JPH09322392A - Sensing method for abnormality of capacitor device - Google Patents

Sensing method for abnormality of capacitor device

Info

Publication number
JPH09322392A
JPH09322392A JP8132259A JP13225996A JPH09322392A JP H09322392 A JPH09322392 A JP H09322392A JP 8132259 A JP8132259 A JP 8132259A JP 13225996 A JP13225996 A JP 13225996A JP H09322392 A JPH09322392 A JP H09322392A
Authority
JP
Japan
Prior art keywords
capacitor
current
blocks
abnormality
capacitor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132259A
Other languages
Japanese (ja)
Inventor
Yoshinori Kawasaki
吉則 河▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP8132259A priority Critical patent/JPH09322392A/en
Publication of JPH09322392A publication Critical patent/JPH09322392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect each of the capacitor blocks of a capacitor device from its overcurrent, by sensing individually a capacitor current flowing through each of the capacitor blocks, and by judging the capacitor device as an abnormal one when any sensed capacitor current exceeds its allowable value. SOLUTION: Inserting a DC current transformer Ta for sensing a DC current into each of capacitor blocks (S) of a capacitor device 5, its output is connected with a capacitor overcurrent sensor 6 to sense individually the capacitor current of each of the capacitor blocks S. Inputting the sensed capacitor currents of the capacitor blocks S to a judging circuit, when sensing any capacitor current exceeding its allowable value, the capacitor device 5 is judged to show abnormality to stop the capacitor device 5. In this case, the overcurrents generated by both a voltage sharing abnormality caused by the age-based capacity variations of capacitors (C) in the case of their thermal deteriorations and a shunt unbalance caused by their increased resonances are sensed to protect the capacitor device 5 from them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所定数のコンデン
サを所定の配列で接続したコンデンサブロックを複数
組、並列接続した大容量コンデンサ装置の異常検出方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality detecting method for a large-capacity capacitor device in which a plurality of capacitor blocks each having a predetermined number of capacitors connected in a predetermined array are connected in parallel.

【0002】[0002]

【従来の技術】自励式無効電力補償装置やVVVF、C
VCF等はエネルギーを直流で蓄えておくエネルギー蓄
積部として大容量コンデンサ装置を備えており、その一
例として自励式無効電力補償装置に用いたものを図2を
参照して次に示す。上記コンデンサ装置(1)は所定数
の各等容量のコンデンサ(C)…(1個のみ図示)を直
列接続したコンデンサブロック(S)…を複数組、並列
接続したもので、コンデンサ(C)…の直列接続により
必要な電圧を確保し、且つ、それを複数組、並列接続す
ることにより必要な容量を確保する。そして、コンデン
サ装置(1)の入力側を整流器(2)を介して交流電源
(Vt)に接続すると共に、出力側をインバータ装置
(3)の入力側に接続し、インバータ装置(3)の出力
側を連系インピーダンス(Z)を介して系統電源(Vs)
に接続する。
2. Description of the Related Art Self-excited reactive power compensator, VVVF, C
The VCF and the like are provided with a large-capacity capacitor device as an energy storage unit for storing energy in the form of direct current, and as an example thereof, a device used in a self-excited reactive power compensator is shown with reference to FIG. The above-mentioned capacitor device (1) is formed by connecting a plurality of sets of capacitor blocks (S) ... In which a predetermined number of capacitors (C) of equal capacity (only one is shown) are connected in series. The required voltage is ensured by the series connection of and the required capacity is ensured by connecting a plurality of sets in parallel. Then, the input side of the capacitor device (1) is connected to the AC power supply (Vt) via the rectifier (2), and the output side is connected to the input side of the inverter device (3) to output the output of the inverter device (3). Power source (Vs) via the interconnection impedance (Z) on the side
Connect to.

【0003】上記構成において、交流電源(Vt)の電圧
を整流器(2)で整流してコンデンサ装置(1)を直流
充電し、その充電電圧をインバータ装置(3)に給電し
てインバータ出力を連系インピーダンス(Z)を介して
系統側に供給する。
In the above structure, the voltage of the AC power source (Vt) is rectified by the rectifier (2) to charge the capacitor device (1) with direct current, and the charged voltage is supplied to the inverter device (3) to connect the inverter output. It is supplied to the system side via the system impedance (Z).

【0004】ここで、上記コンデンサ装置(1)の異常
有無を検出する際、まずコンデンサブロック(S)…毎
にそれぞれ直列にヒューズ(Fa)…を挿入し、且つ、コ
ンデンサ装置(1)のインバータ側に直列にヒューズ
(Fb)及び検出用直流変流器(Tb)を挿入して直流変流
器出力を過電流検出器(4)に接続する。そして、コン
デンサ装置(1)に過電流が流れると、直ちにヒューズ
(Fa)…(Fb)が溶断して遮断される。
When detecting the presence / absence of abnormality in the capacitor device (1), first, fuses (Fa) are inserted in series for each capacitor block (S), and the inverter of the capacitor device (1) is inserted. A fuse (Fb) and a detection DC current transformer (Tb) are inserted in series on the side to connect the DC current transformer output to the overcurrent detector (4). Then, when an overcurrent flows through the capacitor device (1), the fuses (Fa) ... (Fb) are blown and cut off immediately.

【0005】[0005]

【発明が解決しようとする課題】解決しようとする課題
は、コンデンサブロック(S)…に短絡等によりコンデ
ンサ定格電流の10〜100倍以上の十分に大きい過電流が
流れた場合、ヒューズ(Fa)(Fb)は容易に溶断する
が、熱的劣化時のコンデンサ容量変化による電圧分担変
動や共振拡大等により全電流は変わらなくてもコンデン
サブロック(S)…毎の分流が変化し、定格の2〜3倍
程度の過電流がコンデンサ(C)…に流れて過負荷にな
った場合、ヒューズ(Fa)…を溶断するには不十分であ
るため、半溶断して接続不良になり、それが持続又は断
続すると、最終的にヒューズ(Fa)…の爆発事故やコン
デンサ(C)…の急速な劣化等を招く点である。
The problem to be solved is that when a sufficiently large overcurrent of 10 to 100 times the rated current of the capacitor or more flows in the capacitor block (S) due to a short circuit or the like, the fuse (Fa) (Fb) is easily blown out, but the shunt current of each capacitor block (S) changes, even if the total current does not change due to fluctuations in voltage sharing due to changes in capacitor capacity during thermal degradation and resonance expansion, etc. If an overcurrent of about 3 times flows into the capacitor (C) ... and becomes overloaded, it is not enough to blow the fuse (Fa) .... If it is sustained or intermittent, it will eventually cause an explosion accident of the fuses (Fa), rapid deterioration of the capacitors (C), and the like.

【0006】即ち、上記共振拡大の場合、大容量コンデ
ンサ装置(1)…では配線上の仮想インダクタンス
(L)…を無視出来ず、しかも仮想インダクタンス
(L)…が配線毎に異なるため、それらと各コンデンサ
(C)…とがインバータ(3)から見て互いに異なる並
列共振回路を形成する。そうすると、各共振回路の隣接
する共振周波数の間で各共振曲線が交叉し、その間で各
共振回路がそれぞれ容量性及び誘導性インピーダンスと
なって互いに反対極性の共振電流が流れる。
That is, in the case of the resonance expansion described above, in the large-capacity capacitor device (1), the virtual inductance (L) on the wiring cannot be ignored, and the virtual inductance (L) differs for each wiring. The capacitors (C) and the like form parallel resonant circuits which are different from each other when viewed from the inverter (3). Then, the resonance curves intersect between the adjacent resonance frequencies of the resonance circuits, and the resonance circuits become capacitive and inductive impedances, respectively, during which resonance currents of opposite polarities flow.

【0007】例えば図3(a)に示す等価回路において
インバータ(3)から見てコンデンサ(Ca)と仮想イン
ダクタンス(La)とからなる共振回路(A)では、図3
(b)に示すように、共振周波数(fa=1/2π√(LaCa))
の共振曲線(Xa)となり、共振周波数(fa)より高周波
の領域では誘導性、低周波の領域では容量性になる。
又、インバータ(3)から見て仮想インダクタンス(L
a)(Lb)とコンデンサ(Cb)とからなる隣接の共振回
路(B)では共振周波数(fb=1/2π√{(La+Lb)Cb})の
共振曲線(Xb)となり、同様に共振周波数(fb)より高
周波の領域では誘導性、低周波の領域では容量性とな
る。そうすると、誘導性領域と容量性領域とでは互いに
反対極性の共振電流が流れるため、共振周波数(fa)
(fb)間では共振回路(A)(B)にそれぞれ互いに逆
方向の共振電流が流れる。
For example, in the equivalent circuit shown in FIG. 3A, the resonance circuit (A) consisting of the capacitor (Ca) and the virtual inductance (La) as viewed from the inverter (3) has
As shown in (b), resonance frequency (fa = 1 / 2π√ (LaCa))
The resonance curve (Xa) becomes, and the resonance frequency (fa) becomes inductive in a higher frequency region and becomes capacitive in a low frequency region.
Also, the virtual inductance (L
a) Resonance curve (Xb) of resonance frequency (fb = 1 / 2π√ {(La + Lb) Cb}) in the adjacent resonance circuit (B) consisting of (Lb) and capacitor (Cb), and similarly resonance It becomes inductive in the high frequency region above the frequency (fb) and capacitive in the low frequency region. Then, since the resonance currents of opposite polarities flow in the inductive region and the capacitive region, the resonance frequency (fa)
Between (fb), resonant currents in opposite directions flow through the resonant circuits (A) and (B).

【0008】そこで、共振回路(A)において時計方向
にループ電流(Ia)が流れるとすると、共振回路(B)
のコンデンサ(Ca)(Cb)とインダクタンス(Lb)とで
形成した閉ループ内では共振周波数(fa)(fb)間で半
時計方向にループ電流(Ib)が流れる。そのため、コン
デンサ(Ca)に図の下から上に電流(Ia)(Ib)が加算
されて流れ、隣接するコンデンサ(Cb)に図の上から下
に電流(Ib)が流れる。その結果、共振周波数(fa)
(fb)間に入る電流成分があると、コンデンサ(Ca)に
流れる分流は加算電流(Ia+Ib)となる一方、コンデン
サ(Cb)に流れる分流は電流(Ia)となって互いに電圧
分担が異なり、特にコンデンサ(Ca)を流れる分流(Ia
+Ib)は拡大する。そこで、上述したように、共振拡大
分流(Ia+Ib)は定格より数倍程度の過電流であっても
溶断には不十分であるため、ヒューズ(Fa)…が半溶断
し、それが持続又は断続すると、最終的にヒューズ(F
a)…の爆発事故やコンデンサ(C)…の急速な劣化或
いは短絡事故等を招く。
Therefore, assuming that the loop current (Ia) flows in the clockwise direction in the resonance circuit (A), the resonance circuit (B).
In the closed loop formed by the capacitors (Ca) (Cb) and the inductance (Lb), the loop current (Ib) flows counterclockwise between the resonance frequencies (fa) (fb). Therefore, the currents (Ia) and (Ib) are added to the capacitor (Ca) from the bottom to the top and flow, and the current (Ib) flows from the top to the bottom in the adjacent capacitor (Cb). As a result, the resonance frequency (fa)
If there is a current component that enters between (fb), the shunt current that flows in the capacitor (Ca) becomes the added current (Ia + Ib), while the shunt current that flows in the capacitor (Cb) becomes the current (Ia) and the voltage is shared by them. Different, especially the shunt (Ia
+ Ib) expands. Therefore, as mentioned above, the resonance expansion shunt (Ia + Ib) is not enough to blow even if the overcurrent is several times higher than the rated value, so the fuse (Fa) ... Or if it is interrupted, the fuse (F
a) Explosion accident, rapid deterioration of capacitor (C) ... or short circuit accident.

【0009】[0009]

【課題を解決するための手段】本発明は、所定数のコン
デンサを所定の配列で接続したコンデンサブロックを複
数組、並列接続した大容量コンデンサ装置の異常有無を
検出するにあたり、上記コンデンサブロックに流れるコ
ンデンサ電流を各ブロック毎に個別に検出し、検出した
コンデンサ電流が許容レベルを超えた時、装置異常と判
定することを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a plurality of sets of capacitor blocks each having a predetermined number of capacitors connected in a predetermined array are connected to a large-capacity capacitor device connected in parallel. The capacitor current is individually detected for each block, and when the detected capacitor current exceeds an allowable level, it is determined that the device is abnormal.

【0010】[0010]

【発明の実施の形態】本発明に係るコンデンサ装置の異
常検出方法の実施の形態を図1を参照して以下に説明す
る。図2に示す部分と同一部分には同一参照符号を付し
てその説明を省略する。相違する点は、本発明に係るコ
ンデンサ装置(5)においてコンデンサブロック(S)
…毎に検出用直流変流器(Ta)…を挿入してその出力を
コンデンサ過電流検出器(6)に接続したことで、それ
により各コンデンサブロック(S)…毎に個別にコンデ
ンサ電流(I)…を検出して定格以上の過電流を検出す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for detecting abnormality in a capacitor device according to the present invention will be described below with reference to FIG. The same parts as those shown in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. The difference lies in the capacitor block (S) in the capacitor device (5) according to the present invention.
By inserting a detection DC current transformer (Ta) for each ... and connecting its output to the capacitor overcurrent detector (6), the capacitor current (Ta) is individually supplied to each capacitor block (S). I) ... is detected to detect overcurrent exceeding the rated value.

【0011】上記構成においてコンデンサブロック
(S)…毎に個別にコンデンサ電流(I)を検出して判
定回路(図示せず)に入力し、許容レベルを超えるコン
デンサ過電流を検出した時、装置に異常が発生したと判
定して装置を停止する。この場合、本発明はコンデンサ
(C)…の経時的な熱的劣化時の容量変化による電圧分
担異常や共振拡大による分流アンバランスによって発生
する過電流を検出して保護するもので、過渡的に発生す
る過電流及びそれによって発生する異常を検出する必要
はない。そのため、コンデンサ電流(I)を瞬時、検出
する必要はなく、過電流検出器(6)で検出したコンデ
ンサ電流(I)から所定時間の平均値や実効値(検出時
定数は数10〜100msec程度)を算出して判定回路に入力
し、それが許容レベルを超えた時、過電流が継続的に発
生して装置に異常が発生したと判定することが好まし
い。
In the above structure, the capacitor current (I) is individually detected for each capacitor block (S) and is input to the determination circuit (not shown). When a capacitor overcurrent exceeding the allowable level is detected, the device is instructed. When it is judged that an abnormality has occurred, the device is stopped. In this case, the present invention detects and protects an overcurrent generated due to an abnormal voltage sharing due to a change in capacitance when the capacitors (C) are thermally deteriorated over time or a shunt imbalance due to resonance expansion. It is not necessary to detect the generated overcurrent and the abnormality caused thereby. Therefore, it is not necessary to instantly detect the capacitor current (I), and the average value or the effective value of the capacitor current (I) detected by the overcurrent detector (6) for a predetermined time (the detection time constant is about several tens to 100 msec). ) Is calculated and input to a determination circuit, and when it exceeds an allowable level, it is preferable to determine that an overcurrent is continuously generated and an abnormality has occurred in the device.

【0012】[0012]

【発明の効果】本発明によれば、所定数のコンデンサを
所定の配列で接続したコンデンサブロックを複数組、並
列接続した大容量コンデンサ装置の異常有無を検出する
にあたり、コンデンサブロックに流れるコンデンサ電流
を各ブロック毎に個別に検出し、検出したコンデンサ電
流が許容レベルを超えた時、装置異常と判定するように
したから、コンデンサブロック毎に過電流から保護する
ことが出来、共振拡大過電流発生時にも確実に過電流保
護が可能となって装置の品質、安全性の向上を実現出来
る。
According to the present invention, when detecting the presence or absence of abnormality in a large-capacity capacitor device in which a plurality of capacitor blocks each having a predetermined number of capacitors connected in a predetermined array are connected in parallel, the capacitor current flowing through the capacitor blocks is detected. Each block is individually detected, and when the detected capacitor current exceeds the allowable level, it is judged as a device abnormality, so it is possible to protect from overcurrent for each capacitor block, and when resonance overcurrent occurs. With this, overcurrent protection can be reliably achieved, and the quality and safety of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコンデンサ装置の異常検出方法の
実施の形態を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a method for detecting abnormality in a capacitor device according to the present invention.

【図2】従来のコンデンサ装置の異常検出方法の一具体
例を示す回路図である。
FIG. 2 is a circuit diagram showing a specific example of a conventional method for detecting an abnormality in a capacitor device.

【図3】(a)は図2のコンデンサ装置の等価回路図で
ある。(b)は図3(a)の等価回路の共振曲線図であ
る。
FIG. 3 (a) is an equivalent circuit diagram of the capacitor device of FIG. FIG. 3B is a resonance curve diagram of the equivalent circuit of FIG.

【符号の説明】[Explanation of symbols]

5 コンデンサ装置 6 コンデンサ過電流検出器 C コンデンサ S コンデンサブロック Ta 検出用変流器 5 Capacitor device 6 Capacitor overcurrent detector C Capacitor S Capacitor block Ta Current transformer for detection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定数のコンデンサを所定の配列で接続
したコンデンサブロックを複数組、並列接続した大容量
コンデンサ装置の異常有無を検出するにあたり、上記コ
ンデンサブロックに流れるコンデンサ電流を各ブロック
毎に個別に検出し、検出したコンデンサ電流が許容レベ
ルを超えた時、装置異常と判定することを特徴とするコ
ンデンサ装置の異常検出方法。
1. When detecting whether or not there is an abnormality in a large-capacity capacitor device in which a plurality of capacitor blocks each having a predetermined number of capacitors connected in a predetermined array are connected in parallel, the capacitor currents flowing through the capacitor blocks are individually supplied to each block. A method for detecting an abnormality in a capacitor device, which is characterized in that when the detected capacitor current exceeds an allowable level, it is determined that the device is abnormal.
JP8132259A 1996-05-27 1996-05-27 Sensing method for abnormality of capacitor device Pending JPH09322392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132259A JPH09322392A (en) 1996-05-27 1996-05-27 Sensing method for abnormality of capacitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132259A JPH09322392A (en) 1996-05-27 1996-05-27 Sensing method for abnormality of capacitor device

Publications (1)

Publication Number Publication Date
JPH09322392A true JPH09322392A (en) 1997-12-12

Family

ID=15077101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132259A Pending JPH09322392A (en) 1996-05-27 1996-05-27 Sensing method for abnormality of capacitor device

Country Status (1)

Country Link
JP (1) JPH09322392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019680A (en) * 2011-01-27 2012-01-26 Soung Chun Jho Ipl apparatus with explosion prevention function of electrolytic capacitor
JP2016011953A (en) * 2014-06-04 2016-01-21 株式会社Top Power semiconductor test apparatus
JP2018054390A (en) * 2016-09-28 2018-04-05 株式会社ケーヒン Voltage detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019680A (en) * 2011-01-27 2012-01-26 Soung Chun Jho Ipl apparatus with explosion prevention function of electrolytic capacitor
JP2016011953A (en) * 2014-06-04 2016-01-21 株式会社Top Power semiconductor test apparatus
JP2018054390A (en) * 2016-09-28 2018-04-05 株式会社ケーヒン Voltage detecting device
US10845420B2 (en) 2016-09-28 2020-11-24 Keihin Corporation Voltage detecting apparatus

Similar Documents

Publication Publication Date Title
US6420852B1 (en) Battery pack
US20220014012A1 (en) Adjustable speed drive with integrated solid-state circuit breaker and method of operation thereof
TWI627812B (en) Device, system, and method of voltage compensated active cell balancing
JP4484858B2 (en) Storage battery management device and vehicle control device including the same
EP0309124B1 (en) Uninterruptible power supply
JP3724523B2 (en) Inrush current prevention resistor protection method
JP2566556B2 (en) DC capacitor abnormality detector
US9553441B2 (en) Method and apparatus for protecting an intermediate circuit capacitor in a power converter
WO2006064786A1 (en) Power supply device
CN105099280A (en) Motor drive
US20060013025A1 (en) Temperature monitoring of parallel-connected inverter modules
JPH09322392A (en) Sensing method for abnormality of capacitor device
JPS62173913A (en) Source apparatus of circuit breaker
EP1537647B1 (en) Temperature monitoring of parallel-connected inverter modules
JP4389758B2 (en) Cell voltage variation abnormality detection device
JP2001352666A (en) Protective device for secondary battery and set battery
JPH08140257A (en) Protective device for dc capacitor
JPH01222635A (en) Uninterruptible power supply equipment
JP2684290B2 (en) Power supply
JPH04168983A (en) Commutation failure detecting circuit
JPH1023658A (en) Fault-detecting device for three-phase capacitor
JP2001013175A (en) Service interruption detecting method and uninterruptible power source device using it
JPH01243819A (en) Abnormal state detector for variable speed induction machine
KR100218944B1 (en) Power conduct devices and method for inverter circuit
MacDougall et al. High voltage capacitors designed to avoid catastrophic failure modes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041228