speed, and the inductance of the magnetic head must be reduced. Therefore, as in the flying head system, a method of arranging a small head in a position close to the recording layer and performing recording by this is generally used, but there is a drawback that the generated magnetic field is small. On the other hand, in the conventional optical modulation method, since recording can be performed by applying a relatively large magnetic field, a magneto-optical recording medium capable of recording with a magnetic field of about 200 (Oe) is sufficient. In the case of the recording medium used in the magnetic field modulation method, a medium having a higher sensitivity to the recording magnetic field is required for the above reasons.

【0006】このような磁界変調方式において、記録、
消去時の磁界を低減させるためには、次のような特性が
求められている。図1は一般的な光磁気記録媒体の記録
特性を示す。これは予め消去方向に磁化の向きを揃えた
媒体に光変調方式で記録を行った場合のCN比の記録磁
界依存性である。ここで負が消去方向、正が記録方向の
磁界である。磁界変調方式での記録、消去磁界を低減さ
せ、かつ高いCN比の記録を行うためには、図における
CN比が飽和する磁界(飽和磁界、Hs)と記録が始ま
る磁界(記録開始磁界、Ho)の絶対値を小さくする必
要がある。具体的には、このHoおよびHsの絶対値は
200(Oe)以下が好ましい。ところが従来より光変
調記録方式に用いられている光磁気記録媒体は、このH
oとHsの絶対値がいずれも大きく、磁界変調方式で高
速にデータの記録を行うためには不十分であった。
In such a magnetic field modulation system, recording,
In order to reduce the magnetic field at the time of erasing, the following characteristics are required. FIG. 1 shows the recording characteristics of a general magneto-optical recording medium. This is the recording magnetic field dependence of the CN ratio when recording is performed by an optical modulation method on a medium whose magnetization direction is aligned in advance with the erasing direction. Here, the negative is the magnetic field in the erasing direction and the positive is the magnetic field in the recording direction. In order to reduce the recording / erasing magnetic field in the magnetic field modulation method and to record with a high CN ratio, a magnetic field where the CN ratio is saturated (saturation magnetic field, Hs) and a magnetic field where recording starts (recording start magnetic field, Ho ) It is necessary to reduce the absolute value of. Specifically, the absolute values of Ho and Hs are preferably 200 (Oe) or less. However, the magneto-optical recording medium conventionally used in the optical modulation recording system is
The absolute values of o and Hs are both large, which is insufficient for high-speed data recording by the magnetic field modulation method.

【0007】この記録、消去時の磁界を低減させるため
に、種々の方法が提案されている。例えば、光磁気記録
媒体の記録膜を構成している誘電体層や磁性層をスパッ
タ法により成膜する際に成膜ガス圧を変化さえたり、逆
スパッタを行う等、成膜条件により高磁界感度化を達成
する方法が知られているが、この方法では記録、消去磁
界を低減しようとすると、再生時のノイズが増加し、そ
の結果CN比が低下するという欠点があった。
Various methods have been proposed to reduce the magnetic field during recording and erasing. For example, when a dielectric layer or a magnetic layer forming a recording film of a magneto-optical recording medium is formed by a sputtering method, the film forming gas pressure is changed, or reverse sputtering is performed. Although a method of achieving high sensitivity has been known, this method has a drawback in that, when an attempt is made to reduce a recording / erasing magnetic field, noise at the time of reproduction increases, and as a result, the CN ratio decreases.

【0008】一方、磁性層を保磁力が大きくキュリー温
度が比較的低い第1の磁性層と、保磁力が小さくキュリ
ー温度が高い第2の磁性層の2層を磁気的に交換結合さ
せることにより、記録、消去時の磁界を低減する方法
が、例えば特開昭64−32441号、特開平2−23
0535号、特開平4−74328号、特開平6−44
626号、または特開平6−103620号公報等で知
られている。しかし、これらに示されているような磁性
層の二層化では微小磁区の形成が不安定であるため高い
CN比が得られず、特に高密度記録に対応するためには
未だ不十分であった。
On the other hand, by magnetically exchange-coupling the two magnetic layers, the first magnetic layer having a large coercive force and a relatively low Curie temperature and the second magnetic layer having a small coercive force and a high Curie temperature. A method for reducing the magnetic field during recording and erasing is disclosed in, for example, JP-A-64-32441 and JP-A-2-23.
0535, JP-A-4-74328, JP-A-6-44
No. 626 or Japanese Patent Laid-Open No. 6-103620. However, in the double-layered magnetic layer as shown in these documents, the formation of minute magnetic domains is unstable, so that a high CN ratio cannot be obtained, which is still insufficient for high density recording. It was

【0009】これに対し、各々の層のキュリー温度未満
の温度範囲では互いに交換結合している二層からなる磁
性膜で、キュリー温度が比較的高い層がキュリー温度の
比較的低い層のキュリー温度以上で面内磁気異方性を示
すようにすると上記ような欠点を改善し、高いCN比が
得られることが特願平7−96769に記載されてい
る。しかしこの方法の場合、キュリー温度が高い層の組
成の変化によりHo、Hsの値が変化し、組成によって
は磁界変調記録に不適当なCN比の外部磁界依存性を示
す場合もあった。一方、この記録媒体に光変調方式によ
り高密度の記録を行うと、小さな外部磁界で記録を行っ
た場合は高いCN比が得られるものの、比較的大きな外
部磁界で記録を行うとCN比が低下するといった問題が
あった。
On the other hand, in a magnetic film composed of two layers exchange-coupled to each other in a temperature range lower than the Curie temperature of each layer, a layer having a relatively high Curie temperature is a Curie temperature of a layer having a relatively low Curie temperature. It is described in Japanese Patent Application No. 7-96769 that the above-mentioned defects can be improved and a high CN ratio can be obtained by exhibiting the in-plane magnetic anisotropy. However, in the case of this method, the values of Ho and Hs change due to the change in the composition of the layer having a high Curie temperature, and depending on the composition, the CN ratio unsuitable for the magnetic field modulation recording may show the external magnetic field dependence. On the other hand, when high density recording is performed on this recording medium by the optical modulation method, a high CN ratio is obtained when recording is performed with a small external magnetic field, but the CN ratio is lowered when recording is performed with a relatively large external magnetic field. There was a problem of doing.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、記
録、消去に必要な外部磁界を低減すると同時に、記録時
の外部磁界が小さい場合から比較的大きい場合まで高い
CN比が得られ、記録磁界の小さな磁界変調方式でも、
又、比較的記録磁界の大きな光変調方式に於いても良好
な特性で記録を行うことができ、高密度の記録を行うの
に適した光磁気記録媒体を提供することにある。
An object of the present invention is to reduce the external magnetic field required for recording and erasing, and at the same time, to obtain a high CN ratio from a small external magnetic field during recording to a relatively large external magnetic field. Even with a magnetic field modulation method with a small magnetic field,
Another object of the present invention is to provide a magneto-optical recording medium which is suitable for high-density recording, because recording can be performed with good characteristics even in an optical modulation system having a relatively large recording magnetic field.

【0011】[0011]

【課題を解決するための手段】上記目的を達成すべく鋭
意検討を行った結果、本発明に至った。すなわち本発明
の第一は、基板上にフェリ磁性の希土類−遷移金属アモ
ルファス合金を主とする第1の磁性層および第2の磁性
層を有し、第2の磁性層のキュリー温度が第1の磁性層
のキュリー温度より高く、第1の磁性層のキュリー温度
未満の温度範囲において、この第1の磁性層と第2の磁
性層がいずれも垂直磁気異方性を示し、磁気的に交換結
合をしているのに対し、第1の磁性層のキュリー温度以
上、第2の磁性層のキュリー温度未満の温度範囲におい
ては、第2の磁性層が面内磁気異方性を示す光磁気記録
媒体において、第2の磁性層の補償温度が80℃以上、
150℃以下の範囲にあることを特徴とする。さらに、
本発明の第二は、以上の光磁気記録媒体において、第1
の磁性層の膜厚が15nm以上、30nm以下の範囲に
あることを特徴とするものである。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present invention has been accomplished. That is, a first aspect of the present invention has a first magnetic layer and a second magnetic layer mainly composed of a ferrimagnetic rare earth-transition metal amorphous alloy on a substrate, and the Curie temperature of the second magnetic layer is the first. In the temperature range higher than the Curie temperature of the magnetic layer and lower than the Curie temperature of the first magnetic layer, both the first magnetic layer and the second magnetic layer exhibit perpendicular magnetic anisotropy and are magnetically exchanged. On the other hand, in the temperature range of not less than the Curie temperature of the first magnetic layer and less than the Curie temperature of the second magnetic layer, the second magnetic layer exhibits magneto-optical anisotropy. In the recording medium, the compensation temperature of the second magnetic layer is 80 ° C. or higher,
It is characterized by being in the range of 150 ° C. or lower. further,
A second aspect of the present invention provides the first magneto-optical recording medium as described above.
The film thickness of the magnetic layer is in the range of 15 nm or more and 30 nm or less.

【0012】この2層よりなる磁性膜の記録メカニズム
を図2に示す。磁性膜にレーザー光を照射すると磁性膜
の照射部分は第1の磁性層のキュリー温度以上にまで加
熱される。この温度において第2の磁性層は面内磁気異
方性を示す。続いて加熱後に第1、第2の磁性層の温度
が第1の磁性層のキュリー温度にまで低下すると、第1
の磁性層に磁化が現れ、外部磁場によりまず第1の磁性
層に記録が行われる。この際、磁気的な交換相互作用に
より第1の磁性層の各副格子磁化の方向が第2の磁性層
に転写されることにより記録が終了する。
FIG. 2 shows the recording mechanism of the magnetic film composed of these two layers. When the magnetic film is irradiated with laser light, the irradiated portion of the magnetic film is heated up to the Curie temperature of the first magnetic layer or higher. At this temperature, the second magnetic layer exhibits in-plane magnetic anisotropy. Then, when the temperature of the first and second magnetic layers decreases to the Curie temperature of the first magnetic layer after heating, the first
Magnetization appears in the first magnetic layer, and recording is first performed in the first magnetic layer by the external magnetic field. At this time, recording is completed by transferring the direction of each sub-lattice magnetization of the first magnetic layer to the second magnetic layer by magnetic exchange interaction.

【0013】このようなメカニズムで記録が行われる光
磁気記録媒体は、従来の交換結合2層磁性膜とは異な
り、まず保磁力および垂直異方性の大きい第1の磁性層
に記録が行われるため、安定な記録ビットが形成され
る。さらにこれがキュリー温度が高く、カー回転角の大
きい第2の磁性層に転写されるという記録過程を経るた
め、再生時に第2の磁性層の側から読み出しを行うと高
いCN比が得られる。
In the magneto-optical recording medium in which recording is performed by such a mechanism, unlike the conventional exchange-coupling two-layer magnetic film, recording is first performed in the first magnetic layer having large coercive force and perpendicular anisotropy. Therefore, stable recording bits are formed. Furthermore, since this undergoes a recording process in which it is transferred to the second magnetic layer having a high Curie temperature and a large Kerr rotation angle, a high CN ratio can be obtained by reading from the second magnetic layer side during reproduction.

【0014】ところが、このような記録媒体の記録時に
は、図3のように記録レーザー光により加熱された部分
の周囲の第2の磁性層からの漏洩磁界が第1の磁性層の
加熱された部分に作用する。この漏洩磁界は第2の磁性
層が補償組成よりも希土類過剰の場合は第1の磁性層に
対して消去方向に作用するが、その大きさは室温での第
2の磁性層の磁化の大きさに依存し、補償組成から希土
類過剰になるに従って大きくなる。
However, at the time of recording on such a recording medium, the leakage magnetic field from the second magnetic layer around the portion heated by the recording laser beam as shown in FIG. 3 is heated by the heated portion of the first magnetic layer. Act on. This leakage magnetic field acts on the first magnetic layer in the erasing direction when the second magnetic layer is more rare earth than the compensating composition, but its magnitude is the magnitude of the magnetization of the second magnetic layer at room temperature. It becomes larger as the rare earth excesses from the compensation composition.

【0015】以上のように記録開始磁界Ho、飽和磁界
Hsは第2の磁性層の組成によって変化する。ここで、
HoおよびHsの絶対値を共に小さくし、外部磁界に対
する感度の良好な記録媒体を得るためには、第2の磁性
層の組成を調整し、その補償温度が80℃以上、150
℃以下の範囲になるように設定することが好ましい。
As described above, the recording start magnetic field Ho and the saturation magnetic field Hs change depending on the composition of the second magnetic layer. here,
In order to reduce both the absolute values of Ho and Hs and obtain a recording medium with good sensitivity to an external magnetic field, the composition of the second magnetic layer is adjusted so that the compensation temperature is 80 ° C. or higher, 150 ° C. or higher.
It is preferable to set the temperature to be in the range of ℃ or less.

【0016】この範囲を外れ、第2の磁性層の補償温度
が80℃未満となると、第1の磁性層に対し第2の磁性
層から記録磁区を収縮させる方向に働いていた漏洩磁界
が小さくなるため、Hoが図1における負の方向に大き
くなるばかりか、高磁界により記録を行った場合に記録
磁区が拡大し、高密度記録時に記録マーク間の干渉によ
るCN比の低下が現れる。
If the temperature is out of this range and the compensation temperature of the second magnetic layer is less than 80 ° C., the leakage magnetic field acting on the first magnetic layer in the direction of contracting the recording magnetic domain from the second magnetic layer is small. Therefore, Ho increases not only in the negative direction in FIG. 1, but also when recording is performed by a high magnetic field, the recording magnetic domain expands, and the CN ratio decreases due to interference between recording marks during high density recording.

【0017】一方、第2の磁性層の補償温度が150℃
を超えると、第1の磁性層のキュリー温度以上となって
も第2の磁性層が垂直異方性を示し、まず第2の磁性層
に記録磁区が形成され、これが第1の磁性層に転写され
るというメカニズムで記録が行われるため、本発明によ
るCN比向上の効果が見られない。
On the other hand, the compensation temperature of the second magnetic layer is 150 ° C.
Beyond the above, the second magnetic layer exhibits perpendicular anisotropy even if the Curie temperature of the first magnetic layer is reached or higher, and a recording magnetic domain is first formed in the second magnetic layer. Since recording is performed by the mechanism of transfer, the effect of improving the CN ratio according to the present invention cannot be seen.

【0018】本発明の光磁気記録媒体は前記のように第
1の磁性層から第2の磁性層に交換相互作用により記録
状態が転写されることにより記録が行われる。従って、
まず、第1の磁性層に安定な記録磁区が形成されること
が必要である。ここで第1の磁性層の膜厚が薄いと第1
の磁性層の垂直異方性および保磁力が小さくなり、微小
な記録磁区は不安定となるため、この記録磁区が第2の
磁性層に転写されても高いCN比は得られない。
In the magneto-optical recording medium of the present invention, recording is performed by transferring the recording state from the first magnetic layer to the second magnetic layer by the exchange interaction as described above. Therefore,
First, it is necessary to form stable recording magnetic domains in the first magnetic layer. If the thickness of the first magnetic layer is thin, the first
Since the perpendicular anisotropy and the coercive force of the magnetic layer become small and the minute recording magnetic domain becomes unstable, a high CN ratio cannot be obtained even if this recording magnetic domain is transferred to the second magnetic layer.

【0019】一方、第1の磁性層の膜厚が大きいと磁性
層面内の熱伝導が大きくなり、記録時の記録マーク間の
熱干渉が大きくなるため、やはり高密度記録時に高いC
N比は得られない。以上の理由により高いCN比を得る
ためには、本発明における第1の磁性層の膜厚が15n
m以上、30nm以下の範囲であることが好ましい。
On the other hand, if the film thickness of the first magnetic layer is large, the heat conduction in the surface of the magnetic layer is large and the thermal interference between the recording marks during recording is large, so that the high C is also high during high density recording.
N ratio cannot be obtained. For the above reason, in order to obtain a high CN ratio, the film thickness of the first magnetic layer in the present invention is 15 n.
The range is preferably m or more and 30 nm or less.

【0020】[0020]

【発明の実施の形態】本発明において、第1の磁性層と
しては例えば、TbFeCo、DyFeCo、TbDy
FeCo、DyGdFeCo等のように大きな垂直異方
性と高い保磁力を有するフェリ磁性の重希土類−遷移金
属アモルファス合金薄膜が挙げられる。具体的には、こ
の第1の磁性層はキュリー温度が170℃以上、250
℃以下であることが、レーザーパワーに対する記録感度
や繰り返し消去・記録時の熱安定性の点で好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, examples of the first magnetic layer include TbFeCo, DyFeCo, and TbDy.
Examples thereof include ferrimagnetic heavy rare earth-transition metal amorphous alloy thin films having large vertical anisotropy and high coercive force such as FeCo and DyGdFeCo. Specifically, the Curie temperature of the first magnetic layer is 170 ° C. or higher, 250
C. or less is preferable in terms of recording sensitivity to laser power and thermal stability during repeated erasing / recording.

【0021】一方、第2の磁性層としては第1の磁性層
のキュリー温度以上で面内磁気異方性を示すようにする
ために、垂直磁気異方性が比較的小さく、かつ垂直磁化
膜となる温度範囲が比較的狭いこと、また再生時に高い
CNを得るために、キュリー温度が比較的高く、大きな
カー回転角が得られることが好ましい。これらの条件を
満足するものとしては、例えばGdFe、GdFeC
o、GdCo、GdTbFeCoのようなフェリ磁性の
希土類−遷移金属アモルファス合金薄膜が挙げられる。
On the other hand, in order for the second magnetic layer to exhibit in-plane magnetic anisotropy at the Curie temperature of the first magnetic layer or higher, the perpendicular magnetic anisotropy is relatively small and the perpendicular magnetic film is formed. It is preferable that the Curie temperature be relatively high and a large Kerr rotation angle be obtained in order to obtain a high CN during regeneration. Those satisfying these conditions are, for example, GdFe and GdFeC.
Examples thereof include ferrimagnetic rare earth-transition metal amorphous alloy thin films such as o, GdCo, and GdTbFeCo.

【0022】また、前記したメカニズムで記録が行われ
るためには第1の磁性層のキュリー温度に対し、第2の
磁性層のキュリー温度が十分高いことが好ましく、具体
的にはその差が50℃以上となるように組成を選択する
ことが望ましい。また、第2の磁性層は第1の磁性層の
キュリー温度以上で面内磁気異方性を示すように組成、
膜厚を選択することが必要である。
In order to perform recording by the mechanism described above, it is preferable that the Curie temperature of the second magnetic layer is sufficiently higher than the Curie temperature of the first magnetic layer. Specifically, the difference is 50. It is desirable to select the composition so that the temperature is not lower than ° C. The second magnetic layer has a composition such that it exhibits in-plane magnetic anisotropy at the Curie temperature of the first magnetic layer or higher,
It is necessary to select the film thickness.

【0023】さらに、これらの第1および第2の磁性層
には短波長領域でのカー回転角の向上や、耐酸化性の向
上等の目的で、Pr、Nd等の軽希土類やTi、Cr、
Ta等の元素を添加しても良い。
Further, for the purpose of improving the Kerr rotation angle in the short wavelength region and improving the oxidation resistance, these first and second magnetic layers contain light rare earths such as Pr and Nd, and Ti and Cr. ,
An element such as Ta may be added.

【0024】本発明における記録媒体の具体的な構成の
例としては、ガラス、プラスチック等の透明な基板上に
誘電体膜、上記の二層よりなる磁性膜、誘電体膜、反射
膜の順に積層したものが挙げられる。この場合、前記の
理由で第2の磁性層は第1の磁性層よりもレーザー光が
照射される側に配置するのが好ましい。一方、上記の誘
電体膜としては磁性体膜を酸化から保護する目的の他
に、磁性体膜によるカー回転角を大きくする目的を有
し、例えばAlN、SiN、SiAlN、SiAlON
等の窒化物やSiO、TaO等の酸化物、ZnS等の硫
化物が挙げられる。さらに、反射層は、再生時のカー回
転角を増加させる作用を有すると共に、記録レーザーパ
ワーに対する感度を調節したり、記録時の磁性体膜内の
熱伝導を制御し、高いCN比を得るために有効である。
この反射層としては、例えば、Al、AlTi、AlT
a等よりなる薄膜が用いられる。図4に本発明における
光磁気記録媒体の断面の一例を示す。
As an example of the specific constitution of the recording medium in the present invention, a dielectric film, a magnetic film consisting of the above two layers, a dielectric film and a reflective film are laminated in this order on a transparent substrate such as glass or plastic. Some of them In this case, it is preferable that the second magnetic layer is arranged closer to the side irradiated with the laser light than the first magnetic layer for the above reason. On the other hand, the above-mentioned dielectric film has the purpose of increasing the Kerr rotation angle of the magnetic film in addition to the purpose of protecting the magnetic film from oxidation. For example, AlN, SiN, SiAlN, SiAlON.
And the like, oxides such as SiO and TaO, and sulfides such as ZnS. Furthermore, the reflective layer has the function of increasing the Kerr rotation angle during reproduction, adjusts the sensitivity to the recording laser power, and controls the heat conduction in the magnetic film during recording to obtain a high CN ratio. Is effective for.
Examples of the reflective layer include Al, AlTi, and AlT.
A thin film made of a or the like is used. FIG. 4 shows an example of a cross section of the magneto-optical recording medium according to the present invention.

【0025】[0025]

【実施例】以下に本発明について実施例、比較例により
詳細に説明する。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples.

【0026】〔実施例1〜3、比較例1、2〕4個のタ
ーゲットを備えたスパッタ装置内に、グルーブおよびプ
リフォーマット信号が刻まれたポリカーボネート製のデ
ィスク状基板およびカー効果測定用のガラス基板を配置
した。次にこのスパッタ装置内を5×10-7Torr以
下にまで排気した後、ArとN2 の混合ガスをスパッタ
ガスとし、1×10-2Torrのスパッタガス圧でSi
ターゲットにより厚さ100nmのSiN誘電体膜を成
膜した。次に、3×10-3TorrのArガス中でGd
FeCoターゲットにより、厚さ7nmの第2の磁性層
を、続いてTbFeCoターゲットにより、厚さ15n
mの第1の磁性層を積層した。さらに、厚さ25nmの
SiN誘電体層を最初の誘電体層と同じ条件で積層し、
さらに1.5×10-3TorrのAr中でAl96Ti4
の組成のターゲットにより厚さ70nmの反射層を成膜
することにより光磁気記録膜を作製した。
[Examples 1 to 3 and Comparative Examples 1 and 2] A disk-shaped substrate made of polycarbonate with grooves and preformatted signals and glass for measuring the Kerr effect in a sputtering apparatus equipped with four targets. The substrate was placed. Next, after exhausting the inside of the sputtering apparatus to 5 × 10 −7 Torr or less, a mixed gas of Ar and N 2 is used as a sputtering gas and Si is sputtered at a sputtering gas pressure of 1 × 10 −2 Torr.
A 100 nm thick SiN dielectric film was formed on the target. Next, Gd in Ar gas of 3 × 10 −3 Torr
The FeCo target was used to form a 7 nm thick second magnetic layer, followed by the TbFeCo target, a thickness of 15 nm.
m first magnetic layer was laminated. Further, a 25 nm thick SiN dielectric layer is laminated under the same conditions as the first dielectric layer,
Further, Al 96 Ti 4 in Ar of 1.5 × 10 −3 Torr
A magneto-optical recording film was produced by forming a 70 nm-thick reflective layer using a target having the above composition.

【0027】本実施例では成膜の際に第2の磁性層の組
成をGdFeCoターゲット上にGdのチップを置き、
その数を変化させることにより第2の磁性層の組成を変
化させた。この第2の磁性層であるGdFeCo層はい
ずれもキュリー温度が約350℃であるが、その補償温
度は、20℃、80℃、110℃、150℃、200℃
であるものをそれぞれ作成した。この時、第1の磁性層
であるTbFeCo層のキュリー温度は200℃、室温
での保磁力は8(kOe)であった。これらの光磁気記
録膜のカーヒステリシスループ測定の結果、補償温度が
150℃以下の第2の磁性層を用いた記録膜の場合、第
1の磁性層のキュリー温度以上で第2の磁性層が面内異
方性を示すのに対し、補償温度が200℃の第2の磁性
層を用いた記録膜の場合、第1の磁性層のキュリー温度
以上で第2の磁性層が垂直異方性を示すことが分かっ
た。
In this embodiment, the composition of the second magnetic layer was set to GdFeCo target on the GdFeCo target at the time of film formation.
The composition of the second magnetic layer was changed by changing the number. The Curie temperature of the second magnetic layer, which is the GdFeCo layer, is about 350 ° C., but the compensation temperature is 20 ° C., 80 ° C., 110 ° C., 150 ° C., 200 ° C.
I created each one. At this time, the Curie temperature of the TbFeCo layer as the first magnetic layer was 200 ° C., and the coercive force at room temperature was 8 (kOe). As a result of Kerr hysteresis loop measurement of these magneto-optical recording films, in the case of the recording film using the second magnetic layer having a compensation temperature of 150 ° C. or lower, the second magnetic layer was formed at the Curie temperature of the first magnetic layer or higher. In contrast to the in-plane anisotropy, in the case of a recording film using the second magnetic layer having a compensation temperature of 200 ° C., the second magnetic layer has a perpendicular anisotropy at the Curie temperature of the first magnetic layer or higher. Was found to show.

【0028】これらの記録膜を有する光磁気ディスクを
830nmの半導体レーザーを有する記録再生特性評価
装置に取り付け、基板側よりレーザー光を入射し、まず
消去を行った後、線速度6.03m/sec、記録周波
数3.9MHz、記録レーザーパワー7mW、記録パル
ス幅60nsecの条件でCN比の記録磁界依存性の測
定を行った。この測定結果を表1に示す。この結果よ
り、補償温度が80、110、および150℃である第
2の磁性層を有する光磁気ディスクの場合は、Ho、H
s共にその絶対値が小さく、外部磁界に対する感度が良
好であると言える。またこれらの光磁気ディスクは良好
なCN比が得られることが分かる。
A magneto-optical disk having these recording films was attached to a recording / reproducing characteristic evaluation device having a semiconductor laser of 830 nm, laser light was made incident from the substrate side, and erasing was first performed, and then a linear velocity was 6.03 m / sec. The recording magnetic field dependence of the CN ratio was measured under the following conditions: recording frequency 3.9 MHz, recording laser power 7 mW, recording pulse width 60 nsec. The results of this measurement are shown in Table 1. From this result, in the case of the magneto-optical disk having the second magnetic layer having the compensation temperatures of 80, 110, and 150 ° C., Ho, H
It can be said that both s have small absolute values and have good sensitivity to an external magnetic field. Further, it is understood that these magneto-optical disks can obtain a good CN ratio.

【0029】一方、図5に実施例1の補償温度が80℃
である第2の磁性層を有するディスクと比較して示した
が、比較例1の補償温度が20℃である第2の磁性層を
有するディスクの場合、Hoの値がマイナスの側に大き
くなり、外部磁界に対する感度が低いとともに、高磁界
側でのCN比の低下が見られ、高いCN比が得られる磁
界の範囲が狭いことが分かる。また、第1の磁性層のキ
ュリー温度以上の温度範囲において第2の磁性層が垂直
磁化膜となる比較例2のディスクの場合、他のディスク
に比べ、CN比が低いことが分かる。
On the other hand, in FIG. 5, the compensation temperature of Example 1 is 80 ° C.
However, in the case of the disc having the second magnetic layer of Comparative Example 1 having a compensation temperature of 20 ° C., the value of Ho increases to the negative side. The sensitivity to external magnetic fields is low, and the CN ratio on the high magnetic field side is low, indicating that the range of the magnetic field where a high CN ratio can be obtained is narrow. Further, it can be seen that in the case of the disk of Comparative Example 2 in which the second magnetic layer is the perpendicularly magnetized film in the temperature range equal to or higher than the Curie temperature of the first magnetic layer, the CN ratio is lower than that of the other disks.

【0030】以上の結果より、第2の磁性層の補償温度
が80℃以上、150℃以下の範囲であれば、外部磁界
に対する感度が高く、磁界の強さの広い範囲でCN比の
高い光磁気記録媒体が得られることが分かる。
From the above results, when the compensation temperature of the second magnetic layer is in the range of 80 ° C. or higher and 150 ° C. or lower, the sensitivity to the external magnetic field is high and the light having a high CN ratio in a wide range of the magnetic field strength is obtained. It can be seen that a magnetic recording medium can be obtained.

【0031】〔実施例4〜6、比較例3、4〕第2の磁
性層の補償温度を150℃とし、基板上に前記実施例、
比較例と同様の方法でSiN誘電体層、第2の磁性層、
第1の磁性層、SiN誘電体層、AlTi反射層を順次
形成した。この際第2の磁性層の膜厚を7nm、その他
の第1の磁性層以外各層の膜厚は前記実施例、比較例と
同一とし、第1の磁性層の膜厚のみを11、15、2
0、30、40nmと変化させた。これらの記録膜を有
する光磁気ディスクを前記実施例と同様の方法で、CN
比の記録バイアス磁界依存性の測定を行った。これらの
測定結果を表2に示す。
[Examples 4 to 6, Comparative Examples 3 and 4] The compensation temperature of the second magnetic layer was set to 150 ° C., and the above-mentioned Examples were formed on the substrate.
In the same manner as in the comparative example, the SiN dielectric layer, the second magnetic layer,
A first magnetic layer, a SiN dielectric layer, and an AlTi reflective layer were sequentially formed. At this time, the film thickness of the second magnetic layer is 7 nm, the film thickness of each layer other than the first magnetic layer is the same as that of the above-mentioned Examples and Comparative Examples, and only the film thickness of the first magnetic layer is 11, 15, Two
It was changed to 0, 30, and 40 nm. A magneto-optical disk having these recording films was treated with CN in the same manner as in the above embodiment.
The recording bias magnetic field dependence of the ratio was measured. Table 2 shows the measurement results.

【0032】表から分かるように、これらの記録磁界感
度はほとんど変化がない。しかし、第1の磁性体層の膜
厚が15、20、30nmの場合は高いCN比が得られ
るのに対し、11、40nmの場合はCN比が前者に比
べて低くなっていることが分かる。以上の結果より、本
実施例、比較例の条件で光磁気記録膜の成膜を行った場
合、第1の磁性層の膜厚は15nm以上、30nm以下
の範囲であれば磁界感度が高く、かつCN比の高い光磁
気記録媒体が得られることが分かる。
As can be seen from the table, these recording magnetic field sensitivities hardly change. However, it can be seen that a high CN ratio is obtained when the film thickness of the first magnetic layer is 15, 20, 30 nm, whereas the CN ratio is lower when it is 11, 40 nm as compared with the former. . From the above results, when the magneto-optical recording film is formed under the conditions of this example and the comparative example, the magnetic field sensitivity is high when the thickness of the first magnetic layer is in the range of 15 nm or more and 30 nm or less, It is also understood that a magneto-optical recording medium having a high CN ratio can be obtained.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】以上のように磁性層を磁気的に交換結合
した第1の磁性層および第2の磁性層の二層とし、第2
の磁性層が第1の磁性層のキュリー温度以上で面内磁化
膜となるようにした光磁気記録膜において、第2の磁性
層の補償温度を80℃以上、150℃以下の範囲とする
一方、第1の磁性層の膜厚を15nm以上、30nm以
下の範囲とすることにより、記録、消去の際の磁界感度
が高く、かつ外部磁界強度の広い範囲でCN比の高い光
磁気記録媒体が得られ、記録磁界の小さな磁界変調方式
でも、比較的記録磁界の大きな光変調方式でも良好な記
録特性での高密度記録が可能となる。
As described above, the magnetic layer is composed of the two layers of the magnetically exchange-coupled first magnetic layer and second magnetic layer, and the second magnetic layer is formed.
In the magneto-optical recording film in which the magnetic layer is an in-plane magnetized film at the Curie temperature of the first magnetic layer or higher, the compensation temperature of the second magnetic layer is set in the range of 80 ° C to 150 ° C. By setting the film thickness of the first magnetic layer in the range of 15 nm or more and 30 nm or less, a magneto-optical recording medium having a high magnetic field sensitivity at the time of recording and erasing and a high CN ratio in a wide range of external magnetic field strength can be provided. Thus, high-density recording with good recording characteristics can be achieved by a magnetic field modulation method with a small recording magnetic field or an optical modulation method with a relatively large recording magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な光磁気記録媒体の記録バイアス磁界に
よるCN比の変化を示す特性図である。
FIG. 1 is a characteristic diagram showing a change in CN ratio due to a recording bias magnetic field of a general magneto-optical recording medium.

【図2】本発明による光磁気記録媒体の記録メカニズム
を示す説明図である。
FIG. 2 is an explanatory diagram showing a recording mechanism of a magneto-optical recording medium according to the present invention.

【図3】本発明による光磁気記録媒体における記録部分
の周囲の第2の磁性層からの漏洩磁界の様子を示す説明
図である。
FIG. 3 is an explanatory diagram showing a state of a leakage magnetic field from a second magnetic layer around a recording portion in the magneto-optical recording medium according to the present invention.

【図4】本発明による光磁気記録媒体の一例を示す断面
図である。
FIG. 4 is a sectional view showing an example of a magneto-optical recording medium according to the present invention.

【図5】本発明における実施例1および比較例1におけ
る光磁気記録媒体のCN比の記録磁界依存性を示す特性
図である。
FIG. 5 is a characteristic diagram showing the recording magnetic field dependence of the CN ratio of the magneto-optical recording media in Example 1 and Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 誘電体層 3 第2の磁性層 4 第1の磁性層 5 誘電体層 6 反射層 1 Substrate 2 Dielectric Layer 3 Second Magnetic Layer 4 First Magnetic Layer 5 Dielectric Layer 6 Reflective Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にフェリ磁性の希土類−遷移金属
アモルファス合金を主とする第1の磁性層および第2の
磁性層を有し、第2の磁性層のキュリー温度が第1の磁
性層のキュリー温度より高く、第1の磁性層のキュリー
温度未満の温度範囲において、この第1の磁性層と第2
の磁性層がいずれも垂直磁気異方性を示し、磁気的に交
換結合をしているのに対し、第1の磁性層のキュリー温
度以上、第2の磁性層のキュリー温度未満の温度範囲に
おいては、第2の磁性層が面内磁気異方性を示す光磁気
記録媒体において、第2の磁性層の補償温度が80℃以
上、150℃以下の範囲にあることを特徴とする光磁気
記録媒体。
1. A first magnetic layer having a ferrimagnetic rare earth-transition metal amorphous alloy as a main component and a second magnetic layer on a substrate, wherein the Curie temperature of the second magnetic layer is the first magnetic layer. In a temperature range higher than the Curie temperature of the first magnetic layer and lower than the Curie temperature of the first magnetic layer.
In the temperature range above the Curie temperature of the first magnetic layer but below the Curie temperature of the second magnetic layer, while all of the magnetic layers exhibit perpendicular magnetic anisotropy and are magnetically exchange-coupled. Is a magneto-optical recording medium in which the second magnetic layer exhibits in-plane magnetic anisotropy, wherein the compensation temperature of the second magnetic layer is in the range of 80 ° C. or higher and 150 ° C. or lower. Medium.
【請求項2】 第1の磁性層の膜厚が15nm以上、3
0nm以下である請求項1に記載の光磁気記録媒体。
2. The film thickness of the first magnetic layer is 15 nm or more, 3
The magneto-optical recording medium according to claim 1, which has a thickness of 0 nm or less.
JP18402795A 1995-07-20 1995-07-20 Magneto-optical recording medium Pending JPH0935342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18402795A JPH0935342A (en) 1995-07-20 1995-07-20 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18402795A JPH0935342A (en) 1995-07-20 1995-07-20 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0935342A true JPH0935342A (en) 1997-02-07

Family

ID=16146076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18402795A Pending JPH0935342A (en) 1995-07-20 1995-07-20 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0935342A (en)

Similar Documents

Publication Publication Date Title
US4882231A (en) Magneto-optical recording medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JP3477384B2 (en) Magneto-optical recording medium
JP2809991B2 (en) Magneto-optical recording medium and method of reproducing information recorded on the medium
JPH10149592A (en) Magneto-optical recording medium and signal reproducing method for reproducing information by utilizing magnetic wall
JPH06309715A (en) Magneto-optical recording medium, its production and recording and reproducing method
US5493545A (en) Magnetooptical recording medium with overwrite capabilities and method for using the same
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
JPH0535499B2 (en)
US5814418A (en) Magneto-optical recording medium and method for reading out information from the same
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
JPH02158938A (en) Magneto-optical recording medium and recording method
JP2000173117A (en) Magneto-optical recording medium and reproducing device
JPH0935346A (en) Magneto-optical recording medium and information recording method thereof
JP3592399B2 (en) Magneto-optical recording medium
JPH06195784A (en) Magneto-optic recording medium and recording method of information using the medium
JPH0935342A (en) Magneto-optical recording medium
JPH04219642A (en) Magneto-optical recording medium and method thereof
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
JP2985641B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3328989B2 (en) Magneto-optical recording medium
JP3516865B2 (en) Magneto-optical recording medium and reproducing apparatus
JP2001084658A (en) Magnetooptical recording medium and its recording method
JPH0676405A (en) Magneto-optical recording medium and recording method for this medium