JPH09326513A - Magnetic shield body and superconducting magnet device - Google Patents

Magnetic shield body and superconducting magnet device

Info

Publication number
JPH09326513A
JPH09326513A JP8253472A JP25347296A JPH09326513A JP H09326513 A JPH09326513 A JP H09326513A JP 8253472 A JP8253472 A JP 8253472A JP 25347296 A JP25347296 A JP 25347296A JP H09326513 A JPH09326513 A JP H09326513A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic field
shield body
magnetic shield
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8253472A
Other languages
Japanese (ja)
Inventor
Mitsuru Sawamura
充 澤村
Hiroaki Otsuka
広明 大塚
Ikuo Ito
郁夫 伊藤
Misao Hashimoto
操 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8253472A priority Critical patent/JPH09326513A/en
Publication of JPH09326513A publication Critical patent/JPH09326513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect a superconducting junction part and the like from deterioration of the characteristics in the junction part by means of an external magnetic field by determining the value obtained by dividing the inner diameter of a tubular wound body in a shield body constituted of superconducting plates and covering the superconducting plates in pairs in a circumferential direction over 180 degrees by the length in the longitudinal direction of the tubular wound body within a specified range. SOLUTION: The position of a sheet end part in the circumferential direction is adjusted so that the plane including the axis of the tubular wound body and the sheet end face in the circumferential direction is generally vertical to the direction of the external magnetic field. When the respective sheets are divided into two by the plane formed by the external magnetic field and the axis of the cirrocumulus body, the position of the tubular wound body is adjusted with respect to the external magnetic field so that the peripheral parts S of respective sides are set to be the angle SA of the side peripheral part of 90 degrees or more and the whole become the angle TA of the peripheral part of 180 degrees or more. The value obtained by dividing the inner diameter of the tubular wound body by the length in the direction of the axis of the tubular wound body is set at 1/50-1. Thus, the superconducting junction part can be protected from the characteristic deterioration of the junction part by means of the external magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、MRI、磁気浮上
搬送装置、磁気分離装置、加速器、核融合実験装置、超
電導発電機など、強力な磁界が使用されている装置に利
用されるものである。具体的には超電導線材の接続部、
永久電流スイッチ本体、もしくは永久電流スイッチとコ
イル線材との接続箇所、超電導電流リードなど磁場に弱
い超電導部位を保護するためや、希土類金属合金または
化合物を含む蓄冷材を強力な磁界から保護するための磁
気シールド体および該シールド体を用いた超電導マグネ
ットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in devices using a strong magnetic field, such as MRI, magnetic levitation transport devices, magnetic separation devices, accelerators, nuclear fusion experimental devices, and superconducting generators. . Specifically, the connection part of the superconducting wire,
For protecting the permanent current switch body, the connection between the permanent current switch and the coil wire, the superconducting parts that are weak against magnetic fields such as superconducting current leads, and the regenerator material containing rare earth metal alloys or compounds from strong magnetic fields. The present invention relates to a magnetic shield body and a superconducting magnet using the shield body.

【0002】[0002]

【従来の技術】超電導線材を用いた応用機器としてMR
I(磁気共鳴医療画像診断装置)、磁気浮上搬送装置
(例えばリニアモーターカー)、磁気分離装置、加速
器、核融合実験装置、超電導発電機などの機器があげら
れる。これらの応用ではいずれも線材は高磁界発生用の
超電導マグネットとして用いられている。これらに永久
電流スイッチを組み込むことにより、一度励磁を行え
ば、その後電源を必要とせずに安定な磁界を半永久的に
保持できるマグネットが量産されている。特に、MRI
用マグネットでは発生磁界の極めて高い安定度が要求さ
れ、それに伴い高度な超電導接続技術が求められてい
た。また、永久電流スイッチについては、スイッチとし
て機能するようスイッチ部の超電導線には超電導状態が
被れやすくする工夫をしている。
MR as an applied device using a superconducting wire
Examples of the apparatus include I (magnetic resonance medical image diagnostic apparatus), magnetic levitation transportation apparatus (for example, linear motor car), magnetic separation apparatus, accelerator, nuclear fusion experimental apparatus, superconducting generator, and the like. In all of these applications, wire rods are used as superconducting magnets for generating high magnetic fields. Magnets have been mass-produced by incorporating a permanent current switch into these so that they can be excited once and then can hold a stable magnetic field semipermanently without requiring a power source. Especially, MRI
For magnets for use, extremely high stability of the generated magnetic field was required, and accordingly, advanced superconducting connection technology was required. In addition, regarding the permanent current switch, the superconducting wire of the switch portion is devised so as to be easily exposed to the superconducting state so as to function as a switch.

【0003】一方、超電導線材については、経済性の点
からも数kmもある長尺な線材を使ってマグネットにす
るよりも、数百m程度の線材を数カ所の接続箇所を設け
てマグネットを作製する方が安価で取り扱いの手間も軽
減される。しかし、超電導接続技術が数多く開発された
が、強磁界応用で使うには特性上まだ不十分である。と
言うのも、これらの接続の良否を判定する因子は、接続
部の電流−磁界特性と接続抵抗値であり、こうした接続
部分は通常の線材部分に比べ臨界電流密度が低く、外部
磁界に対しても比較的弱い磁界で一部が常電導転移する
ことが多い(例えば、IEEE TRANSACTIONS ON APPLIED S
UPER CONDUCTIVITY、VOL.5、NO.2 P240 Fig.6 )。一部
に、常電導転移が起これば接続抵抗値も増加するため、
安定な磁界を保持する能力が低下する欠点をもってい
た。上記理由により、これまで接合部分は可能な限り磁
界の低いところに設置したり、もしくはマグネットのコ
イル部分に接合線を使用しないのが現状である。
On the other hand, for a superconducting wire, a magnet is manufactured by providing several connecting points at several hundred meters of wire rather than using a long wire having a length of several kilometers from the economical point of view. It is cheaper to do and the handling time is reduced. However, although many superconducting connection technologies have been developed, their characteristics are still insufficient for use in strong magnetic field applications. This is because the factors that determine the quality of these connections are the current-magnetic field characteristics and the connection resistance value of the connection part.The connection part has a lower critical current density than the normal wire part, However, there are many cases where a part of the normal conduction transition occurs in a relatively weak magnetic field (for example, IEEE TRANSACTIONS ON APPLIED S
UPER CONDUCTIVITY, VOL.5, NO.2 P240 Fig.6). In part, if the normal conduction transition occurs, the connection resistance value also increases,
It had a drawback that its ability to hold a stable magnetic field was reduced. Due to the above reasons, it is the current situation that the joint portion is so far installed in a place where the magnetic field is as low as possible or the joint wire is not used in the coil portion of the magnet.

【0004】また最近、冷凍機付き超電導マグネット装
置が開発され、液体ヘリウムを定期的に注入しなくとも
冷却することができ、利便性のよいマグネットが普及し
つつある。これらの冷凍機には耐久性の面から優れたギ
フォード・マクマホン(G−M)型冷凍機が採用され、
熱交換機としての役割を果たす蓄冷材を必要とするのが
特徴の1つで、構造上コンパクトにするため蓄冷材がデ
ィスプレーサーと呼ばれる膨張器と共に移動する仕組み
になっている。特に温度20K以下に冷却するタイプに
は、液体ヘリウム温度付近で優れた大きな比熱を有する
希土類元素を含む磁性蓄冷材が使われている。しかし、
磁性材料であるため、超電導マグネットの発生する磁界
に対して磁力が働き、ディスプレーサーの移動に伴い摩
擦熱発生にともなう冷却能力低下や耐久性の低下など様
々な問題を抱えていた。
Further, recently, a superconducting magnet device with a refrigerator has been developed, and a convenient magnet, which can cool liquid helium without periodically injecting it, is becoming popular. Gifford McMahon (GM) type refrigerators, which have excellent durability, are used for these refrigerators.
One of the features is that it requires a regenerator material that functions as a heat exchanger. In order to make the structure compact, the regenerator material moves with an expander called a displacer. In particular, for a type that cools to a temperature of 20 K or less, a magnetic regenerator material containing a rare earth element having an excellent large specific heat near the temperature of liquid helium is used. But,
Since it is a magnetic material, magnetic force acts on the magnetic field generated by the superconducting magnet, and there are various problems such as a decrease in cooling capacity and a decrease in durability due to frictional heat generation as the displacer moves.

【0005】次に、磁気シールド技術の現状について述
べる。超電導材料で磁気シールドをおこなうには、通常
磁気シールドをもたらす超電導遮蔽電流が閉ループをも
たないと磁気シールド効果がないと考え、シールドした
い領域を穴のあいた閉ループで囲むような形状、もしく
は穴のあいた閉ループを含む形状で、磁気シールドして
いた。例えば、円筒形状などが典型的な例である。この
場合、変えるべき超電導材料の厚みは、穴のあいた閉ル
ープの径方向の厚みであり、同心状に幾重にも穴のあい
た閉ループを重ねることが必要であった。
Next, the present state of the magnetic shield technology will be described. In order to perform magnetic shielding with a superconducting material, it is considered that there is no magnetic shielding effect unless the superconducting shielding current that causes the magnetic shield has a closed loop, and the shape to surround the area to be shielded with a closed loop with a hole or a hole It had a shape that included a closed loop, which was magnetically shielded. For example, a cylindrical shape is a typical example. In this case, the thickness of the superconducting material to be changed is the radial thickness of the closed loop with holes, and it was necessary to stack the closed loops with multiple holes concentrically.

【0006】この様な観点から、継ぎ目のない筒状体の
みで、軸方向と、厚さ方向に組み合わせた磁気シールド
体(特願平07一277734号)によって、超電導線
材の接続部に適用する方法も考え出されている。しか
し、強磁界をシールドするのに十分な厚みを持たせる必
要があるのに対し、この筒状体では同心状に段々に大き
くした筒状体をいくつも用意せねばならず、そのための
拡径加工による材料破断や加工コストの面で大きな課題
を抱えていた。この様に強磁界を磁気シールドするのに
十分な特性が得られるように、自由に厚みが変えられる
簡便な方法が求められていた。
From this point of view, a magnetic shield body (Japanese Patent Application No. 07-1277734) in which only a seamless cylindrical body is combined in the axial direction and the thickness direction is applied to the connecting portion of the superconducting wire. Ways have also been devised. However, while it is necessary to have sufficient thickness to shield the strong magnetic field, it is necessary to prepare a number of concentrically-enlarged cylindrical bodies, and to increase the diameter for that purpose. There were major problems in terms of material breakage and processing costs due to processing. Thus, there has been a demand for a simple method in which the thickness can be freely changed so that sufficient characteristics for magnetically shielding a strong magnetic field can be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、強磁界を磁
気シールドするのに十分な特性が得られるように自由に
シールド体の厚みを変えることができる磁気シールド体
を、外部磁界による接合部の特性劣化から、超電導接合
部などを保護すること、もしくは磁性蓄冷材を用いた冷
凍機を外部磁界による冷凍能力低下や耐久性の低下など
から保護することを目的として、提供することにある。
SUMMARY OF THE INVENTION According to the present invention, there is provided a magnetic shield body which can freely change the thickness of the shield body so as to obtain characteristics sufficient for magnetically shielding a strong magnetic field. In order to protect the superconducting joint and the like from the deterioration of the characteristics, or to protect the refrigerator using the magnetic regenerator material from the deterioration of the refrigerating capacity and the durability due to the external magnetic field.

【0008】[0008]

【課題を解決するための手段】本発明の第1の特徴は、
シート状の超電導材料を筒状に捲積したものであり、該
筒状捲積体が、周方向に少なくとも180度以上覆う超
電導板を2枚以上を対で覆う超電導板からなるシールド
体、または周方向に少なくとも360度以上覆う超電導
板からなるシールド体で、かつ該筒状捲積体の内径を該
筒状捲積体の軸方向長さで割った値が1/50以上かつ
1以下、望ましくは0.5以下であることを特徴とする
磁気シールド体である。
The first feature of the present invention is to:
A sheet-shaped superconducting material is rolled into a tubular shape, and the tubular rolled body comprises a superconducting plate that covers two or more superconducting plates that cover at least 180 degrees or more in the circumferential direction in pairs, or A shield body made of a superconducting plate that covers at least 360 degrees or more in the circumferential direction, and a value obtained by dividing the inner diameter of the tubular rolled body by the axial length of the tubular rolled body is 1/50 or more and 1 or less, The magnetic shield is preferably 0.5 or less.

【0009】本発明でのシート状の超電導材料とは、超
電導物質単独、もしくは安定化、高強度化のために超電
導物質と複合化した材料がシート状になったものを指
す。筒状に捲積したものとは、該シート状の超電導材料
を図1のように巻いたものを指す。巻き方は、好ましく
はスパイラル状でなく、同一箇所を幾重にも重ねる様に
巻くことが望ましい。
The sheet-shaped superconducting material in the present invention refers to a sheet-shaped superconducting substance alone or a composite of the superconducting substance for stabilization and high strength. The cylindrically-wound material refers to a material obtained by winding the sheet-shaped superconducting material as shown in FIG. The winding method is preferably not spiral, and it is desirable that the same portion be wound so as to be stacked in multiple layers.

【0010】本発明での周方向の角度を少なくとも18
0度以上覆う超電導板とは、磁気シールドしたい領域の
少なくとも半分以上を覆う大きさのシート状の超電導材
料である。また周方向の角度とは該シールド体の軸を中
心に1枚の超電導板で覆われる角度を指す。
In the present invention, the circumferential angle is at least 18
The superconducting plate that covers 0 degree or more is a sheet-shaped superconducting material having a size that covers at least half or more of the region to be magnetically shielded. The circumferential angle means the angle covered by one superconducting plate around the axis of the shield body.

【0011】本発明での超電導板を2枚以上を対で覆う
超電導板からなるシールド体とは、前述の超電導板を2
枚以上用いて、2枚1対で隙間の無い様に磁気シールド
したい領域を覆ったシールド体を指す。
In the present invention, the shield body made of a superconducting plate that covers two or more superconducting plates in pairs means that the above-mentioned superconducting plates are
A shield body that covers a region to be magnetically shielded with a pair of two sheets so that there is no gap between them.

【0012】本発明での周方向の角度を少なくとも36
0度以上覆う超電導板からなるシールド体とは、磁気シ
ールドしたい領域を1枚で覆うことのできる大きさの超
電導板を巻き重ねてできた磁気シールド体を指す。この
場合、磁気シールドしたい領域を1枚で覆うことのでき
る大きさのシート状の超電導材料であれば、何枚使用し
てもよく、もちろん1枚でもよい。同じ厚みになるので
あればシート状の超電導材料は1枚の一体ものであるこ
とが最も好ましいが、幾枚も重ね巻いて使うことも可能
である。
In the present invention, the circumferential angle is at least 36.
The shield body composed of a superconducting plate that covers 0 degree or more refers to a magnetic shield body that is formed by winding superconducting plates of a size that can cover the region to be magnetically shielded with one sheet. In this case, any number of sheet-shaped superconducting materials may be used as long as the area to be magnetically shielded can be covered with one sheet, and of course, one sheet may be used. If the thickness is the same, it is most preferable that the sheet-shaped superconducting material is one piece, but it is also possible to stack and use several sheets.

【0013】本発明の磁気シールド体をより効率よく使
うには、該筒状捲積体の軸と周方向のシート端部とでな
す面が、できるだけ外部磁界の方向に垂直に近くなるよ
う周方向のシート端部の位置を調整すること、および該
筒状捲積体の軸方向にはできるだけ分割しないことが好
ましい(図2及び図3参照)。加えて図3(イ)で示す
ように各シート状の超電導材料は、外部磁場と該捲積体
の軸でなす面により該シートを2つに分けて考える場
合、各片側の周回部(S)が少なくとも90度以上の片
側周回部の角度(SA)をもち、かつ全体で180度以
上の周回部の角度(TA)になるように、外部磁場に対
して該筒状捲積体の位置を調整することが望ましい。
In order to use the magnetic shield body of the present invention more efficiently, the surface formed by the axis of the cylindrical rolled body and the sheet end portion in the circumferential direction should be as close as possible to the direction perpendicular to the external magnetic field. It is preferable to adjust the position of the sheet end portion in the direction, and to divide as much as possible in the axial direction of the tubular rolled body (see FIGS. 2 and 3). In addition, as shown in FIG. 3A, when each sheet-shaped superconducting material is considered by dividing the sheet into two by the surface formed by the external magnetic field and the axis of the roll, the circling portion (S ) Has an angle (SA) of the one-sided circling portion of at least 90 degrees or more, and a total angle (TA) of the wrapping portion of 180 degrees or more, the position of the cylindrical rolled body with respect to the external magnetic field. It is desirable to adjust.

【0014】また、該筒状捲積体の内径(D)とは、開
口端の形状が円形であれば、その開口部分の直径を指
し、楕円形であれば、短軸を指し、矩形ならば、短辺を
指す(図4参照)。このように筒の中心軸を通る線分の
内、最も短い長さを意味することとする。図4のような
極端に偏平な形状でもシールド効果はある。
The inner diameter (D) of the cylindrical rolled body refers to the diameter of the opening portion if the shape of the opening end is circular, refers to the minor axis if it is elliptical, and is rectangular if it is rectangular. For example, the short side (see Fig. 4). In this way, the shortest length of the line segment passing through the central axis of the cylinder is meant. Even an extremely flat shape as shown in FIG. 4 has a shielding effect.

【0015】本発明の第2の特徴は、シート状の超電導
材料を筒状に捲積したものに、1個もしくは複数個の継
ぎ目のない筒状超電導シールド体を同軸方向に、内側に
内装もしくは外側から覆い被せたもので、外部磁場の遮
蔽を主な目的とする場合において、該筒状捲積体の内径
を該筒状捲積体の軸方向長さで割った値が1/50以上
かつ1以下、望ましくは0.5以下であることを特徴と
する磁気シールド体である。
A second feature of the present invention is that a sheet-shaped superconducting material is rolled into a tubular shape, and one or a plurality of seamless tubular superconducting shields are coaxially provided inside or inside. When it is covered from the outside and the main purpose is to shield the external magnetic field, the value obtained by dividing the inner diameter of the tubular rolled body by the axial length of the tubular rolled body is 1/50 or more. In addition, the magnetic shield body is characterized by being 1 or less, preferably 0.5 or less.

【0016】継ぎ目のない超電導体とは、軸方向につな
ぎ目や、もしくは切れ目の全くない筒型形状の超電導体
を指す。例えば、シート状の超電導体から深絞り加工し
た筒状体や、ドーナッツ状の円盤がこれに該当する。さ
らに、シート状の超電導体からつくられたものでなくと
もよく、同種、異種の超電導材料を使った場合でも効果
は変わらない。特に、中空部のあるバルク状の超電導体
でも効果は同じである。
The seamless superconductor means a tubular superconductor having no joints or no breaks in the axial direction. For example, a tubular body deep-drawn from a sheet-shaped superconductor or a donut-shaped disc corresponds to this. Furthermore, it does not have to be made of a sheet-shaped superconductor, and the same effect can be obtained even when the same kind or different kinds of superconducting materials are used. In particular, a bulk-shaped superconductor having a hollow portion has the same effect.

【0017】1個もしくは複数個の継ぎ目のない筒状超
電導シールド体を同軸方向に、内側に内装もしくは外側
から覆い被せて、あるいは両方組み合わせたものとは、
図5のように該筒状捲積体の外側に同軸状に被せたり、
内装したり、両方でもよい。また、図6のように複数個
の超電導体を径方向に組み合わせて、外側、内側、もし
くは両方に設置してもよい。これによって、該筒状捲積
体の軸方向の磁界も磁気シールドする効果を向上するこ
とができる。
One or a plurality of seamless cylindrical superconducting shields that are coaxially, internally or internally covered, or a combination of both.
As shown in FIG. 5, the cylindrical rolled body is coaxially covered with the outside,
You can decorate or both. Further, as shown in FIG. 6, a plurality of superconductors may be combined in the radial direction and installed on the outside, inside, or both. As a result, the effect of magnetically shielding the axial magnetic field of the cylindrical rolled body can be improved.

【0018】また、該筒状捲積体の内径(D)とは、開
口端の形状が円形であれば、その開口部分の直径を指
し、楕円形であれば、短軸を指し、矩形ならば、短辺を
指す。このように筒の中心軸を通る線分の内、最も短い
長さを意味することとする。
Further, the inner diameter (D) of the cylindrical rolled body refers to the diameter of the opening portion if the shape of the opening end is circular, refers to the minor axis if it is elliptical, and is rectangular if it is rectangular. For example, the short side. In this way, the shortest length of the line segment passing through the central axis of the cylinder is meant.

【0019】本発明の第3の特徴は、超電導線材もしく
はテープ材をコイル筒状に巻いたもので、線材もしくは
テープ材の両端を短絡接続し、その接続部を該筒状コイ
ル体の内側に設置したもので、該筒状コイル体の軸方向
に対して平行な外部磁場の遮蔽を主な日的とする場合に
おいて、該筒状コイル体の内径を該筒状コイル体の軸方
向長さで割った値が1/50以上かつ1以下、望ましく
は0.5以下である磁気シールド体である。ここでの短
絡接続とは超電導体同士が互いに電気的にできるだけ低
抵抗で接続されたものを指し、従来の技術でも挙げた、
半田付け、かしめ・圧接、拡散接合、電子ビーム溶接、
スポット溶接によって接続されることを意味する。該筒
状コイル体の内側とは、例えば、図7のように配置する
ことを指し、該筒状コイル体で囲まれた内側を意味す
る。
A third feature of the present invention is that a superconducting wire or tape material is wound in a coil tube shape, and both ends of the wire material or tape material are short-circuited and the connection part is placed inside the tubular coil body. When installed, the main purpose of which is to shield the external magnetic field parallel to the axial direction of the tubular coil body, and when the main purpose is to shield the external magnetic field, the inner diameter of the tubular coil body is set to the axial length of the tubular coil body. It is a magnetic shield having a value divided by 1/50 or more and 1 or less, preferably 0.5 or less. The short-circuit connection here refers to one in which superconductors are electrically connected to each other with a resistance as low as possible, which is also mentioned in the related art.
Soldering, caulking / pressure welding, diffusion bonding, electron beam welding,
It means to be connected by spot welding. The inner side of the tubular coil body means, for example, the arrangement as shown in FIG. 7, and means the inner side surrounded by the tubular coil body.

【0020】本発明の第4の特徴は、超電導線材もしく
はテープ材をコイル筒状に巻いたもので、線材もしくは
テープ材の両端を短絡接続し、その接続部を該筒状コイ
ル体の内側に設置したものを、請求項1の磁気シールド
体の内側に内装もしくは外側から覆い被せたもので、外
部磁場の遮蔽を主な目的とすること磁気シールド体であ
る。ここでの短絡接続とは超電導体同士が互いに電気的
にできるだけ低抵抗で接続されたものを指し、従来の技
術でも挙げた、半田付け、かしめ・圧接、拡散接合、電
子ビーム溶接、スポット溶接によって接続されることを
意味する。該筒状コイル体の内側とは、例えば図7のよ
うに配置することを指し、該筒状コイル体で囲まれた内
側を意味する。
A fourth feature of the present invention is that a superconducting wire or tape material is wound in a coil tube shape, and both ends of the wire material or tape material are short-circuited and the connection part is placed inside the tubular coil body. The installed one is a magnetic shield body in which the inside of the magnetic shield body of claim 1 is covered or is covered from the outside, and its main purpose is to shield an external magnetic field. The short-circuit connection here means that the superconductors are electrically connected to each other with the lowest possible electrical resistance, and the soldering, caulking / pressure welding, diffusion bonding, electron beam welding, and spot welding mentioned in the conventional technology are used. Means connected. The inner side of the tubular coil body means, for example, the arrangement as shown in FIG. 7, and means the inner side surrounded by the tubular coil body.

【0021】本発明の第5の特徴は、請求項1の磁気シ
ールド体において、該シールド体に、1個もしくは複数
個の継ぎ目のない筒状超電導シールド体を、該超電導シ
ールド体の軸と該筒状捲積体の軸とが垂直になるよう
に、外側から覆い被せることを特徴とする磁気シールド
体である。
A fifth feature of the present invention is the magnetic shield body according to claim 1, wherein one or a plurality of seamless tubular superconducting shield bodies are provided on the shield body and the axis of the superconducting shield body. The magnetic shield body is characterized in that it is covered from the outside so that the axis of the tubular rolled body is perpendicular to the axis.

【0022】1個もしくは複数個の継ぎ目のない筒状超
電導シールド体を、該超電導シールド体の軸と該筒状捲
積体の軸とが垂直になるように、外側から覆い被せたも
のとは、図8のように該筒状捲積体の外側に被せたりす
ることを指す。また、図9のように複数個の継ぎ目のな
い超電導体を組み合わせて外側に同軸上に被せると好ま
しい。
What is covered with one or a plurality of seamless cylindrical superconducting shields from the outside so that the axis of the superconducting shield and the axis of the cylindrical rolled body are perpendicular to each other. , As shown in FIG. 8, refers to covering the outside of the cylindrical rolled body. Further, as shown in FIG. 9, it is preferable to combine a plurality of seamless superconductors and coaxially cover the outside.

【0023】本発明の第6の特徴は、請求項1、2、4
もしくは5の磁気シールド体において、該シールド体の
片側もしくは両側の開口端に、穴のあいた継ぎ目のない
超電導シールド体を設置することを特徴とする磁気シー
ルド体である。シールド体の片側もしくは両側の開口端
に、穴のあいた継ぎ目のない超電導シールド体を設置す
ることとは、図10のように該シールド体の開口端部
に、ドーナッツ状の超電導磁気シールド材料を設置する
ことである。これによって開口部の面積を狭くでき、侵
入する磁界を抑えることができる。
The sixth feature of the present invention is as follows.
Alternatively, in the magnetic shield body of 5, the magnetic shield body is characterized in that a seamless superconducting shield body having a hole is installed at one or both open ends of the shield body. Installing a seamless superconducting shield body with holes at one or both open ends of the shield body means installing a donut-shaped superconducting magnetic shield material at the open end portion of the shield body as shown in FIG. It is to be. As a result, the area of the opening can be reduced, and the magnetic field that enters can be suppressed.

【0024】本発明の第7の特徴は、請求項1、2、
4、5もしくは6の該超電導磁気シールド体において、
ヒーターによる加熱機構を設けることを特徴とする磁気
シールド体である。加熱装置とは、例えば無誘導に巻か
れた高抵抗導線や高抵抗シートなどに外部から電流を流
すことで発熱し、該超電導磁気シールド体を加熱できる
ようにした装置を意味する。
The seventh feature of the present invention is as follows.
In the superconducting magnetic shield body of 4, 5 or 6,
The magnetic shield body is characterized by being provided with a heating mechanism by a heater. The heating device means, for example, a device capable of heating the superconducting magnetic shield by heating the non-inductively wound high resistance conductor or high resistance sheet by applying an electric current from the outside.

【0025】本発明の第8の特徴は、請求項1、2、
4、5、6または7の磁気シールド体において、該シー
ト状の超電導材料が、1種類以上の超電導特性を示す材
料と常電導金属材料を交互に1層以上積層した材料を含
む磁気シールド体である。1種類以上の超電導特性を示
す材料と常電導金属材料を交互に1層以上積層した材料
とは、超電導状態の安定化、高強度化のために超電導特
性を示す材料と熱伝導率の比較的良い常電導金属材料を
少なくとも1層以上にわたって、交互に積層してできた
複合材料を指す。
The eighth feature of the present invention is to provide the first, second, and third aspects.
In the magnetic shield body of 4, 5, 6 or 7, the sheet-shaped superconducting material is a magnetic shield body including a material in which one or more kinds of materials exhibiting superconducting characteristics and a normal conductive metal material are alternately laminated in one or more layers. is there. A material having one or more kinds of superconducting properties and a material in which one or more layers of normal-conducting metal materials are alternately laminated is a material having superconducting properties and a relatively high thermal conductivity in order to stabilize the superconducting state and increase strength. It refers to a composite material made by alternately stacking a good normal-conducting metal material over at least one layer.

【0026】本発明の第9の特徴は、請求項8の磁気シ
ールド体において、超電導特性を示す材料としてNb−
Ti合金を含むもので、かつ常電導金属材料としてC
u,AlもしくはCu合金、Al合金を含む磁気シール
ド体である。
A ninth feature of the present invention is that in the magnetic shield according to claim 8, Nb- is used as a material exhibiting superconducting properties.
It contains Ti alloy and contains C as a normal conducting metal material.
A magnetic shield body containing u, Al, a Cu alloy, or an Al alloy.

【0027】本発明の第10の特徴は、請求項8の磁気
シールド体において、超電導特性を示す材料に温度77
Kで超電導特性を示す材料を含む磁気シールド体であ
る。温度77Kで超電導特性を示す材料とは、Y系酸化
物超電導体やBi系酸化物超電導体などの高温超電導体
を指す。特に、Agなどの金属に超電導体を塗布、吹き
付け、もしくは熱間、冷間圧延などして作製されたもの
は任意形状を形成できるため有効であり、特にBi系酸
化物高温超電導体などが該当する。
The tenth feature of the present invention is that, in the magnetic shield body according to claim 8, the material exhibiting superconducting properties has a temperature of 77.
It is a magnetic shield containing a material exhibiting superconducting properties at K. The material exhibiting superconducting properties at a temperature of 77K refers to a high temperature superconductor such as a Y-based oxide superconductor or a Bi-based oxide superconductor. In particular, a material prepared by applying a superconductor to a metal such as Ag, spraying it, or hot-rolling or cold-rolling it is effective because it can form an arbitrary shape. Particularly, a Bi-based oxide high-temperature superconductor is applicable. To do.

【0028】本発明の第11の特徴は、請求項請求項
1、2、4、5、6、7、8、9または10において、
超電導マグネット装置の超電導線の接合部を該磁気シー
ルド体で覆い、かつ該磁気シールド体の筒の軸方向と、
超電導マグネットから発生する磁界とのなす角度が45
度から90度になるような位置に設置する超電導マグネ
ット装置である。該磁気シールド体の筒の軸方向と、超
電導マグネットから発生する磁界とのなす角度とは、図
11の(A)を指す。この場合超電導マグネットから発
生する磁界とは、該磁気シールド体を設置しない時の磁
界を指す。また、この角度が45度から90度になるよ
うな位置とは、例えば図20のようにマグネットの外周
の設置などがあげられる。
The eleventh feature of the present invention is as set forth in claims 1, 2, 4, 5, 6, 7, 8, 9 or 10.
Covering the joint portion of the superconducting wire of the superconducting magnet device with the magnetic shield body, and the axial direction of the cylinder of the magnetic shield body;
The angle formed by the magnetic field generated from the superconducting magnet is 45
It is a superconducting magnet device installed at a position where the angle changes from 90 degrees to 90 degrees. The angle formed by the axial direction of the cylinder of the magnetic shield body and the magnetic field generated from the superconducting magnet indicates (A) in FIG. In this case, the magnetic field generated from the superconducting magnet means the magnetic field when the magnetic shield body is not installed. The position where the angle is changed from 45 degrees to 90 degrees is, for example, installation of the outer circumference of the magnet as shown in FIG.

【0029】本発明の第12の特徴は、請求項請求項
1、2、4、5、6、7、8、9または10において、
特に超電導マグネット装置の超電導永久電流スイッチを
該磁気シールド体で覆い、かつ該磁気シールド体の筒の
軸方向と、超電導マグネットから発生する磁界とのなす
角度が45度から90度になるような位置に設置するこ
とを特徴とする超電導マグネット装置である。
A twelfth aspect of the present invention is to provide the twelfth aspect of the present invention as set forth in claims 1, 2, 4, 5, 6, 7, 8, 9 or 10.
In particular, a position where the superconducting permanent current switch of the superconducting magnet device is covered with the magnetic shield body, and the angle between the axial direction of the cylinder of the magnetic shield body and the magnetic field generated by the superconducting magnet is 45 degrees to 90 degrees. It is a superconducting magnet device that is installed in.

【0030】本発明の第13の特徴は、請求項3におい
て、特に超電導マグネット装置の超電導線の接合部もし
くは超電導永久電流スイッチもしくは両方を該磁気シー
ルド体で覆い、かつ該磁気シールド体の筒の軸方向と、
超電導マグネットから発生する磁界とのなす角度が0度
から45度になるような位置に設置することを特徴とす
る超電導マグネット装置である。
A thirteenth feature of the present invention is that, in claim 3, particularly, the junction of the superconducting wire of the superconducting magnet device, the superconducting permanent current switch, or both are covered with the magnetic shield, and the cylinder of the magnetic shield is provided. Axial direction,
The superconducting magnet device is installed at a position such that an angle formed by the magnetic field generated from the superconducting magnet is 0 degree to 45 degrees.

【0031】本発明の第14の特徴は、請求項1、2、
3、4、5、6、7、8、9または10記載の磁気シー
ルド体を、特に希土類金属合金または化合物を含む蓄冷
材を用いた冷凍機付き超電導マグネット装置の該蓄冷材
を包囲するように配置し、超電導マグネット装置から発
生した磁界を遮蔽することを特徴とする超電導マグネッ
ト装置である。
The fourteenth feature of the present invention is to provide the first, second and third aspects.
The magnetic shield of 3, 4, 5, 6, 7, 8, 9 or 10 is surrounded by a regenerator material of a superconducting magnet device with a refrigerator, in particular, using a regenerator material containing a rare earth metal alloy or compound. The superconducting magnet device is arranged and shields a magnetic field generated from the superconducting magnet device.

【0032】[0032]

【発明の実施の形態】本発明は外部磁界による接合部の
特性低下から超電導線材の接合部などを保護するため、
もしくは超電導永久電流スイッチの永久電流状態時での
外部磁界による擾乱を抑制するための磁気シールド体も
しくはマグネット装置である。本発明の対象とする磁場
は、直流、交流または変動磁界を問わず、あらゆる磁界
に適用できる。もちろん、直流重畳下の変動磁界に対し
ても可能で、重畳した変動磁界のみを磁気シールドする
こともできる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention protects a joint portion of a superconducting wire or the like from deterioration of characteristics of the joint portion due to an external magnetic field.
Alternatively, it is a magnetic shield body or a magnet device for suppressing disturbance due to an external magnetic field when the superconducting persistent current switch is in a persistent current state. The magnetic field targeted by the present invention can be applied to any magnetic field regardless of direct current, alternating current, or fluctuating magnetic field. Of course, it is also possible for a fluctuating magnetic field under DC superposition, and it is also possible to magnetically shield only the superposed fluctuating magnetic field.

【0033】本発明について詳細を説明する前に、本発
明の概略を説明する。前述の通り、強磁界を磁気シール
ドする為には、超電導材料の厚さを変えることが必要で
ある反面、厚さを変えるには、超電導遮蔽ループがシー
ルドしたい領域を取り囲む必要があると考えられ、結果
的に同心上に幾重にも穴のあいた閉ループを重ねること
が必要であり、これが大きな課題を引き起こす原因であ
った。発明者らは詳細に検討した結果、磁気シールド性
能に方向性はあるものの、シールドしたい磁界にあわせ
て任意に厚みを変えることのできる磁気シールド体を提
案した。これが本発明の第1および第3番目の請求項に
相当する。また、該磁気シールド体は磁気シールド性能
に方向性がある点を考慮し、磁気シールドの補強として
提案した磁気シールド体が、第2、第4、第5および第
6番目の請求項に対応する。さらに、これら磁気シール
ド体を組み込んだ超電導マグネット装置を提案したもの
が、第11、第12および第13番目の請求項に対応す
る。加えて、上記のシールド体および装置の磁気シール
ド特性を十分発揮させるための超電導材料もしくは加熱
機構について提案したものが、第7、第8、第9および
第10番目の請求項に対応する。以上が概略である。
Before describing the present invention in detail, the outline of the present invention will be described. As mentioned above, in order to magnetically shield a strong magnetic field, it is necessary to change the thickness of the superconducting material, but in order to change the thickness, it is considered that the superconducting shield loop needs to surround the area to be shielded. As a result, it was necessary to stack closed loops with multiple holes concentrically, which was a cause of major problems. As a result of a detailed study, the inventors have proposed a magnetic shield body which has a directionality in the magnetic shield performance, but whose thickness can be arbitrarily changed according to the magnetic field to be shielded. This corresponds to the first and third claims of the present invention. Further, considering that the magnetic shield body has a directionality in the magnetic shield performance, the magnetic shield body proposed as reinforcement of the magnetic shield corresponds to the second, fourth, fifth and sixth claims. . Furthermore, what proposed the superconducting magnet apparatus which incorporated these magnetic shield bodies respond | corresponds to the 11th, 12th, and 13th claims. In addition, what has been proposed about the superconducting material or the heating mechanism for sufficiently exhibiting the magnetic shield characteristics of the above-mentioned shield body and device corresponds to the seventh, eighth, ninth and tenth claims. The above is an outline.

【0034】次に、本発明について説明する。まず、請
求項1におけるシート状の超電導材料を筒状に捲積した
筒状捲積体で周方向の角度を少なくとも180度以上覆
う超電導板を2枚以上を対で覆う、もしくは周方向の角
度を少なくとも360度以上覆う超電導板からなるシー
ルド体である理由を説明する。まず、周方向の角度を少
なくとも360度以上覆う超電導板からなるシールド体
の場合から考える。捲積体(C)との比較のため継ぎ目
のない筒状体(O)と対比させて説明する。ここでは例
として、捲積体(C)を一回巻きの円筒形状の捲積体と
し、継ぎ目のない筒状体(O)も円筒形状とする。磁気
シールド効果をもたらす要因は超電導材料を流れる遮蔽
電流であり、通常、継ぎ目(切れ目)により遮蔽電流が
分断されると、磁気シールド効果は低下する。Cおよび
Oの軸に垂直に磁界を印加した場合の流れる遮蔽電流分
布は図12に示すとおりである。この結果から分かるよ
うに、捲積体(C)と筒状体(O)での電流分布に違い
はなく、筒状体(O)に図13のPおよびQの部分で切
れていても電流分布に変化がなく、捲積体(C)と筒状
体(O)とは、この磁場配置では磁気シールド効果は同
じであることを意味する。もちろん超電導板を360度
以上、何重にも巻き重ねた捲積体である方が継ぎ目(切
れ目)の影響が少なく好ましい。
Next, the present invention will be described. First, two or more superconducting plates that cover at least 180 degrees or more in the circumferential direction with a tubular rolled body in which the sheet-shaped superconducting material according to claim 1 is rolled into a tubular shape are covered with a pair, or the circumferential angle is The reason why the shield body is made of a superconducting plate that covers at least 360 degrees or more will be described. First, consider the case of a shield body made of a superconducting plate that covers at least 360 degrees in the circumferential direction. For comparison with the rolled body (C), description will be made in comparison with the seamless cylindrical body (O). Here, as an example, the rolled body (C) is a one-turn cylindrical cylindrical body, and the seamless tubular body (O) is also cylindrical. The factor that causes the magnetic shield effect is the shield current flowing through the superconducting material, and normally, when the shield current is divided by the seam (break), the magnetic shield effect decreases. The shielding current distribution that flows when a magnetic field is applied perpendicularly to the C and O axes is as shown in FIG. As can be seen from this result, there is no difference in the current distribution between the rolled body (C) and the tubular body (O), and even if the tubular body (O) is broken at the portions P and Q in FIG. There is no change in distribution, which means that the rolled body (C) and the tubular body (O) have the same magnetic shield effect in this magnetic field arrangement. Of course, it is preferable that the superconducting plate is a laminated body in which the superconducting plate is wound 360 degrees or more in a number of layers, because the influence of joints (breaks) is small.

【0035】次に、周方向の角度を少なくとも180度
以上覆う超電導板を2枚以上を対で覆う場合を考える。
先ほど例示した図の場合、捲積体(C)の継ぎ目(切れ
目)部分を図14のように軸と継ぎ目部分とでなす面が
外部磁界に対して垂直になる配置においていた。しか
し、上記の電流分布を踏まえると、外部磁界に対して垂
直になるような配置であれば、図15の様に超電導シー
トが上下2分割になった場合も同様な電流分布を示すた
め、磁気シールド効果も同じ効果を示す。以上の理由
で、シート状の超電導材料を筒状に捲積した筒状捲積体
で周方向の角度を少なくとも180度以上覆う超電導板
を2枚以上を対で覆う、もしくは周方向の角度を少なく
とも360度以上覆う超電導板からなるシールド体は磁
気シールド効果を発揮する。
Next, let us consider a case where two or more superconducting plates that cover at least 180 degrees in the circumferential direction are covered in pairs.
In the case of the diagram illustrated above, the surface of the seam (cut) of the rolled body (C) formed by the shaft and the seam is perpendicular to the external magnetic field as shown in FIG. However, considering the above current distribution, if the arrangement is such that it is perpendicular to the external magnetic field, the same current distribution is shown even when the superconducting sheet is divided into upper and lower parts as shown in FIG. The shield effect has the same effect. For the above reasons, two or more superconducting plates that cover at least 180 degrees or more in the circumferential direction with a tubular rolled body in which a sheet-shaped superconducting material is wound in a tubular shape are covered in pairs, or The shield body made of a superconducting plate covering at least 360 degrees or more exhibits a magnetic shield effect.

【0036】次に、磁気シールドするのに好ましい条件
をまとめる。まず第1に継ぎ目(切れ目)の位置は捲積
体の軸と周方向のシート端部とでなす面ができるだけ外
部磁界の方向に垂直に近くなるようを調整するほうが好
ましい。なぜなら遮蔽電流がシート端部によって遮られ
ることが無く、効率よく磁気シールドできるからであ
る。第2に捲積体(C)の軸方向には、できるだけ分割
しない方が好ましい。なぜなら捲積体の軸方向に2分割
し、捲積体の軸に垂直な外磁界の場合、電流分布は図1
6のようになり、遮蔽電流が分断されてしまい、中心部
分での磁気シールド効果は分割しない捲積体に比べて低
下してしまうからである。以上が磁気シールドするのに
好ましい条件である。
Next, the preferable conditions for magnetic shielding will be summarized. First, it is preferable to adjust the position of the seam (break) so that the surface formed by the axis of the rolled body and the sheet end portion in the circumferential direction is as close to perpendicular to the direction of the external magnetic field as possible. This is because the shield current is not shielded by the sheet end portion, and the magnetic shield can be efficiently performed. Secondly, it is preferable that the axial direction of the rolled body (C) is not divided as much as possible. Because, in the case of an external magnetic field which is divided into two in the axial direction of the roll body and is perpendicular to the axis of the roll body, the current distribution is as shown in FIG.
This is because the shielding current is divided and the magnetic shield effect at the central portion is reduced as compared with the undivided roll body. The above are preferable conditions for magnetic shielding.

【0037】請求項1における該筒状捲積体の内径
(D)を該筒状捲積体の軸方向長さ(L)で割った値が
1/50以上かつ1以下、望ましくは0.5以下である
ことを以下に説明する。外部磁界に対する該シート状超
電導材料の超電導特性、すなわち臨界電流密度の大きさ
に鑑みて十分巻き重ねた形状であれば、軸方向に対して
垂直な外部磁場の侵入は主に該筒状捲積体の開口部から
である。この外部磁場(Bo)の侵入の程度は、円筒形
状を例に取ると以下の式(1)にて概算できる。
A value obtained by dividing the inner diameter (D) of the tubular rolled body in claim 1 by the axial length (L) of the tubular rolled body is 1/50 or more and 1 or less, preferably 0. It will be described below that the number is 5 or less. If the superconducting property of the sheet-shaped superconducting material against an external magnetic field, that is, the shape of the sheet-shaped superconducting material is sufficiently wound in consideration of the magnitude of the critical current density, the penetration of the external magnetic field perpendicular to the axial direction is mainly caused by the cylindrical winding. From the opening of the body. The degree of penetration of the external magnetic field (Bo) can be roughly calculated by the following formula (1) taking a cylindrical shape as an example.

【0038】 B/Bo=2・exp(−3.67・L/2D) (1) ここで、Bとは筒状体軸上かつ該筒状体の軸方向長さの
半分の位置の磁界の大きさを指す。中心磁界を外部磁界
の大きさに比べて1/3程度に低下させたい場合は、D
/Lの値を約1以下にすることが必要となる。またさら
に、数%程度にまで低下させたい場合はD/Lの値を約
0.5以下の形状が求められる。また、D/Lをできる
だけ小さくしたいことが式(1)から分かるが、実用上
D/Lがあまりに小さい形状は設置場所をとり好ましく
ない。超電導導線の径は0.1〜数mm程度の太さである
ことを考えて、シールド体の内径は1cm程度以上が見込
まれる。一方、実用上設置できるスペースを長させいぜ
い数十cm程度までと考えると1/50以上となる。これ
らが理由である。
B / Bo = 2 · exp (−3.67 · L / 2D) (1) Here, B is a magnetic field at a position on the axis of the tubular body and half the axial length of the tubular body. Refers to the size of. To reduce the central magnetic field to about 1/3 of the external magnetic field, D
It is necessary to set the value of / L to about 1 or less. Furthermore, when it is desired to reduce the value to about several percent, a shape having a D / L value of about 0.5 or less is required. Further, although it can be seen from the formula (1) that the D / L is desired to be as small as possible, a shape having a too small D / L is not preferable in practical use because of its installation location. Considering that the diameter of the superconducting wire is about 0.1 to several mm, the inner diameter of the shield is expected to be about 1 cm or more. On the other hand, if you consider the space that can be practically installed to be up to several tens of centimeters, it is 1/50 or more. These are the reasons.

【0039】次に、請求項2における該筒状捲積体の内
径(D)を該筒状捲積体の軸方向長さ(L)で割った値
が1/50以上かつ1以下、望ましくは0.5以下であ
ることを以下に説明する。外部磁界に対する該シート状
超電導材料の超電導特性、すなわち臨界電流密度の大き
さに鑑みて十分巻き重ねた形状であれば、軸方向に対し
て垂直な外部磁場の侵入は主に該筒状捲積体の開口部か
らである。この外部磁場(Bo)の侵入の程度は、前述
の式(1)にて概算できる。中心磁界を外部磁界の大き
さに比べて1/3程度に低下させたい場合は、D/Lの
値を約1以下にすることが必要となる。またさらに、数
%程度にまで低下させたい場合はD/Lの値を約0.5
以下の形状が求められる。また、軸方向の外部磁場の侵
入の程度は、円筒形状を例にすると以下の式(2)にて
概算できる。
Next, a value obtained by dividing the inner diameter (D) of the tubular rolled body in claim 2 by the axial length (L) of the tubular rolled body is 1/50 or more and 1 or less, preferably. Will be described below as being 0.5 or less. If the superconducting property of the sheet-shaped superconducting material against an external magnetic field, that is, the shape of the sheet-shaped superconducting material is sufficiently wound in consideration of the magnitude of the critical current density, the penetration of the external magnetic field perpendicular to the axial direction is mainly caused by the cylindrical winding. From the opening of the body. The degree of penetration of this external magnetic field (Bo) can be roughly estimated by the above-mentioned formula (1). In order to reduce the central magnetic field to about 1/3 of the magnitude of the external magnetic field, it is necessary to set the value of D / L to about 1 or less. Furthermore, if you want to reduce it to a few percent, set the D / L value to about 0.5.
The following shapes are required. Further, the degree of penetration of the external magnetic field in the axial direction can be roughly calculated by the following formula (2), taking a cylindrical shape as an example.

【0040】 B/Bo=2・exp(−7.66・L/2D) (2) やはり、先程とほぼ同様な関数であることからも分かる
ようにD/Lを1以下、望ましくは0.5以下にするこ
とで中心磁界をできるだけ低減できる。また、D/Lを
できるだけ小さくしたいことが式(2)からも分かる
が、実用上D/Lがあまりに小さい形状は設置場所をと
り好ましくない。超電導導線の径は0.1〜数mm程度の
太さであることを考えて、シールド体の内径は1cm程度
以上が見込まれる。一方、実用上設置できるスペースを
長させいぜい数十cm程度までと考えると1/50以上と
なる。これらが理由である。また1個もしくは複数個の
継ぎ目のない筒状超電導シールド体を同軸方向に、内側
に内装もしくは外側から覆い被せることで、軸方向に平
行な磁界を磁気シールドすることができる。可能ならば
軸方向に垂直な磁界を磁気シールドする能力を補強する
意味で、1個の継ぎ目のない筒状超電導シールド体で内
側に内装もしくは外側から覆い被せることが望ましい。
B / Bo = 2 · exp (−7.66 · L / 2D) (2) Again, D / L is 1 or less, preferably 0. By setting it to 5 or less, the central magnetic field can be reduced as much as possible. Further, although it can be seen from the formula (2) that the D / L should be made as small as possible, the shape where the D / L is too small is not preferable in practical use because it is installed in a small space. Considering that the diameter of the superconducting wire is about 0.1 to several mm, the inner diameter of the shield is expected to be about 1 cm or more. On the other hand, if you consider the space that can be practically installed to be up to several tens of centimeters, it is 1/50 or more. These are the reasons. Further, by covering one or a plurality of seamless tubular superconducting shields coaxially with the inside or inside, the magnetic field parallel to the axial direction can be magnetically shielded. If possible, in order to reinforce the ability to magnetically shield a magnetic field perpendicular to the axial direction, it is desirable to cover the inside or the outside with one seamless tubular superconducting shield.

【0041】請求項3における超電導線材もしくはテー
プ材をコイル筒状に巻いたもので、線材もしくはテーブ
材の両端を短絡接続し、その接続部を該筒状コイル体の
内側に設置したものについて説明する。超電導線材もし
くはテープ材を使って短絡接続し、閉ループを組むこと
で、コイル筒状体の軸方向の磁界を遮蔽しようと超電導
電流が流れ、コイル筒状体は磁気シールド効果をもつ。
しかし、短絡接続した部分はその他の部分よりも磁界に
対して弱いため、工夫しなければ磁気シールド効果が時
間と共に減衰してしまう。本発明のように短絡接続部を
該筒状コイル体の内側に設置することで、接続部の受け
る磁界を低減することができ安定した磁気シールド効果
が得られる。以上が理由である。また接続部分はできる
だけ少なく、1個であることが最も望ましい。また、接
続部分の内側に設置場所は該コイル筒状体の軸の中央付
近でかつ、該コイル筒状体の側壁に近い位置が望まし
い。
The superconducting wire or tape material according to claim 3 is wound into a coil cylinder, and both ends of the wire or the tape material are short-circuited and the connecting portion is installed inside the cylindrical coil body. To do. The superconducting current flows to shield the magnetic field in the axial direction of the coil tubular body by short-circuiting the superconducting wire or tape material to form a closed loop, and the coil tubular body has a magnetic shield effect.
However, since the short-circuited portion is weaker than other portions with respect to the magnetic field, the magnetic shield effect will be attenuated with time unless devised. By installing the short-circuit connection part inside the tubular coil body as in the present invention, the magnetic field received by the connection part can be reduced and a stable magnetic shield effect can be obtained. That is the reason. Further, it is most desirable that the number of connecting parts is as small as possible and that there is only one. Further, it is desirable that the installation location inside the connecting portion is near the center of the axis of the coil tubular body and near the side wall of the coil tubular body.

【0042】また、該筒状コイル体の内径(D)を該筒
状コイル体の軸方向長さ(L)で割った値が1/50以
上かつ1以下、望ましくは0.5以下である理由を以下
に述べる。請求項2の作用についての説明で述べたよう
に、開口部から侵入する磁界をできるだけ低減するため
D/Lの値を小さくすることが必要である。しかし、実
用上のスペースの問題からD/Lの値はせいぜい1/5
0以上であることが求められる。以上が理由である。
A value obtained by dividing the inner diameter (D) of the tubular coil body by the axial length (L) of the tubular coil body is 1/50 or more and 1 or less, preferably 0.5 or less. The reason is described below. As described in the explanation of the function of claim 2, it is necessary to reduce the value of D / L in order to reduce the magnetic field penetrating from the opening as much as possible. However, the value of D / L is at most 1/5 due to practical space problems.
It is required to be 0 or more. That is the reason.

【0043】請求項4における超電導線材もしくはテー
プ材をコイル筒状に巻いたもので、線材もしくはテープ
材の両端を短絡接続し、その接続部を該筒状コイル体の
内側に設置したものを、請求項1の磁気シールド体の内
側に内装もしくは外側から覆い被せることについて説明
する。コイル筒状体は鞠方向の磁界を遮蔽する磁気シー
ルド能力を有するが、軸に垂直な磁界に対してはほとん
どシールド効果をもたない。なぜなら閉ループを鎖交す
る磁束がほとんど得られないためである。本発明のよう
に請求項1の磁気シールド体と組み合わせることで外部
磁界の方向によらず、良好な磁気シールド効果が得られ
る。以上が理由である。コイル筒状体は複数個あっても
よく、軸上に並べたり、同軸上に組み合わせて使っても
よい。
The superconducting wire or tape according to claim 4 is wound into a coil tube, and both ends of the wire or tape are short-circuited and the connecting portion is installed inside the tubular coil. It will be described how to cover the inside of the magnetic shield according to claim 1 from the inside or the outside. The coil tubular body has a magnetic shield ability to shield the magnetic field in the direction of the ball, but has almost no shield effect on the magnetic field perpendicular to the axis. This is because almost no magnetic flux that links the closed loop is obtained. By combining with the magnetic shield of claim 1 as in the present invention, a good magnetic shield effect can be obtained regardless of the direction of the external magnetic field. That is the reason. There may be a plurality of coil tubular bodies, and they may be arranged on the axis or combined coaxially.

【0044】請求項5における、シールド体に1個もし
くは複数個の継ぎ目のない筒状超電導シールド体を、該
超電導シールド体の軸と該筒状捲積体の軸とが垂直にな
るように、内側に内装もしくは外側から覆い被せること
を以下に説明する。筒型の軸に対して垂直な磁界の場
合、図12にも示したように磁気シールド効果を生む超
電導電流は流れる。この電流の流れる領域を広げること
で、より大きな超電導電流が流れることが可能になり、
ひいては大きな磁界に対しても十分な磁気シールドが得
られる。そこで、捲積体の軸とが垂直になるように継ぎ
目のない筒状超電導シールド体の軸を調整して配置する
ことで、大きな磁界に対しても十分な磁気シールドが得
られる。以上が理由である。また形状として特に、図1
7のようなクラ型のシールド体2個を使うことも含まれ
る。
According to a fifth aspect of the present invention, one or a plurality of seamless tubular superconducting shield bodies are provided on the shield body so that the axis of the superconducting shield body and the axis of the tubular rolled body are perpendicular to each other. Described below is how to cover the inside with the interior or the outside. In the case of a magnetic field perpendicular to the cylindrical axis, the superconducting current that produces the magnetic shield effect flows as shown in FIG. By expanding the region where this current flows, it becomes possible for a larger superconducting current to flow,
As a result, a sufficient magnetic shield can be obtained even for a large magnetic field. Therefore, by adjusting and arranging the axis of the seamless cylindrical superconducting shield so that the axis of the rolled body is vertical, a sufficient magnetic shield can be obtained even for a large magnetic field. That is the reason. Moreover, as a shape, in particular, FIG.
It also includes using two Kura type shields such as 7.

【0045】請求項6における、磁気シールド体におい
て、該シールド体の片側もしくは両側の開口端に、穴の
あいた継ぎ目のない超電導シールド体を設置することを
以下に説明する。請求項1、2の説明から分かるように
十分巻き重ねた形状であれば、開口部分の大きさによっ
て外部磁場の侵入は決定される。この点を踏まえて、開
口部分の大きさを小さくすること、つまり開口端に、穴
のあいた継ぎ目のない超電導シールド体を設置すること
で、外部磁場の侵入を低減し、磁気シールド効果が高め
られる。穴のあいた継ぎ目のない超電導シールド体であ
るのは、磁気シールドに関与する超電導電流が穴の部分
を閉ループで囲むように流れることができることが望ま
しい為である。以上が理由である。
In the magnetic shield body according to claim 6, installation of a seamless superconducting shield body having a hole at one or both open ends of the shield body will be described below. As can be seen from the description of claims 1 and 2, if the shape is sufficiently wound, the penetration of the external magnetic field is determined by the size of the opening. Based on this point, by reducing the size of the opening, that is, by installing a seamless superconducting shield with holes at the opening end, it is possible to reduce the penetration of external magnetic fields and enhance the magnetic shield effect. . A seamless superconducting shield with holes is because it is desirable that the superconducting current associated with the magnetic shield be able to flow around the hole in a closed loop. That is the reason.

【0046】請求項7における、ヒーターによる加熱機
構を設けることを以下に説明する。工業的に広く使われ
ている超電導体のほとんどが第2種超電導体と呼ばれ
る、超電導体内部に磁束を持ちながらも高い磁界でも超
電導状態を保ち続ける材料で構成されている。それゆ
え、本発明のような磁気シールド応用では、少なからず
超電導体内に磁界が侵入する。このままだとあまり問題
にはならないが、シールド体が何らかの熱的、電磁気的
な擾乱によって超電導状態の破れ(クエンチ)が起こる
と、今までシールドしていた磁界が内部に取り込まれ、
再び超電導状態が復帰した際には、逆に磁界を取り込ん
だままで磁気シールドの効果が発揮できない状況が起こ
りうる。このような非常時には、ヒーターによる加熱機
構を設けておけば、外部磁界がない状態でヒーターによ
る加熱機構によりシールド体を加熱し、磁界を超電導体
の外に出し、再び冷却することで、磁気シールド効果を
回復する事ができる。このように簡便に磁気シールド効
果が回復できる点が理由である。
The provision of the heating mechanism by the heater in claim 7 will be described below. Most of the superconductors widely used industrially are composed of a material called a type 2 superconductor, which has a magnetic flux inside the superconductor but maintains a superconducting state even in a high magnetic field. Therefore, in a magnetic shield application like the present invention, a magnetic field intrudes into the superconductor to some extent. If this condition is not so much problem, if the shield body breaks (quenches) the superconducting state due to some kind of thermal or electromagnetic disturbance, the magnetic field shielded up to now is taken inside,
When the superconducting state is restored again, on the contrary, a situation may occur in which the magnetic shield effect cannot be exerted while the magnetic field is still taken in. In such an emergency, if a heating mechanism with a heater is provided, the shield body is heated by the heating mechanism with a heater in the absence of an external magnetic field, the magnetic field is output to the outside of the superconductor, and the magnetic shield is cooled again. The effect can be restored. The reason is that the magnetic shield effect can be easily recovered in this way.

【0047】請求項8における、磁気シールド体におい
て該シート状の超電導材料が、1種類以上の超電導特性
を示す材料と常電導金属材料を交互に1層以上積層した
材料を含む磁気シールド体について以下に説明する。超
電導材料は、何らかの熱的、電磁気的な擾乱によって超
電導状態の破れ(クエンチ)が起こる欠点を持つ。この
現象をできるだけ抑制するため、電磁気的、もしくは熱
的な安定をはかるためほとんどの超電導線材は常電導金
属材料と組み合わせて使用されている。本発明もクエン
チしてしまうことは、磁気シールド効果を失ってしまう
ことになるため、常電導金属材料と組み合わせて使うこ
とが望ましい。これが理由である。
The magnetic shield body according to claim 8 wherein the sheet-shaped superconducting material includes a material in which one or more kinds of materials exhibiting superconducting characteristics and a normal conducting metal material are alternately laminated in one or more layers. Explained. The superconducting material has a drawback that the superconducting state is broken (quenched) by some thermal or electromagnetic disturbance. In order to suppress this phenomenon as much as possible, most of the superconducting wire is used in combination with the normal conducting metal material in order to achieve electromagnetic or thermal stability. If the present invention is also quenched, the magnetic shield effect will be lost, so it is desirable to use it in combination with a normal conducting metal material. This is the reason.

【0048】請求項9における、超電導特性を示す材料
としてNb−Ti合金を含むもので、かつ常電導金属材
料としてCu,AlもしくはCu合金、Al合金を含む
磁気シールド体について以下に説明する。Nb−Ti合
金は、最も一般に使用される超電導材料で、高い臨界電
流密度をもつ材料に加工でき、比較的ひずみに強い特徴
を持つことから、同じ厚みであっても高い磁界まで磁気
シールド可能で、超電導シートを作成した後に巻き重ね
ても臨界電流密度をあまり下げずに加工できる利点を有
する。また、常電導金属材料としてCu,Alもしくは
Cu合金、Al合金を用いることで、比較的安価に手に
入り、丈夫で耐クエンチ性も前述の理由から向上する利
点がある。特に、CuまたはAlは高導電材料であり、
超電導材料が一部クエンチを起こしても、今まで流れて
いた電流が、そのままクエンチが起きた部分に流れて更
なる発熱を起こすことなく、CuまたはAlを迂回して
流れることができ、クエンチの部分の広がりを抑えるこ
とができる耐クエンチ効果がある。また、Cu合金、A
l合金では、特に交流や変動磁界にさらされることがあ
る応用に有効である。常電導金属材料内の渦電流による
発熱を合金にすることで抑えることができ、安定した磁
気シールド効果を保つことができる。これらが理由であ
る。
A magnetic shield body containing Nb-Ti alloy as a material exhibiting superconducting characteristics and containing Cu, Al or Cu alloy, Al alloy as a normal conducting metal material will be described below. Nb-Ti alloy is the most commonly used superconducting material. It can be processed into a material with high critical current density and has a relatively strong strain resistance. Therefore, even with the same thickness, it is possible to magnetically shield up to a high magnetic field. Also, even if the superconducting sheet is formed and then wound, it can be processed without significantly lowering the critical current density. Further, by using Cu, Al or a Cu alloy, or an Al alloy as the normal-conducting metal material, there is an advantage that it can be obtained at a comparatively low cost, is strong, and has improved quenching resistance for the above-mentioned reason. In particular, Cu or Al is a highly conductive material,
Even if a part of the superconducting material is quenched, the current that has been flowing up to now can bypass Cu or Al without causing further heat generation to the part where the quenching occurred, and can flow around the quenching It has a quenching effect that can suppress the spread of the part. Also, Cu alloy, A
The l-alloy is particularly effective for applications that may be exposed to an alternating current or a changing magnetic field. The heat generation due to the eddy current in the normal conducting metal material can be suppressed by forming an alloy, and a stable magnetic shield effect can be maintained. These are the reasons.

【0049】請求項10における、温度77Kで超電導
特性を示す材料を含む磁気シールド体について以下に説
明する。温度77Kで超電導特性を示す材料は、特に酸
化物超電導体があげられる。特に、最近ではこの酸化物
超電導体を使ったテープもしくは線材によるコイル応用
が行われており、特にBi系酸化物はこの分野で応用が
盛んである。このような温度77Kで超電導特性を示す
材料をこれらの線材の部分補強として、もしくは線材接
続部の保護として、シールド体として利用することがで
きる。この77Kとは、液体窒素の沸点温度近傍を指
す。これは酸化物超電導体を使ったテープもしくは線材
によるコイル応用には、冷媒として液体窒素を用いるこ
とが多く、また比較的安価な冷媒であることから77K
に限定した。
A magnetic shield body containing a material exhibiting superconducting characteristics at a temperature of 77K in claim 10 will be described below. A material exhibiting superconducting properties at a temperature of 77K is, in particular, an oxide superconductor. In particular, recently, a tape or a wire using the oxide superconductor has been applied to a coil, and in particular, a Bi-based oxide has been actively used in this field. A material exhibiting superconducting properties at such a temperature of 77K can be used as a shield body as a partial reinforcement of these wire rods or as a protection of wire rod connection portions. The 77K refers to the vicinity of the boiling temperature of liquid nitrogen. This is 77K because liquid nitrogen is often used as a refrigerant and is a relatively inexpensive refrigerant for coil applications using tapes or wire rods that use oxide superconductors.
Limited to.

【0050】また、従来の4.2Kで動作させる超電導
マグネットにおいても利用できる。使用温度が低温故、
温度77Kで超電導特性を示す材料の臨界電流密度は、
77Kの時と比べて飛躍的に向上し、高磁界まで磁気シ
ールド可能なシールド体にすることができる。5テスラ
以上の高磁界を発生するマグネットには従来の4.2K
で動作させる超電導材料が多く使われており、高磁界に
さらされるこのような分野には特に有効である。以上が
理由である。
It can also be used in a conventional superconducting magnet operated at 4.2K. Because the operating temperature is low,
The critical current density of a material that exhibits superconducting properties at a temperature of 77K is
Compared with the case of 77K, it can be dramatically improved and a shield body capable of magnetically shielding up to a high magnetic field can be obtained. The conventional 4.2K for a magnet that generates a high magnetic field of 5 Tesla or more
Many superconducting materials that operate in the field are used, and they are particularly effective in such fields exposed to high magnetic fields. That is the reason.

【0051】請求項11および請求項12における、超
電導マグネット装置の超電導線の接合部を該磁気シール
ド体で覆い、かつ該磁気シールド体の筒の軸方向と、超
電導マグネットから発生する磁界とのなす角度が45度
から90度になるような位置に設置することを特徴とす
る超電導マグネット装置について以下に説明する。請求
項1、2で説明したように磁気シールド体の筒の軸方向
と、超電導マグネットから発生する磁界とのなす角度が
90度となる位置に設置されることが望ましい。しか
し、マグネット装置によってはスペース上この様な望ま
しい配置にならない場合がある。この場合でも超電導マ
グネット装置の超電導線の接合部または超電導永久電流
スイッチをシールドする分野では、主に磁界強度を低減
する事ができれば、接合部の性能または永久電流スイッ
チの安定性はシールド体を組み込むことで向上する。シ
ールド体の筒の軸方向と、超電導マグネットから発生す
る磁界とのなす角度が45度以上であれば、シールド体
から見るとシールド体の軸に垂直な磁界成分が平行な磁
界成分よりも大きく、磁気シールド効果もシールド体の
軸に垂直な磁界成分に応じて向上する。
In the eleventh and twelfth aspects, the joint portion of the superconducting wire of the superconducting magnet device is covered with the magnetic shield body, and the axial direction of the cylinder of the magnetic shield body and the magnetic field generated from the superconducting magnet are formed. A superconducting magnet device, which is installed at a position where the angle is 45 degrees to 90 degrees, will be described below. As described in claims 1 and 2, it is desirable that the magnetic shield is installed at a position where the angle formed by the axial direction of the cylinder and the magnetic field generated by the superconducting magnet is 90 degrees. However, depending on the magnet device, there are cases where such a desirable arrangement is not possible due to space limitations. Even in this case, in the field of shielding the superconducting wire junction of the superconducting magnet device or the superconducting persistent current switch, if the magnetic field strength can be mainly reduced, the performance of the junction or the stability of the persistent current switch incorporates a shield body. To improve. If the angle between the axial direction of the cylinder of the shield body and the magnetic field generated by the superconducting magnet is 45 degrees or more, the magnetic field component perpendicular to the axis of the shield body is larger than the magnetic field component parallel to the shield body when viewed from the shield body, The magnetic shield effect is also improved according to the magnetic field component perpendicular to the axis of the shield body.

【0052】また、超電導線の接合部については、超電
導線に垂直な磁界がその臨界電流密度を急激に低下させ
る要因である。該超電導マグネット装置における磁気シ
ールド体の配置の場合には、この垂直な磁界が主であ
り、これを大きく減らすことができ、その臨界電流密度
を高く維持できることから特に有効である。以上が理由
である。
In addition, in the joint portion of the superconducting wire, the magnetic field perpendicular to the superconducting wire is a factor that sharply reduces the critical current density. In the case of the arrangement of the magnetic shield body in the superconducting magnet device, this perpendicular magnetic field is the main one, and it can be greatly reduced, and its critical current density can be kept high, which is particularly effective. That is the reason.

【0053】請求項13における、超電導マグネット装
置の超電導線の接合部を該磁気シールド体で覆い、かつ
該磁気シールド体の筒の軸方向と、超電導マグネットか
ら発生する磁界とのなす角度が0度から45度になるよ
うな位置に設置することを特徴とする超電導マグネット
装置について以下に説明する。請求項3で説明したよう
に、磁気シールド体の筒の軸方向と、超電導マグネット
から発生する磁界とのなす角度が平行(角度が0度)と
なる位置に設置されることが望ましい。しかし、マグネ
ット装置によってはスペース上この様な望ましい配置に
ならない場合がある。この場合でも電導マグネット装置
の超電導線の接合部もしくは超電導永久電流スイッチも
しくは両方をシールドする分野では、主に磁界強度を低
減する事ができれば接合部の性能や永久電流スイッチの
安定性はシールド体を組み込むことで向上する。シール
ド体の筒の軸方向と、超電導マグネットから発生する磁
界とのなす角度が45度以下であれば、シールド体から
見るとシールド体の軸に平行な磁界成分が垂直な磁界成
分よりも大きく、磁気シールド効果もシールド体の軸に
平行な磁界成分に応じて向上する。以上が理由である。
In the thirteenth aspect, the joint portion of the superconducting wire of the superconducting magnet device is covered with the magnetic shield body, and the angle between the axial direction of the cylinder of the magnetic shield body and the magnetic field generated from the superconducting magnet is 0 degree. A superconducting magnet device, which is characterized in that it is installed at a position such that the angle is from 45 degrees, will be described below. As described in claim 3, it is desirable that the magnetic shield body is installed at a position where the angle formed by the axial direction of the cylinder and the magnetic field generated by the superconducting magnet is parallel (the angle is 0 degree). However, depending on the magnet device, there are cases where such a desirable arrangement is not possible due to space limitations. Even in this case, in the field of shielding the junction of the superconducting wire of the electroconductive magnet device or the superconducting persistent current switch or both, if the magnetic field strength can be mainly reduced, the performance of the junction and the stability of the persistent current switch can be protected by the shield body. Improves by incorporating. If the angle formed by the axial direction of the cylinder of the shield body and the magnetic field generated from the superconducting magnet is 45 degrees or less, the magnetic field component parallel to the axis of the shield body is larger than the perpendicular magnetic field component when viewed from the shield body, The magnetic shield effect is also improved according to the magnetic field component parallel to the axis of the shield body. That is the reason.

【0054】請求項14における、超電導マグネット装
置の希土類金属合金または化合物を含む蓄冷材を用いた
冷凍機付き超電導マグネット装置の該蓄冷材を包囲し、
超電導マグネット装置から発生した磁界を遮蔽すること
について説明する。希土類金属合金または化合物を含む
蓄冷材としては、例えばEr3 Ni、ErNi0.9 Co
0.1 、Ho1.5 Er1.5 Ru等が挙げられる。また該蓄
冷材を包囲し、超電導マグネット装置から発生した磁界
を遮蔽することとは、該蓄冷材に、請求項1、2、3、
4、5、6、7、8、9または10記載の超電導磁気シ
ールド体をもって、包囲し、超電導マグネット装置から
発生した強力な磁界に対して遮蔽に必要な適切な厚みや
形状を変えることで、該蓄冷材近傍に分布する強磁界も
しくは大きな磁界勾配を低減することを指す。これによ
って、超電導マグネットの磁界による磁力を抑え、ディ
スプレーサーの往復運動から発生する摩擦熱による冷却
能力低下や磨耗や変形に伴う耐久性の低下を低減するこ
とができる。特に、冷凍機の蓄冷材が入っている部分は
外観からも凹凸のある複雑な形状をしており、この形状
に合うように遮蔽に必要な形状や厚みを変えることがで
きる点で優れている。このように冷凍機の冷凍能力およ
び耐久性を高めることで、冷凍機付き超電導マグネット
装置全体を安定に効率よく動作させることができる。こ
れが理由である。
The cool storage material of a superconducting magnet device with a refrigerator using the cool storage material containing a rare earth metal alloy or compound of the superconducting magnet device according to claim 14 is surrounded.
Shielding the magnetic field generated from the superconducting magnet device will be described. Examples of the regenerator material containing a rare earth metal alloy or compound include Er 3 Ni and ErNi 0.9 Co.
0.1 , Ho 1.5 Er 1.5 Ru and the like. Further, surrounding the cold storage material and shielding the magnetic field generated from the superconducting magnet device means that the cold storage material has the following features:
By surrounding the superconducting magnetic shield body according to 4, 5, 6, 7, 8, 9 or 10 and changing an appropriate thickness and shape necessary for shielding against a strong magnetic field generated from the superconducting magnet device, It refers to reducing a strong magnetic field or a large magnetic field gradient distributed in the vicinity of the cold storage material. As a result, the magnetic force of the magnetic field of the superconducting magnet can be suppressed, and the deterioration of the cooling capacity due to the frictional heat generated by the reciprocating motion of the displacer and the deterioration of the durability due to wear and deformation can be suppressed. In particular, the portion of the refrigerator containing the regenerator material has a complicated shape with irregularities in appearance, and is excellent in that the shape and thickness required for shielding can be changed to match this shape. . By thus increasing the refrigerating capacity and durability of the refrigerator, the entire superconducting magnet device with a refrigerator can be stably and efficiently operated. This is the reason.

【0055】[0055]

【実施例】外部磁界の発生装置としては超電導マグネッ
トを使用した。試料である超電導体としては、シート加
工したCu/Nb/Nb−Tiの多層材(Nb−Ti積
層数:30)と厚さ0.6mmのAg−Bi2Sr2Ca
Cu20xを用いた。測定はいずれも液体ヘリウム中で
おこない、励磁速度は5テスラ/15分以下の速度であ
った。いずれの場合も超電導材料が動かないよう低温用
樹脂にて固定しており、内部の磁界測定はホール素子を
用いた。
EXAMPLE A superconducting magnet was used as a device for generating an external magnetic field. As a sample superconductor, a sheet-processed multilayer material of Cu / Nb / Nb-Ti (Nb-Ti lamination number: 30) and Ag-Bi2Sr2Ca having a thickness of 0.6 mm were used.
Cu20x was used. All measurements were carried out in liquid helium, and the excitation speed was 5 Tesla / 15 minutes or less. In each case, the superconducting material was fixed with a low-temperature resin so that it would not move, and a Hall element was used to measure the internal magnetic field.

【0056】(実施例1)試料の超電導体として、厚さ
0.21mmのCu/Nb/Nb−Ti多層材を巻き重ね
て内径12.2mm、外径21mm、長さ30mmの円筒形状
にした試料(イ)を3個用意し、そのうち1個を万力に
より円筒形状が楕円筒体になるよう変形させた(ロ)。
またもう1個は、巻き重ねた部分をほどいて5分割し再
度巻き直した(ハ)。この3種類の筒体で1テスラの外
磁界における中心磁界を測定した。このときの値は
(イ)0.021テスラ、(ロ)0.019テスラ、
(ハ)0.022テスラであった。また(イ)について
は、3テスラまでの外部磁界に対しての中心磁界を測定
した。その結果を図18に示す。
(Example 1) As a sample superconductor, a Cu / Nb / Nb-Ti multilayer material having a thickness of 0.21 mm was wound and formed into a cylindrical shape having an inner diameter of 12.2 mm, an outer diameter of 21 mm and a length of 30 mm. Three samples (a) were prepared, and one of them was deformed by a vise so that the cylindrical shape became an elliptic cylinder (b).
In the other, the unwound portion was unwound, divided into five, and rewound (C). The central magnetic field in the external magnetic field of 1 Tesla was measured with these three types of cylinders. The values at this time are (a) 0.021 Tesla, (b) 0.019 Tesla,
(C) It was 0.022 Tesla. Regarding (a), the central magnetic field with respect to the external magnetic field up to 3 Tesla was measured. The result is shown in FIG.

【0057】また、厚さ0.21mmのCuNi/Nb/
Nb−Ti多層材を巻き重ねて内径12.2mm、外径2
1mm、長さ30mmの円筒形状にした試料に50Hzで8
00ガウスの交流磁界を印加した場合、円筒形状の中心
でサーチコイルを用いて測定した結果、9ガウスであっ
た。この様に外部磁界に対する磁気シールド効果がある
ことがわかる。
Also, CuNi / Nb / having a thickness of 0.21 mm
Nb-Ti multi-layer material is rolled up to have an inner diameter of 12.2 mm and an outer diameter of 2
8 mm at 50 Hz for a cylindrical sample with a length of 1 mm and a length of 30 mm
When an AC magnetic field of 00 Gauss was applied, the result of measurement using a search coil at the center of the cylindrical shape was 9 Gauss. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0058】(実施例2)試料の超電導体として、厚さ
0.13mmのCu/Nb/Nb−Ti多層材を巻き重ね
て内径2.0mm、外径3.2mm、長さ100mmの円筒形
状にした試料を用意した。この筒体の0.1テスラの外
磁界における中心磁界を測定した。このときのホール素
子の示す値は測定精度10ガウスの範囲内で零となっ
た。また、試料の超電導体として、厚さ0.21mmのC
u/Nb/Nb−Ti多層材を巻き重ねて内径15mm、
外径19.8mm、長さ30mmの円筒形状にした試料を用
意し、1テスラの外磁界における中心磁界を測定した。
このときの値は、0.36テスラであった。この様に外
部磁界に対する磁気シールド効果があることがわかる。
(Example 2) As a sample superconductor, a Cu / Nb / Nb-Ti multilayer material having a thickness of 0.13 mm was wound to form a cylindrical shape having an inner diameter of 2.0 mm, an outer diameter of 3.2 mm and a length of 100 mm. The prepared sample was prepared. The central magnetic field of this cylindrical body in an external magnetic field of 0.1 Tesla was measured. At this time, the value indicated by the Hall element was zero within the range of measurement accuracy of 10 gauss. In addition, as a superconductor of the sample, C with a thickness of 0.21 mm
u / Nb / Nb-Ti multi-layer material is rolled up and the inner diameter is 15 mm,
A cylindrical sample having an outer diameter of 19.8 mm and a length of 30 mm was prepared, and the central magnetic field in the external magnetic field of 1 Tesla was measured.
The value at this time was 0.36 Tesla. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0059】(実施例3)試料の超電導体として、厚さ
0.6mmのAg−Bi2Sr2CaCu20xを巻き重
ねて、後に熱処理した内径18mm、外径20mm、長さ2
4mmの円筒形状をもちいた。液体ヘリウム中で0.2テ
スラの外磁界における中心磁界を測定した。このときの
値は0.04テスラとなった。この様に外部磁界に対す
る磁気シールド効果があることがわかる。
(Example 3) As a superconductor of a sample, Ag-Bi2Sr2CaCu20x having a thickness of 0.6 mm was wound and heat-treated later to have an inner diameter of 18 mm, an outer diameter of 20 mm and a length of 2
I used a 4mm cylindrical shape. The central magnetic field in an external magnetic field of 0.2 Tesla was measured in liquid helium. The value at this time was 0.04 Tesla. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0060】(実施例4)試料の超電導体として、0.
21mmのCu/Nb/Nb−Ti多層材を巻き重ねて内
径15mm、外径19.7mm、長さ30mmの円筒形状にし
た試料(ニ)を用意した。また、深絞り加工により内径
20mm、厚さ0.75mm、長さ10mmの円筒形状のCu
/Nb/Nb−Ti多層材(ホ)3個と、内径20mm、
厚さ0.75mm、長さ30mmの円筒形状のCu/Nb/
Nb−Ti多層材(へ)1個、および内径12mm、厚さ
0.75mm、長さ30mmの円筒形状のCu/Nb/Nb
−Ti多層材(ト)1個を用意した。
(Example 4) As a superconductor of the sample, 0.
A cylindrical sample (d) having an inner diameter of 15 mm, an outer diameter of 19.7 mm and a length of 30 mm was prepared by winding 21 mm of Cu / Nb / Nb-Ti multilayer material. Also, by deep drawing, cylindrical Cu with an inner diameter of 20 mm, a thickness of 0.75 mm, and a length of 10 mm
/ Nb / Nb-Ti multilayer material (e) 3 pieces, inner diameter 20mm,
Cylindrical Cu / Nb / with a thickness of 0.75 mm and a length of 30 mm
One Nb-Ti multi-layer material (he) and cylindrical Cu / Nb / Nb with an inner diameter of 12 mm, a thickness of 0.75 mm and a length of 30 mm
One piece of —Ti multilayer material (g) was prepared.

【0061】同軸上に(ニ)に(ホ)、(へ)を外側に
被せたときと、同軸上に(ニ)の中に(ト)を組み合わ
せた場合、および(ニ)に(ホ)と(ト)を両方組み合
わせた場合で実験をおこなった。外部磁界は1.5テス
ラで(ニ)+(ホ)で0.018テスラ、(ニ)+
(へ)で0.021テスラ、(ニ)+(ト)で0.01
3テスラ、(ニ)+(ホ)+(ト)で0.012テスラ
であった。また、(ニ)+(ホ)での3テスラまでの中
心部の磁界を図19に示す。この様に外部磁界に対する
磁気シールド効果があることがわかる。
When (d) is coaxially covered with (e) and (e) on the outside, when (d) is combined with (d) on the same axis, and when (d) is (e) The experiment was conducted in the case where both and (g) were combined. External magnetic field is 1.5 tesla, (d) + (e) 0.018 tesla, (d) +
(To) 0.021 Tesla, (d) + (to) 0.01
3 tesla, (d) + (e) + (g) was 0.012 tesla. FIG. 19 shows the magnetic field in the central part up to 3 Tesla in (d) + (e). Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0062】(実施例5)試料の超電導体として、0.
21mmのCu/Nb/Nb−Ti多層材を巻き重ねて内
径17mm、外径17.9mm、長さ20mmの円筒形状にし
た試料を用意した。これに内径18.6mm、厚さ約12
mm、長さ10mmの円筒形状のYBa2Cu30xのバル
ク材2個を同軸上に並べて外に被せた状態で実験をおこ
なった。外部磁界は1.09テスラで超電導円筒の内側
中心で0.17テスラであった。この様に外部磁界に対
する磁気シールド効果があることがわかる。
(Example 5) As a superconductor of the sample, 0.
A cylindrical sample having an inner diameter of 17 mm, an outer diameter of 17.9 mm and a length of 20 mm was prepared by winding 21 mm of Cu / Nb / Nb-Ti multilayer material. This has an inner diameter of 18.6 mm and a thickness of about 12
An experiment was conducted in a state in which two cylindrical YBa2Cu30x bulk materials having a length of 10 mm and a length of 10 mm were coaxially arranged and covered on the outside. The external magnetic field was 1.09 tesla and 0.17 tesla at the inner center of the superconducting cylinder. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0063】(実施例6)試料の超電導体として、0.
21mmのCu/Nb/Nb−Ti多層材を巻き重ねて内
径20.2mm、外径22mm、長さ22mmの円筒形状にし
た試料(チ)を用意した。これに内径30mm、厚さ約
0.75mm、長さ22mmの円筒形状のCu/Nb/Nb
−Ti多層材1個(リ)と、内径30mm、厚さ約0.7
5mm、長さ10mmの円筒形状のCu/Nb/Nb−Ti
多層材(ヌ)2個を用意した。(チ)の軸に垂直に
(リ)を外から被せた試料と、同じく(チ)の軸に垂直
に(ヌ)2個を外から被せた試料とで実験をおこなっ
た。外部磁界は0.3テスラで(チ)のみの場合は超電
導円筒の内側中心で0.15テスラであったが、(チ)
+(リ)および(チ)+(ヌ)では共に0.04テスラ
まで低下した。この様に外部磁界に対する磁気シールド
効果があることがわかる。
(Example 6) As a superconductor of the sample, 0.
A 21 mm Cu / Nb / Nb-Ti multilayer material was rolled up to prepare a cylindrical sample (H) having an inner diameter of 20.2 mm, an outer diameter of 22 mm and a length of 22 mm. A cylindrical Cu / Nb / Nb with an inner diameter of 30 mm, a thickness of 0.75 mm, and a length of 22 mm.
-One piece of Ti multi-layer material (i), inner diameter 30mm, thickness about 0.7
Cylindrical Cu / Nb / Nb-Ti with 5mm and 10mm length
Two multi-layer materials (nu) were prepared. An experiment was conducted with a sample in which (i) was vertically covered from the outside in the axis of (h) and a sample in which two (u) were also vertically covered from outside similarly in the axis of (h). When the external magnetic field was 0.3 Tesla (H), it was 0.15 Tesla at the inner center of the superconducting cylinder.
Both + (ri) and (h) + (nu) dropped to 0.04 tesla. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0064】(実施例7)試料の超電導体として、厚さ
0.21mmのCu/Nb/Nb−Ti多層材を巻き重ね
て内径12.2mm、外径21mm、長さ30mmの円筒形状
にした試料(ル)に、厚さ0.75mm、内径8mm、外径
14mmの円板形状のCu/Nb/Nb−Ti多層材
(ヲ)2枚を用意した。外部磁界を1テスラとして超電
導円筒の中心において、(ル)単独で0.021テス
ラ、(ル)+(ヲ)1枚を片側開口端に設置した場合
は、0.016テスラ、(ル)+(ヲ)1枚を片側開口
端に設置した場合は、0.011テスラに減少した。こ
の様に外部磁界に対する磁気シールド効果があることが
わかる。
(Example 7) As a superconductor of a sample, a Cu / Nb / Nb-Ti multilayer material having a thickness of 0.21 mm was wound and formed into a cylindrical shape having an inner diameter of 12.2 mm, an outer diameter of 21 mm and a length of 30 mm. Two disk-shaped Cu / Nb / Nb-Ti multilayer materials (wo) having a thickness of 0.75 mm, an inner diameter of 8 mm and an outer diameter of 14 mm were prepared as a sample (L). At the center of the superconducting cylinder with an external magnetic field of 1 Tesla, (Lu) alone is 0.021 Tesla, and (Lu) + (Wo) one is 0.016 Tesla, (Lu) + (2) When one sheet was installed at the open end on one side, it decreased to 0.011 Tesla. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0065】(実施例8)径が約1mmのNbTi/Cu
超電導線材を、外径12mm、長さ26mmの硬質アルミニ
ウム製円筒巻き枠に巻き付け、コイル形状にした。更
に、超電導線材端部を硝酸によりCu外皮を溶かし、N
bTi極芯多芯線をとりだし、さらに表面を再度酸洗し
たのちに、超電導線材端部を互いにより合わせてCuチ
ューブにてかしめることで短絡させた。このコイル形状
体と巻き枠に低温用の樹脂で全体を固定した。この試料
は軸に平行な外部磁界500ガウスに対してコイル内側
が38ガウスにまでシールドした。この様に外部磁界に
対する磁気シールド効果があることがわかる。
(Example 8) NbTi / Cu having a diameter of about 1 mm
The superconducting wire was wound around a hard aluminum cylindrical reel having an outer diameter of 12 mm and a length of 26 mm to form a coil. Furthermore, the end of the superconducting wire is melted with nitric acid to dissolve the Cu sheath,
The bTi multifilamentary multifilamentary wire was taken out, the surface was pickled again, and the ends of the superconducting wire were twisted together and caulked with a Cu tube to make a short circuit. The coil-shaped body and the winding frame were entirely fixed with a low temperature resin. This sample was shielded up to 38 gauss inside the coil against an external magnetic field of 500 gauss parallel to the axis. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0066】(実施例9)さらに、厚さ0.21mmのC
u/Nb/Nb−Ti多層材を巻き重ねて内径11.3
mm、外径11.9mm、長さ25mmの円筒形状にした試料
について実験した。この試料は軸に垂直な外部磁界15
00ガウスに対してコイル内側が200ガウスであっ
た。この試料を先ほどのコイル形状体の内部に同軸に挿
入した。この試料では軸に垂直な外部磁界1500ガウ
スに対してコイル内側が130ガウスに低下した。この
様に外部磁界に対する磁気シールド効果があることがわ
かる。
(Embodiment 9) Further, 0.21 mm thick C
u / Nb / Nb-Ti multi-layer material is rolled up and the inner diameter is 11.3
An experiment was performed on a cylindrical sample having a diameter of 1 mm, an outer diameter of 11.9 mm, and a length of 25 mm. This sample has an external magnetic field 15 perpendicular to the axis.
The inner side of the coil was 200 gauss with respect to 00 gauss. This sample was coaxially inserted into the coil-shaped body. In this sample, the inside of the coil was reduced to 130 gauss with respect to an external magnetic field of 1500 gauss perpendicular to the axis. Thus, it can be seen that there is a magnetic shield effect on the external magnetic field.

【0067】(実施例10)実施例1で用いた厚さ0.
21mmのCu/Nb/Nb−Ti多層材を巻き重ねて内
径12.2mm、外径21mm、長さ30mmの円筒形状にし
た試料を、ほどいて板に戻し、歪みゲージを試料内部に
8枚を低温ワニスで接着した。これを再度巻き重ねて内
径12.1mm、外径23mm、長さ30mmの円筒形状にし
た試料とした。さらに試料円筒の外側に燐青銅線を無誘
導に巻き、低温ワニスで接着した。歪みゲージは並列に
つなぎ、低電流電源1と電気的に接続した。一方、燐青
銅線は低電流電源1と電気的に接続した。つまり歪みゲ
ージ、燐青銅線はそれぞれ独立のヒーターとなり、試料
を加熱する装置となった。
(Example 10) The thickness used in Example 1 was 0.
A cylindrical sample with an inner diameter of 12.2 mm, an outer diameter of 21 mm, and a length of 30 mm was formed by winding 21 mm Cu / Nb / Nb-Ti multi-layered material, unwinding it, returning it to the plate, and placing 8 strain gauges inside the sample. Bonded with low temperature varnish. This was wound again to form a cylindrical sample having an inner diameter of 12.1 mm, an outer diameter of 23 mm and a length of 30 mm. Furthermore, a phosphor bronze wire was wound around the outside of the sample cylinder without induction, and was bonded with a low temperature varnish. The strain gauges were connected in parallel and electrically connected to the low current power supply 1. On the other hand, the phosphor bronze wire was electrically connected to the low current power supply 1. In other words, the strain gauge and the phosphor bronze wire each became an independent heater, and became a device for heating the sample.

【0068】これを液体ヘリウムにて冷却し、磁界を5
テスラまで印加した。その後、減磁し零に戻した。この
とき内部に捕捉された磁界は1.7テスラであった。こ
の状態で、まず歪みゲージに電流120mAを流し、加
熱したところ捕捉磁界は600ガウス程度に下げること
ができた。同じ手順で励減磁した後、燐青銅線に電流1
20mAを流し、加熱したところ捕捉磁界は400ガウ
ス程度に下げることができた。この様に試料内に磁界が
捕捉された場合、ヒーターによって捕捉された磁界を低
減することができた。
This is cooled with liquid helium, and a magnetic field is set to 5
It was applied up to Tesla. After that, it was demagnetized and returned to zero. At this time, the magnetic field trapped inside was 1.7 Tesla. In this state, first, a current of 120 mA was applied to the strain gauge and heating was performed, and the trapping magnetic field could be reduced to about 600 gauss. After demagnetizing in the same procedure, current 1 is applied to the phosphor bronze wire.
When 20 mA was applied and heated, the trapping magnetic field could be lowered to about 400 gauss. When the magnetic field was captured in the sample in this way, the magnetic field captured by the heater could be reduced.

【0069】(実施例11)以下、本発明の第11から
14までを図にて説明する。図20は本発明の第11の
発明による超電導マグネット装置の一実施例を示す断面
図である。図20の11は本発明第1、2、4から10
までのいずれかの超電導シールド体であり、この磁気シ
ールド体11は超電導マグネット21の超電導接続部を
取り囲んでおかれている。この超電導シールド体の筒の
軸は超電導マグネット装置の発生磁界に対して垂直に近
い位置に配置されている。このため磁気シールドが効率
的に行われ、超電導接続部にかかる磁界が低減され、超
電導接続部の最大に流すことのできる電流(臨界電流)
が増加し、マグネットに流せる最大の電流値が向上する
ことで、通常運転時の磁場安定性、耐クエンチ性を高め
ることができた。
(Embodiment 11) The eleventh to fourteenth aspects of the present invention will be described below with reference to the drawings. FIG. 20 is a sectional view showing an embodiment of the superconducting magnet device according to the eleventh invention of the present invention. Reference numeral 11 in FIG. 20 indicates the first, second, fourth to tenth aspects of the present invention.
The magnetic shield body 11 is a superconducting shield body of any of the above, and the magnetic shield body 11 surrounds the superconducting connection portion of the superconducting magnet 21. The axis of the cylinder of this superconducting shield is arranged at a position nearly perpendicular to the magnetic field generated by the superconducting magnet device. For this reason, magnetic shielding is performed efficiently, the magnetic field applied to the superconducting connection is reduced, and the maximum current (critical current) that can flow in the superconducting connection.
It was possible to improve the magnetic field stability and quench resistance during normal operation by increasing the maximum current value that can be applied to the magnet.

【0070】図21は本発明の第12の発明による超電
導マグネット装置の一実施例を示す断面図である。図2
1の11は本発明第1、2、4から10までのいずれか
の超電導シールド体であり、この磁気シールド体11は
超電導マグネット21の超電導永久電流スイッチを取り
囲んでおかれている。この超電導シールド体の筒の軸は
超電導マグネット装置の発生磁界に対して垂直に近い位
置に配置されている。このため磁気シールドが効率的に
行われ、超電導永久電流スイッチにかかる磁界が低減さ
れ、超電導永久電流スイッチにかかる電磁力が低減さ
れ、かつ最大に流すことのできる電流(臨界電流)が増
加するため、マグネットに流せる最大の電流値が向上
し、通常運転時の磁場安定性、耐クエンチ性を高めるこ
とができた。
FIG. 21 is a sectional view showing an embodiment of the superconducting magnet device according to the twelfth invention of the present invention. FIG.
11 is a superconducting shield body of any one of the first, second, fourth to tenth aspects of the present invention, and this magnetic shield body 11 surrounds the superconducting permanent current switch of the superconducting magnet 21. The axis of the cylinder of this superconducting shield is arranged at a position nearly perpendicular to the magnetic field generated by the superconducting magnet device. Therefore, magnetic shielding is performed efficiently, the magnetic field applied to the superconducting persistent current switch is reduced, the electromagnetic force applied to the superconducting persistent current switch is reduced, and the maximum current (critical current) increases. The maximum current value that can be passed through the magnet was improved, and the magnetic field stability and quench resistance during normal operation could be improved.

【0071】図22は本発明の第13の発明による超電
導マグネット装置の一実施例を示す断面図である。図2
2の11は本発明第3の超電導シールド体であり、この
磁気シールド体11は超電導マグネット21の超電導接
続部および超電導永久電流スイッチを取り囲んでおかれ
ている。この超電導シールド体の筒の軸は超電導マグネ
ット装置の発生磁界に対して平行に近い位置に配置され
ている。このため磁気シールドが効率的に行われ、超電
導接続部および超電導永久電流スイッチにかかる磁界が
低減され、超電導永久電流スイッチにかかる電磁力が低
減され、かつ超電導接続部および超電導永久電流スイッ
チに最大流すことのできる電流(臨界電流)が増加する
ため、マグネットに流せる最大の電流値が向上し、通常
運転時の磁場安定性、耐クエンチ性を高めることができ
た。
FIG. 22 is a sectional view showing an embodiment of the superconducting magnet device according to the thirteenth invention of the present invention. FIG.
Reference numeral 2-11 is a superconducting shield body according to the third aspect of the present invention, and this magnetic shield body 11 surrounds the superconducting connection portion of the superconducting magnet 21 and the superconducting permanent current switch. The axis of the cylinder of this superconducting shield is arranged in a position close to parallel to the magnetic field generated by the superconducting magnet device. Therefore, the magnetic shield is efficiently performed, the magnetic field applied to the superconducting connection and the superconducting persistent current switch is reduced, the electromagnetic force applied to the superconducting persistent current switch is reduced, and the maximum current is applied to the superconducting connection and the superconducting persistent current switch. Since the current that can be applied (critical current) is increased, the maximum current value that can be passed through the magnet is improved, and the magnetic field stability and quench resistance during normal operation can be improved.

【0072】図23は本発明の第14の発明による超電
導マグネット装置の一実施例を示す断面図である。図2
3の11は本発明の第1から10までのいずれかの超電
導磁気シールド体であり、この磁気シールド体11は超
電導マグネット21を冷却する冷凍機31の希土類金属
合金または化合物を含む蓄冷材の入った部位32を取り
囲むように設置している。冷凍機の蓄冷材が入っている
部分は外観からも凹凸のある複雑な形状をしているが、
この形状に合うように遮蔽に必要な形状や厚みを変える
ことができ、効率よく超電導マグネットの磁界による磁
力を抑え、冷凍機の冷凍能力および耐久性を高めること
で、冷凍機付き超電導マグネット装置全体を安定に効率
よく動作させることができた。
FIG. 23 is a sectional view showing an embodiment of the superconducting magnet device according to the fourteenth invention of the present invention. FIG.
Reference numeral 3-11 denotes the superconducting magnetic shield body according to any one of the first to tenth aspects of the present invention. This magnetic shield body 11 contains a regenerator material containing a rare earth metal alloy or compound of the refrigerator 31 for cooling the superconducting magnet 21. It is installed so as to surround the closed portion 32. The part containing the regenerator material of the refrigerator has a complicated shape with unevenness from the outside,
The shape and thickness required for shielding can be changed to match this shape, the magnetic force of the magnetic field of the superconducting magnet can be efficiently suppressed, and the refrigerating capacity and durability of the refrigerator can be improved, thereby improving the overall superconducting magnet device with refrigerator. Could be operated stably and efficiently.

【0073】[0073]

【発明の効果】本発明により、拡径といった特別な加工
を施すことなく、強磁界を磁気シールドするのに十分な
特性が得られるようにシールド体の厚みや被シールド体
の形状にあわせて形状を変えることができ、超電導装置
と組み合わせることで、外部磁界による接合部の特性低
下から超電導線材の接合部などを保護し、通常運転時の
磁場安定性、耐クエンチ性を高める効果が得られた。ま
た、冷凍機付き超電導マグネット装置の冷凍機に使われ
る希土類金属合金または化合物を含む蓄冷材のある部分
を形状に合うように遮蔽に必要な形状や厚みを変えるこ
とで保護し、効率よく超電導マグネットの磁界による磁
力を抑え、冷凍機の冷凍能力および耐久性を高めること
で、冷凍機付き超電導マグネット装置全体を安定に効率
よく動作させる効果が得られた。
According to the present invention, the shape of the shield body and the shape of the shielded body are formed so that sufficient characteristics for magnetically shielding a strong magnetic field can be obtained without performing special processing such as expanding the diameter. By combining it with a superconducting device, it was possible to protect the joint of the superconducting wire from the deterioration of the characteristics of the joint due to an external magnetic field, and to improve the magnetic field stability and quench resistance during normal operation. . In addition, the part of the regenerator material containing rare earth metal alloys or compounds used in the refrigerator of a superconducting magnet device with a refrigerator is protected by changing the shape and thickness required for shielding to match the shape, and efficiently superconducting magnet. By suppressing the magnetic force due to the magnetic field of and improving the refrigerating capacity and durability of the refrigerator, the effect of stably and efficiently operating the entire superconducting magnet device with a refrigerator was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】シート状の超電導材料を筒状に捲積した例。FIG. 1 is an example in which a sheet-shaped superconducting material is rolled into a cylinder.

【図2】シート状の超電導材料の磁気シールド体として
の使い方で好ましくない例を示す説明図。巻き重ねよう
とする領域を半分以上を、各1枚のシート状の超電導材
料で覆っていない好ましくない例(ア)。片側外周部が
90度未満である好ましくない例(イ)。シート端部と
捲積体の軸でなす面が外部磁界に対して平行に近い角度
を持つ配置にした好ましくない例(ウ)。軸方向に分割
された好ましくない例(エ)。
FIG. 2 is an explanatory view showing an example in which a sheet-shaped superconducting material is not preferable for use as a magnetic shield. An undesired example (a) in which one or more sheets of superconducting material do not cover more than half of the region to be rolled up. An unfavorable example (a) in which the outer periphery on one side is less than 90 degrees. An unfavorable example (c) in which the surface formed by the sheet end and the axis of the rolled body has an angle nearly parallel to the external magnetic field. Unfavorable example of axial division (d).

【図3】シート状の超電導材料の磁気シールド体として
の使い方で好ましい例を示す説明図。巻き重ねようとす
る領域を半分以上を、各1枚のシート状の超電導材料で
覆っている好ましい例(ア)。片側外周部が90度以上
で角度(TA)が180度以上の好ましい例(イ)。シ
ート端部と捲積体の軸でなす面が外部磁界に対して垂直
に近い角度を持つ配置にした好ましい例(ウ)。軸方向
に分割しない好ましい例(エ)。
FIG. 3 is an explanatory diagram showing a preferred example of how to use a sheet-shaped superconducting material as a magnetic shield. A preferable example (a) in which one or more sheet-shaped superconducting materials cover each half or more of the region to be wound. A preferable example (a) in which the outer peripheral portion on one side is 90 degrees or more and the angle (TA) is 180 degrees or more. A preferred example (C) in which the surface formed by the sheet end portion and the axis of the rolled body has an angle close to perpendicular to the external magnetic field. A preferred example (d) which is not divided in the axial direction.

【図4】筒状捲積体の内径(D)の例。FIG. 4 shows an example of the inner diameter (D) of a cylindrical rolled body.

【図5】1個もしくは複数個の継ぎ目のない筒状超電導
シールド体を同軸方向に、内側に内装もしくは外側から
覆い被せて、あるいは両方組み合わせた磁気シールド体
の例。
FIG. 5 shows an example of a magnetic shield body in which one or a plurality of seamless tubular superconducting shield bodies are coaxially covered, internally or externally covered, or a combination of both.

【図6】複数個の超電導体を径方向に組み合わせて、外
側、内側、もしくは両方に設置した磁気シールド体の
例。
FIG. 6 is an example of a magnetic shield body in which a plurality of superconductors are combined in the radial direction and installed on the outside, inside, or both.

【図7】筒状コイル体の内側に短絡接続した磁気シール
ド体の例。
FIG. 7 is an example of a magnetic shield body short-circuited and connected inside a tubular coil body.

【図8】1個もしくは複数個の継ぎ目のない筒状超電導
シールド体を、該超電導シールド体の軸と該筒状捲積体
の軸とが垂直になるように、外側から覆い被せた磁気シ
ールド体の例。
FIG. 8 is a magnetic shield in which one or a plurality of seamless tubular superconducting shields are covered from the outside so that the axis of the superconducting shield and the axis of the tubular rolled body are perpendicular to each other. Body example.

【図9】継ぎ目のない超電導体を組み合わせて外側に複
数個を同軸上に被せた磁気シールド体の例。
FIG. 9 is an example of a magnetic shield body in which a plurality of seamless superconductors are combined and a plurality of them are coaxially covered on the outside.

【図10】開口端部にドーナッツ状の超電導磁気シール
ド材料を設置した磁気シールド体の例。
FIG. 10 shows an example of a magnetic shield body in which a donut-shaped superconducting magnetic shield material is installed at the opening end.

【図11】磁気シールド体の筒の軸方向と、超電導マグ
ネットから発生する磁界とのなす角度を示した簡略図。
FIG. 11 is a simplified diagram showing the angle formed by the axial direction of the cylinder of the magnetic shield body and the magnetic field generated from the superconducting magnet.

【図12】一回巻きの円筒形状の捲積体(C)と、継ぎ
目のない筒状体(O)の軸に垂直に磁界を印加した場合
の流れる電流分布。
FIG. 12 is a distribution of flowing currents when a magnetic field is applied perpendicularly to the axes of a single-winding cylindrical wound body (C) and a seamless tubular body (O).

【図13】筒状体(O)に切れ目(PおよびQ)がある
磁気シールド体の例。
FIG. 13 is an example of a magnetic shield body having cuts (P and Q) in a tubular body (O).

【図14】捲積体(C)の軸と継ぎ目部分とでなす面の
簡略説明図。
FIG. 14 is a simplified explanatory view of a surface formed by the shaft and the joint portion of the rolled body (C).

【図15】超電導シートが上下2分割になった磁気シー
ルド体。
FIG. 15 is a magnetic shield body in which a superconducting sheet is divided into upper and lower parts.

【図16】捲積体の軸方向に2分割した磁気シールド体
とその電流分布。
FIG. 16 shows a magnetic shield body divided into two in the axial direction of the roll body and its current distribution.

【図17】捲積体の外側にクラ型シールド体2個を使っ
た磁気シールド体。
FIG. 17 is a magnetic shield body using two Kura type shield bodies on the outer side of the rolled body.

【図18】本発明における実施例1の測定結果のグラ
フ。
FIG. 18 is a graph of measurement results of Example 1 of the present invention.

【図19】本発明における実施例4の測定結果のグラ
フ。
FIG. 19 is a graph of measurement results of Example 4 of the present invention.

【図20】本発明第11の発明による超電導マグネット
装置の構成を示す斜視断面図。
FIG. 20 is a perspective sectional view showing the structure of a superconducting magnet device according to an eleventh invention of the present invention.

【図21】本発明第12の発明による超電導マグネット
装置の構成を示す斜視断面図。
FIG. 21 is a perspective sectional view showing the structure of a superconducting magnet device according to a twelfth invention of the present invention.

【図22】本発明第13の発明による超電導マグネット
装置の構成を示す斜視断面図。
FIG. 22 is a perspective sectional view showing a structure of a superconducting magnet device according to a thirteenth invention of the present invention.

【図23】本発明第14の発明による超電導マグネット
装置の構成を示す斜視断面図。
FIG. 23 is a perspective sectional view showing the structure of a superconducting magnet device according to a fourteenth aspect of the present invention.

【符号の説明】[Explanation of symbols]

11 磁気シールド体 21 超電導マグネット 22 超電導マグネットの固定支持体 31 希土類金属合金または化合物を含む蓄冷材を用
いた冷凍機 32 希土類金属合金または化合物を含む蓄冷材があ
る部分 A 磁気シールド体の筒の軸方向と、超電導マグネ
ットから発生する磁 界とのなす角度 D 筒状捲積体の内径 P 筒状体の切れ目 Q 筒状体の切れ目 S 片側周回部 SA 片側周回部の角度 TA 周回部の角度
11 Magnetic Shield 21 Superconducting Magnet 22 Fixed Support for Superconducting Magnet 31 Refrigerator Using Regenerator Material Containing Rare Earth Metal Alloy or Compound 32 Portion with Regenerator Material Containing Rare Earth Metal Alloy or Compound A Magnetic Shield Body Cylinder Shaft Angle between the direction and the magnetic field generated from the superconducting magnet D Inner diameter of the tubular rolled body P Break of the tubular body Q Break of the tubular body S One side wrapping part SA One side wrapping part angle TA T wrapping part angle

フロントページの続き (72)発明者 橋本 操 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内Continuation of the front page (72) Inventor Misao Hashimoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Technology Development Division

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 シート状の超電導材料を筒状に捲積した
ものであり、該筒状捲積体が、周方向に少なくとも18
0度以上覆う超電導板を2枚以上を対で覆う超電導板か
らなるシールド体、または周方向に少なくとも360度
以上覆う超電導板からなるシールド体で、かつ該筒状捲
積体の内径を該筒状捲積体の軸方向長さで割った値が1
/50以上かつ1以下、望ましくは0.5以下であるこ
とを特徴とする磁気シールド体。
1. A sheet-shaped superconducting material is rolled up in a tubular shape, and the tubular rolled body has at least 18 in a circumferential direction.
A shield body made of a superconducting plate that covers two or more superconducting plates that cover 0 or more degrees, or a shield body that includes a superconducting plate that covers at least 360 degrees or more in the circumferential direction, and that has an inner diameter of the cylindrical rolled body. The value divided by the axial length of the roll-shaped roll is 1
/ 50 or more and 1 or less, Preferably it is 0.5 or less, The magnetic shield body characterized by the above-mentioned.
【請求項2】 シート状の超電導材料を筒状に捲積した
ものに、1個もしくは複数個の継ぎ目のない筒状超電導
シールド体を同軸方向に、内側に内装もしくは外側から
覆い被せたもので、外部磁場の遮蔽を主な目的とする場
合において、該筒状捲積体の内径を該筒状捲積体の軸方
向長さで割った値が1/50以上かつ1以下、望ましく
は0.5以下であることを特徴とする磁気シールド体。
2. A sheet-shaped superconducting material, which is rolled up into a tubular shape, and one or a plurality of seamless tubular superconducting shields which are coaxially covered inwardly or internally. When the main purpose is to shield an external magnetic field, the value obtained by dividing the inner diameter of the cylindrical rolled body by the axial length of the cylindrical rolled body is 1/50 or more and 1 or less, preferably 0. A magnetic shield body characterized by being less than or equal to 0.5.
【請求項3】 超電導線材もしくはテープ材をコイル筒
状に巻いたもので、線材もしくはテープ材の両端を短絡
接続し、その接続部を該筒状コイル体の内側に設置した
もので、該筒状コイル体の軸方向に対して平行な外部磁
場の遮蔽を主な目的とする場合において、該筒状コイル
体の内径を該筒状コイル体の軸方向長さで割った値が1
/50以上かつ1以下、望ましくは0.5以下であるこ
とを特徴とする磁気シールド体。
3. A superconducting wire or tape material wound in a coil tube shape, wherein both ends of the wire material or tape material are short-circuited and the connecting portion is installed inside the tubular coil body. When the main purpose is to shield an external magnetic field parallel to the axial direction of the cylindrical coil body, the value obtained by dividing the inner diameter of the cylindrical coil body by the axial length of the cylindrical coil body is 1
/ 50 or more and 1 or less, Preferably it is 0.5 or less, The magnetic shield body characterized by the above-mentioned.
【請求項4】 超電導線材もしくはテープ材をコイル筒
状に巻いたもので、線材もしくはテープ材の両端を短絡
接続し、その接続部を該筒状コイル体の内側に設置した
ものを、請求項1記載の磁気シールド体の内側に内装も
しくは外側から覆い被せたもので、外部磁場の遮蔽を主
な目的とすることを特徴とする磁気シールド体。
4. A method in which a superconducting wire or tape material is wound in a coil tube shape, and both ends of the wire material or tape material are short-circuited and the connecting portion is installed inside the tubular coil body. 1. A magnetic shield body, which is obtained by covering the inside of the magnetic shield body according to 1 from the inside or the outside, and is mainly intended to shield an external magnetic field.
【請求項5】 請求項1記載の磁気シールド体におい
て、該シールド体に、1個もしくは複数個の継ぎ目のな
い筒状超電導シールド体を、該超電導シールド体の軸と
該筒状捲積体の軸とが垂直になるように、外側から覆い
被せることを特徴とする磁気シールド体。
5. The magnetic shield body according to claim 1, wherein the shield body is provided with one or a plurality of seamless tubular superconducting shield bodies, and a shaft of the superconducting shield body and the tubular stack body. A magnetic shield body which is covered from the outside so that it is perpendicular to the axis.
【請求項6】 請求項1、2、4もしくは5記載の磁気
シールド体において、該シールド体の片側もしくは両側
の開口端に、穴のあいた継ぎ目のない超電導シールド体
を設置することを特徴とする磁気シールド体。
6. A magnetic shield body according to claim 1, 2, 4 or 5, wherein a seamless superconducting shield body having a hole is installed at one or both open ends of the shield body. Magnetic shield body.
【請求項7】 請求項1、2、4、5もしくは6記載の
磁気シールド体において、ヒーターによる加熱機構を設
けることを特徴とする磁気シールド体。
7. The magnetic shield body according to claim 1, further comprising a heating mechanism using a heater.
【請求項8】 請求項1、2、4、5、6もしくは7記
載の磁気シールド体において、該シート状の超電導材料
が、1種類以上の超電導特性を示す材料と常電導金属材
料を交互に1層以上積層した材料を含む磁気シールド
体。
8. The magnetic shield according to claim 1, 2, 4, 5, 6 or 7, wherein the sheet-shaped superconducting material comprises one or more kinds of materials having superconducting characteristics and a normal-conducting metal material alternately. A magnetic shield body including a material in which one or more layers are laminated.
【請求項9】 請求項8記載の磁気シールド体におい
て、超電導特性を示す材料としてNb−Ti合金を含む
もので、かつ常電導金属材料としてCu,Alもしくは
Cu合金、Al合金を含む磁気シールド体。
9. The magnetic shield body according to claim 8, wherein the material exhibiting superconducting properties contains an Nb-Ti alloy, and the normal conducting metal material contains Cu, Al or a Cu alloy, an Al alloy. .
【請求項10】 請求項8記載の磁気シールド体におい
て、特に超電導特性を示す材料に温度77Kで超電導特
性を示す材料を含む磁気シールド体。
10. The magnetic shield body according to claim 8, wherein the material exhibiting superconducting properties includes a material exhibiting superconducting properties at a temperature of 77K.
【請求項11】 請求項1、2、4、5、6、7、8、
9または10において、特に超電導マグネット装置の超
電導線の接合部を該磁気シールド体で覆い、かつ該磁気
シールド体の筒の軸方向と、超電導マグネットから発生
する磁界とのなす角度が45度から90度になるような
位置に設置することを特徴とする超電導マグネット装
置。
11. Claims 1, 2, 4, 5, 6, 7, 8,
9 or 10, in particular, the joint portion of the superconducting wire of the superconducting magnet device is covered with the magnetic shield body, and the angle between the axial direction of the cylinder of the magnetic shield body and the magnetic field generated by the superconducting magnet is 45 degrees to 90 degrees. A superconducting magnet device that is installed in a position where it reaches a certain degree.
【請求項12】 請求項1、2、4、5、6、7、8、
9または10において、特に超電導マグネット装置の超
電導永久電流スイッチを該磁気シールド体で覆い、かつ
該磁気シールド体の筒の軸方向と、超電導マグネットか
ら発生する磁界とのなす角度が45度から90度になる
ような位置に設置することを特徴とする超電導マグネッ
ト装置。
12. The method according to claim 1, 2, 4, 5, 6, 7, 8,
In 9 or 10, particularly, the superconducting permanent current switch of the superconducting magnet device is covered with the magnetic shield body, and the angle between the axial direction of the cylinder of the magnetic shield body and the magnetic field generated by the superconducting magnet is 45 degrees to 90 degrees. A superconducting magnet device, which is installed at a position such that
【請求項13】 請求項3において、特に超電導マグネ
ット装置の超電導線の接合部もしくは超電導永久電流ス
イッチもしくは両方を該磁気シールド体で覆い、かつ該
磁気シールド体の筒の軸方向と、超電導マグネットから
発生する磁界とのなす角度が0度から45度になるよう
な位置に設置することを特徴とする超電導マグネット装
置。
13. The superconducting magnet device according to claim 3, wherein a superconducting wire joint portion of the superconducting magnet device, a superconducting permanent current switch or both are covered with the magnetic shield body, and the axial direction of the cylinder of the magnetic shield body and the superconducting magnet A superconducting magnet device, which is installed at a position such that an angle formed by a generated magnetic field is 0 degree to 45 degrees.
【請求項14】 請求項1、2、3、4、5、6、7、
8、9または10に記載の磁気シールド体を、特に希土
類金属合金または化合物を含む蓄冷材を用いた冷凍機付
き超電導マグネット装置の該蓄冷材を包囲するように配
置し、超電導マグネット装置から発生した磁界を遮蔽す
ることを特徴とする超電導マグネット装置。
14. The method of claim 1, 2, 3, 4, 5, 6, 7,
The magnetic shield according to 8, 9 or 10 is arranged so as to surround the regenerator material of a superconducting magnet device with a refrigerator, which uses a regenerator material containing a rare earth metal alloy or compound, and is generated from the superconducting magnet device. A superconducting magnet device characterized by shielding a magnetic field.
JP8253472A 1996-04-05 1996-09-25 Magnetic shield body and superconducting magnet device Pending JPH09326513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8253472A JPH09326513A (en) 1996-04-05 1996-09-25 Magnetic shield body and superconducting magnet device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-83747 1996-04-05
JP8374796 1996-04-05
JP8253472A JPH09326513A (en) 1996-04-05 1996-09-25 Magnetic shield body and superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH09326513A true JPH09326513A (en) 1997-12-16

Family

ID=26424784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8253472A Pending JPH09326513A (en) 1996-04-05 1996-09-25 Magnetic shield body and superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH09326513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923714A2 (en) 2006-11-20 2008-05-21 Hitachi, Ltd. Superconductive magnet with shielded refrigerator
JP2010006687A (en) * 2008-05-26 2010-01-14 Toshiba Corp Superconductive magnet device for single crystal puller
JP2010073856A (en) * 2008-09-18 2010-04-02 Toshiba Corp Superconducting magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923714A2 (en) 2006-11-20 2008-05-21 Hitachi, Ltd. Superconductive magnet with shielded refrigerator
US7714574B2 (en) 2006-11-20 2010-05-11 Hitachi, Ltd. Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same
JP2010006687A (en) * 2008-05-26 2010-01-14 Toshiba Corp Superconductive magnet device for single crystal puller
JP2010073856A (en) * 2008-09-18 2010-04-02 Toshiba Corp Superconducting magnet

Similar Documents

Publication Publication Date Title
EP0877395B1 (en) Superconducting coil
US20120094840A1 (en) Refrigerator cooling-type superconducting magnet
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP2001244109A (en) High-temperature superconducting coil device
Miyazaki et al. Over-current test of REBCO pancake coils impregnated with electrically conductive epoxy resin under conduction-cooled conditions
Devaux et al. HTS insert magnet design study
JP2010511366A (en) Superconducting synchronous motor
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
Park et al. Performance of the fast-ramping high temperature superconducting magnet system for an active magnetic regenerator
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP2010272745A (en) Superconducting coil and superconducting magnet device
JPH09326513A (en) Magnetic shield body and superconducting magnet device
JP2004193481A (en) Superconducting magnet, and manufacturing method and magnetizing method therefor
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
Jo et al. High temperature superconducting synchronous motor
Urata et al. A 6 T refrigerator-cooled NbTi superconducting magnet with 180 mm room temperature bore
Bae et al. Design, fabrication and evaluation of a conduction cooled HTS magnet for SMES
JP7370307B2 (en) Superconducting magnet device
Browning et al. A Compact 2.0 T REBCO Magnet for Advanced Photoelectron Microscopy
US20240045009A1 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus, and method for demagnetizing superconducting magnet
JPH0590022A (en) Superconducting magnet system
Wang et al. Design of superconducting magnet for background magnetic field
Otsuka et al. HTS magnetic field damper for short-term fluctuations in the driven-mode
Choi et al. Low temperature superconducting magnet connected to a cryocooler by conductive link
Kang et al. Design, fabrication techniques and test results of 1.2 kV/80 A inductive fault current limiter by using conduction-cooled system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105