JPH09321009A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH09321009A
JPH09321009A JP13502996A JP13502996A JPH09321009A JP H09321009 A JPH09321009 A JP H09321009A JP 13502996 A JP13502996 A JP 13502996A JP 13502996 A JP13502996 A JP 13502996A JP H09321009 A JPH09321009 A JP H09321009A
Authority
JP
Japan
Prior art keywords
treatment
wafer
pure water
less
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13502996A
Other languages
Japanese (ja)
Inventor
Tomomi Imamura
友美 今村
Ichiro Katakabe
一郎 片伯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13502996A priority Critical patent/JPH09321009A/en
Publication of JPH09321009A publication Critical patent/JPH09321009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a cleaning time and to achieve a high cleaning performance of a substrate by repeating a step in which a wafer is cleaned orderly using more specific kinds of processing liquid specific times or move. SOLUTION: Ozone water which is an oxidation agent is used for a first processing liquid, pure water is used for a second processing liquid and dilute hydrofluoric acid which is an oxide film etching agent is used for a third processing liquid. For example a silicon wafer is firstly processed for 20 seconds by the ozone water and an oxide film is formed on the wafer surface. Next the wafer is rinsed by pure water. Next the wafer is processed by dilute hydrofluoric acid for 2 seconds and the oxide film is eliminated. After that the wafer is again rinsed by pure water. These sequences are repeated for example 3 times and wafer drying is lastly performed. The number of sequences may be more than 2 and the total of the processing times may be about the same as the processing times in one sequence. By this means the cleaning quality can be elevated and cleaning time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に基板の洗浄方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a substrate cleaning method.

【0002】[0002]

【従来の技術】従来、半導体基板や絶縁基板を洗浄する
洗浄方法として、RCA法が広く用いられている。RC
A洗浄は、80℃、10分間のAPM(アンモニア・過
酸化水素水)による洗浄、純水によるリンス、HFによ
る洗浄、純水によるリンス、80℃、10分間のHPM
(HCl・過酸化水素水)による洗浄、純水リンス、乾
燥の順に行われる。RCA洗浄では、例えばAPM洗浄
のような酸化膜を形成する過程がいくつか存在し、その
際にシリコンに形成される酸化膜に金属不純物が取り込
まれる。その酸化膜を希弗酸で除去することで、金属不
純物が除去される。
2. Description of the Related Art Conventionally, the RCA method has been widely used as a cleaning method for cleaning a semiconductor substrate or an insulating substrate. RC
A cleaning is performed at 80 ° C. for 10 minutes with APM (ammonia / hydrogen peroxide solution), pure water rinse, HF cleaning, pure water rinse, 80 ° C. for 10 minutes HPM
Cleaning with (HCl / hydrogen peroxide water), rinsing with pure water, and drying are performed in this order. In the RCA cleaning, there are several processes of forming an oxide film, such as APM cleaning, and metal impurities are incorporated into the oxide film formed in silicon at that time. By removing the oxide film with diluted hydrofluoric acid, metal impurities are removed.

【0003】[0003]

【発明が解決しようとする課題】従来のRCA法におい
ては、Cuのような水素より酸化還元電位が高い金属
は、希弗酸処理ではほとんど除去することができなかっ
た。また、処理液としてオゾン水を用い、基板を酸化さ
せ、希弗酸で酸化膜を除去する洗浄方法もあるが、この
方法でも金属不純物の除去には限界があった。本発明
は、上記課題に鑑みなされたものであり、洗浄時間の短
縮を図りつつ基板の高洗浄化を達成することを目的とす
る。
In the conventional RCA method, a metal such as Cu having a higher redox potential than hydrogen could hardly be removed by dilute hydrofluoric acid treatment. There is also a cleaning method in which ozone water is used as a processing liquid, the substrate is oxidized, and the oxide film is removed with dilute hydrofluoric acid, but this method also has a limit in removing metal impurities. The present invention has been made in view of the above problems, and an object of the present invention is to achieve high cleaning of a substrate while shortening the cleaning time.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するため、2種以上の処理液を順次用いてウェハを洗
浄する工程を2回以上繰り返す。
In order to solve the above-mentioned problems, the present invention repeats the step of cleaning a wafer two or more times by sequentially using two or more kinds of processing solutions.

【0005】[0005]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。図1は、本発明の実施例を示
す。第1の処理液として酸化剤であるオゾン水を用い、
第2の処理液として純水を用い、第3の処理液として酸
化膜エッチング剤である希弗酸を用いる。まず、例えば
シリコンウェハをオゾン水で20秒間処理し、ウェハ表
面上に酸化膜を形成する。次に、純水でウェハをリンス
する。続いて、ウェハを希弗酸で2秒間処理し、表面の
酸化膜を除去する。その後、再び純水でウェハをリンス
する。このシーケンスを例えば3回繰り返し、最後にウ
ェハの乾燥を行う。これらの処理時間は、酸化膜の膜厚
が5nmであるとの仮定で定めた値であって、それ以下
の値例えば3nmであるならばこれよりも小さい値でよ
い。また、図1ではこのシーケンスを3回繰り返してい
るが、処理シーケンスを構成する各処理の処理時間を従
来よりも短くし、そのシーケンスを2回以上繰り返し、
各処理ごとの処理時間の総和が1回のシーケンスで処理
する場合の各処理の処理時間と同程度の時間になるので
あればよい。例えば、オゾン水処理を30秒間、希弗酸
処理を3秒間とした上で図1に示したシーケンスを2回
繰り返してもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. Ozone water, which is an oxidizer, is used as the first treatment liquid,
Pure water is used as the second processing liquid, and diluted hydrofluoric acid that is an oxide film etching agent is used as the third processing liquid. First, for example, a silicon wafer is treated with ozone water for 20 seconds to form an oxide film on the wafer surface. Next, the wafer is rinsed with pure water. Subsequently, the wafer is treated with dilute hydrofluoric acid for 2 seconds to remove the oxide film on the surface. After that, the wafer is rinsed again with pure water. This sequence is repeated, for example, three times, and finally the wafer is dried. These processing times are values determined on the assumption that the film thickness of the oxide film is 5 nm, and may be smaller than this value, for example, 3 nm or less. In addition, although this sequence is repeated three times in FIG. 1, the processing time of each process constituting the processing sequence is made shorter than before, and the sequence is repeated twice or more.
It suffices that the total processing time for each processing be approximately the same as the processing time for each processing when processing is performed in one sequence. For example, the ozone water treatment may be performed for 30 seconds and the diluted hydrofluoric acid treatment may be performed for 3 seconds, and then the sequence shown in FIG. 1 may be repeated twice.

【0006】本実施例の効果を確かめるための実験を行
い、その結果を以下に示す。実験には、強制的に金属及
びパーティクルで汚染されたウェハを用いた。それらの
ウェハの金属不純物のイニシャル値は、Na,Fe,N
i,Al,Cu,Cr,Znがそれぞれ1E13ato
ms/cm2 オーダーであり、パーティクルの初期値
は、約5000個/6インチウェハである。実験には、
枚葉式洗浄装置を用い、ウェハを支持装置に支持して回
転させ、ノズルから薬液をウェハ上に供給することで各
種の処理を行った。いずれの処理も大気中で行った。オ
ゾン水処理60秒→純水リンス→HF処理6秒→純水リ
ンス→乾燥の順序で行う従来の洗浄方法と、図1に示し
た3回処理シーケンスの本発明の洗浄方法とにより、ウ
ェハを洗浄し、それぞれの処理後のウェハ上の不純物分
析を行った。3回処理における処理時間の合計と、従来
の1回のシーケンスで処理する場合の処理時間とは同一
にしてある。オゾン水処理に用いるオゾン水のオゾン濃
度は、5ないし25ppmである。この範囲の濃度で
は、結果に濃度による差異は生じなかった。純水リンス
は、例えば市販の超純水を用いて行う。HF処理は、弗
酸の濃度が0.25ないし10%の薬液を用いる。例え
ば10%の薬液による6秒間のHF処理は、前述のよう
に酸化膜厚を5nmエッチングする条件である。
An experiment was conducted to confirm the effect of this embodiment, and the results are shown below. The experiments used wafers that were forcibly contaminated with metal and particles. The initial values of metal impurities of those wafers are Na, Fe, N
i, Al, Cu, Cr, Zn are each 1E13ato
It is on the order of ms / cm 2 , and the initial value of particles is about 5000/6 inch wafers. For the experiment,
Using a single wafer cleaning apparatus, the wafer was supported by a supporting apparatus and rotated, and various treatments were performed by supplying a chemical solution onto the wafer from a nozzle. Both treatments were performed in the atmosphere. The wafer is cleaned by the conventional cleaning method of performing 60 seconds of ozone water treatment → pure water rinse → 6 seconds of HF treatment → pure water rinse → drying and the cleaning method of the present invention of the three-time treatment sequence shown in FIG. After cleaning, impurities on the wafer after each treatment were analyzed. The total processing time in the three-time processing is the same as the processing time in the case of performing the conventional one-time processing. The ozone concentration of ozone water used for ozone water treatment is 5 to 25 ppm. At concentrations in this range, the results did not differ by concentration. The pure water rinse is performed using, for example, commercially available ultrapure water. For the HF treatment, a chemical solution having a hydrofluoric acid concentration of 0.25 to 10% is used. For example, the HF treatment for 6 seconds with a 10% chemical solution is a condition for etching the oxide film thickness by 5 nm as described above.

【0007】さらに、オゾン水に代えてイオン水やコリ
ン添加のアルカリ過酸化水素水溶液を用いて同様の実験
を行った。イオン水は、例えば水を電気分解して作成し
た酸性やアルカリ性のイオン水である。これらの結果を
以下に示す。以下の数値の単位は、1E10atoms
/cm2 である。
Further, a similar experiment was conducted using ionized water or an aqueous solution of alkaline hydrogen peroxide containing choline instead of ozone water. Ionized water is, for example, acidic or alkaline ionized water produced by electrolyzing water. The results are shown below. The unit of the following numerical values is 1E10atoms
/ Cm 2 .

【0008】[0008]

【表1】 [Table 1]

【0009】この表から分かるように、短時間の処理を
繰り返すことにより、いずれの場合も処理時間の合計が
従来の処理時間と同一でありながら、金属不純物をより
多く除去することができる。
As can be seen from this table, by repeating the treatment for a short time, it is possible to remove more metal impurities while the total treatment time is the same as the conventional treatment time in any case.

【0010】パーティクルについても同様の洗浄シーケ
ンスにて洗浄をしたところ、オゾン水1回処理では17
13個/6インチウェハに対し3回処理では244個/
6インチウェハ、コリン添加のアルカリ・過酸化水素水
溶液1回処理では1043個/6インチウェハに対し3
回処理では158個/6インチウェハ、イオン水のアル
カリ水を用いた1回処理では713個/6インチウェハ
に対し3回処理では334個/6インチウェハという結
果が得られた。短時間で数回処理を繰り返す本発明の洗
浄方法を用いると、従来行われていた1回処理よりも高
いパーティクル除去効果が得られる。
Particles were also cleaned in the same cleaning sequence.
13 pieces / 6 inch wafers 244 pieces /
6-inch wafers, 3 times for 1043 / 6-inch wafers in one treatment of alkaline / hydrogen peroxide solution with choline added
The results obtained were 158/6 inch wafers in the single treatment, 713/6 inch wafers in the single treatment using the alkaline water of the ion water, and 334/6 inch wafers in the third treatment. By using the cleaning method of the present invention in which the treatment is repeated several times in a short time, a particle removal effect higher than that of the conventionally performed single treatment can be obtained.

【0011】次に、バッチディップ式洗浄についての評
価を行った。コリン添加のアルカリ・過酸化水素水溶液
70℃10分→水洗→HF3分→水洗→乾燥の1回処理
と、図2に示すように、コリン添加アルカリ過酸化水素
水溶液70℃3分→水洗→HF1分→水洗を処理時間の
合計が1回処理の場合と同じになるように3回繰り返し
た後、乾燥を行った。いずれの処理も大気中で行われ
た。水洗では例えば純水を用いた。この結果、金属除去
に関しては、
Next, the batch dip type cleaning was evaluated. Choline-added alkaline / hydrogen peroxide aqueous solution 70 ° C. 10 minutes → washing → HF 3 minutes → water washing → drying once, and as shown in FIG. 2, choline-added alkaline hydrogen peroxide aqueous solution 70 ° C. 3 minutes → water washing → HF1 The process of washing with water was repeated 3 times so that the total treatment time was the same as in the case of one treatment, followed by drying. Both treatments were performed in the atmosphere. Pure water was used for washing with water. As a result, regarding metal removal,

【0012】[0012]

【表2】 という結果が得られた。また、パーティクル除去につい
ては、従来の1回処理で1578個/6インチウェハに
対し3回処理で177個/6インチウェハとなった。こ
のように、本発明の繰り返し処理により高い除去効果が
得られる。なお、コリン添加のアルカリ・過酸化水素水
水溶液による処理は70℃で行ったが、この温度に限ら
れるものではなく、例えば常温から70℃の範囲であれ
ば同様の効果が得られた。
[Table 2] The result was obtained. Regarding the removal of particles, the number of wafers was 1578/6 inch wafers in the conventional one-time processing, and 177/6 inch wafers were processed in three times. Thus, a high removal effect can be obtained by the repeated treatment of the present invention. The treatment with the aqueous solution of alkali / hydrogen peroxide containing choline was carried out at 70 ° C., but the temperature is not limited to this, and similar effects can be obtained in the range of room temperature to 70 ° C., for example.

【0013】また、RCA洗浄は、従来、純水:アンモ
ニア水:過酸化水素水=5:1:1の薬液を用いたSC
1処理を10分間行い、次に5ないし20分間純水リン
スを行い、その後HF:過酸化水素水=1:50の薬液
による処理を15秒間行い、5ないし20分間純水リン
スを行い、さらに純水:塩酸:過酸化水素水=6:1:
1の薬液によるSC2処理を10ないし15分間行うと
いう手順によりなされる。これを本発明の処理方法を用
いて、5分間のSC1処理→純水リンス→8秒間のHF
と過酸化水素水による処理→純水リンス→5分間のSC
2処理を2回繰り返すと、従来以上の洗浄効果を上げる
ことが可能になる。
Conventionally, RCA cleaning uses SC using a chemical solution of pure water: ammonia water: hydrogen peroxide water = 5: 1: 1.
1 treatment for 10 minutes, then 5 to 20 minutes of pure water rinsing, and then treatment with a chemical solution of HF: hydrogen peroxide solution = 1: 50 for 15 seconds, 5 to 20 minutes of pure water rinsing, and Pure water: hydrochloric acid: hydrogen peroxide solution = 6: 1:
The SC2 treatment with the first chemical solution is performed for 10 to 15 minutes. Using the treatment method of the present invention, this is subjected to SC1 treatment for 5 minutes → pure water rinse → HF for 8 seconds.
And treatment with hydrogen peroxide water → pure water rinse → SC for 5 minutes
By repeating the two treatments twice, it is possible to improve the cleaning effect more than before.

【0014】なお、本発明は上述の実施例で示した処理
シーケンスや繰り返し回数や処理時間に限られるもので
はなく、処理シーケンスを構成する各処理の処理時間を
従来よりも短くし、そのシーケンスを2回以上繰り返
し、各処理ごとの処理時間の総和が1回のシーケンスで
処理する場合と同程度の時間になるのであればよい。
The present invention is not limited to the processing sequence, the number of repetitions and the processing time shown in the above-mentioned embodiment, but the processing time of each processing constituting the processing sequence is made shorter than before and the sequence is It is only necessary that the processing is repeated twice or more, and the total processing time for each processing is about the same as when processing is performed in one sequence.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
各処理の処理時間を短縮して処理手順を数回繰り返して
ウェハの洗浄処理を行うことにより、洗浄度を高くしつ
つ洗浄時間を短くすることができる。
As described above, according to the present invention,
By shortening the processing time of each processing and repeating the processing procedure several times to perform the cleaning processing of the wafer, it is possible to shorten the cleaning time while increasing the cleaning degree.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の洗浄方法の処理手順を表す図。FIG. 1 is a diagram showing a processing procedure of a first cleaning method of the present invention.

【図2】本発明の第2の洗浄方法の処理手順を表す図。FIG. 2 is a diagram showing a processing procedure of a second cleaning method of the present invention.

【符号の説明】[Explanation of symbols]

オゾン水処理…オゾン水処理、 HF処理…希弗酸処理。 Ozone water treatment ... Ozone water treatment, HF treatment ... Dilute hydrofluoric acid treatment.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の処理液を順次用いてウェハを
洗浄する工程を連続して2回以上繰り返すことを特徴と
する半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein a step of cleaning a wafer by sequentially using two or more kinds of processing solutions is repeated twice or more.
【請求項2】 前記処理液は、オゾン水、イオン水、コ
リン添加のアルカリ・過酸化水素水、アンモニア・過酸
化水素水であるAPM、塩酸・過酸化水素水であるHP
M、HFとNH4 FとH2 Oの混合液であるBHF、H
FとH2 Oの混合液であるDHF、HFとH22 とH
2 O混合液のいずれかであることを特徴とする請求項1
記載の半導体装置の製造方法。
2. The treatment liquid is ozone water, ionic water, choline-added alkali / hydrogen peroxide water, ammonia / hydrogen peroxide water APM, and hydrochloric acid / hydrogen peroxide water HP.
M, HF and NH 4 F and H 2 O mixed solution BHF and H
DHF which is a mixture of F and H 2 O, HF and H 2 O 2 and H
2. It is any one of 2 O mixed liquids.
The manufacturing method of the semiconductor device described in the above.
【請求項3】 ウェハにオゾン水処理を20秒あるいは
それ以下の時間施し、次に純水処理を施し、次に希弗酸
処理を2秒あるいはそれ以下の時間施し、次に純水処理
を施す工程を連続して2回以上繰り返すことを特徴とす
る請求項2記載の半導体装置の製造方法。
3. A wafer is subjected to ozone water treatment for 20 seconds or less, then to pure water treatment, then to dilute hydrofluoric acid treatment for 2 seconds or less, and then to pure water treatment. The method of manufacturing a semiconductor device according to claim 2, wherein the step of applying is repeated twice or more continuously.
【請求項4】 ウェハにイオン水処理を20秒あるいは
それ以下の時間施し、次に純水処理を施し、次に希弗酸
処理を2秒あるいはそれ以下の時間施し、次に純水処理
を施す工程を連続して2回以上繰り返すことを特徴とす
る請求項2記載の半導体装置の製造方法。
4. A wafer is subjected to ion water treatment for 20 seconds or less, then to pure water treatment, then to dilute hydrofluoric acid treatment for 2 seconds or less, and then to pure water treatment. The method of manufacturing a semiconductor device according to claim 2, wherein the step of applying is repeated twice or more continuously.
【請求項5】 ウェハにコリン添加のアルカリ・過酸化
水素水処理を3分間あるいはそれ以下の時間施し、次に
純水処理を施し、次に希弗酸処理を1分間あるいはそれ
以下の時間施し、次に純水処理を施す工程を連続して2
回以上繰り返すことを特徴とする請求項2記載の半導体
装置の製造方法。
5. A wafer is treated with an alkali / hydrogen peroxide solution containing choline for 3 minutes or less, then with pure water, and then with dilute hydrofluoric acid for 1 minute or less. , 2 consecutive steps of applying pure water treatment
The method for manufacturing a semiconductor device according to claim 2, wherein the method is repeated one or more times.
【請求項6】 ウェハにSC1処理を5分間あるいはそ
れ以下の時間施し、次に純水処理を施し、次に希弗酸処
理を8秒間あるいはそれ以下の時間施し、次に純水処理
を施し、次にSC2処理を5分間あるいはそれ以下の時
間施す工程を連続して2回以上繰り返すことを特徴とす
る請求項2記載の半導体装置の製造方法。
6. A wafer is subjected to SC1 treatment for 5 minutes or less, then to pure water treatment, then to dilute hydrofluoric acid treatment for 8 seconds or less, and then to pure water treatment. 3. The method of manufacturing a semiconductor device according to claim 2, wherein the step of applying SC2 treatment for 5 minutes or less is repeated twice or more continuously.
JP13502996A 1996-05-29 1996-05-29 Method for manufacturing semiconductor device Pending JPH09321009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13502996A JPH09321009A (en) 1996-05-29 1996-05-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13502996A JPH09321009A (en) 1996-05-29 1996-05-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH09321009A true JPH09321009A (en) 1997-12-12

Family

ID=15142283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13502996A Pending JPH09321009A (en) 1996-05-29 1996-05-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH09321009A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050634A (en) * 2000-04-28 2002-02-15 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2002329691A (en) * 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd Method of cleaning silicon wafer
KR20030052817A (en) * 2001-12-21 2003-06-27 동부전자 주식회사 Method for preprocessing a gate oxidation layer of a semiconductor device
KR20030056224A (en) * 2001-12-27 2003-07-04 동부전자 주식회사 a method for cleaning the surface of a wafer
US6848455B1 (en) 2002-04-22 2005-02-01 Novellus Systems, Inc. Method and apparatus for removing photoresist and post-etch residue from semiconductor substrates by in-situ generation of oxidizing species
JP2009543344A (en) * 2006-06-28 2009-12-03 ラム リサーチ コーポレーション Post-etch wafer surface cleaning with liquid meniscus
US8138101B2 (en) 2000-04-28 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
WO2015174004A1 (en) * 2014-05-15 2015-11-19 信越半導体株式会社 Wafer cleaning method
WO2023017691A1 (en) * 2021-08-12 2023-02-16 株式会社Sumco Semiconductor wafer cleaning method, and semiconductor wafer manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050634A (en) * 2000-04-28 2002-02-15 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8138101B2 (en) 2000-04-28 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
US8951902B2 (en) 2000-04-28 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Methods of removing contaminant impurities during the manufacture of a thin film transistor by applying water in which ozone is dissolved
JP2002329691A (en) * 2001-04-27 2002-11-15 Shin Etsu Handotai Co Ltd Method of cleaning silicon wafer
KR20030052817A (en) * 2001-12-21 2003-06-27 동부전자 주식회사 Method for preprocessing a gate oxidation layer of a semiconductor device
KR20030056224A (en) * 2001-12-27 2003-07-04 동부전자 주식회사 a method for cleaning the surface of a wafer
US6848455B1 (en) 2002-04-22 2005-02-01 Novellus Systems, Inc. Method and apparatus for removing photoresist and post-etch residue from semiconductor substrates by in-situ generation of oxidizing species
JP2009543344A (en) * 2006-06-28 2009-12-03 ラム リサーチ コーポレーション Post-etch wafer surface cleaning with liquid meniscus
WO2015174004A1 (en) * 2014-05-15 2015-11-19 信越半導体株式会社 Wafer cleaning method
JP2015220284A (en) * 2014-05-15 2015-12-07 信越半導体株式会社 Wafer cleaning method
WO2023017691A1 (en) * 2021-08-12 2023-02-16 株式会社Sumco Semiconductor wafer cleaning method, and semiconductor wafer manufacturing method
TWI825859B (en) * 2021-08-12 2023-12-11 日商Sumco股份有限公司 Methods for cleaning and manufacturing semiconductor wafer

Similar Documents

Publication Publication Date Title
JPH08264500A (en) Cleaning of substrate
US6513538B2 (en) Method of removing contaminants from integrated circuit substrates using cleaning solutions
JPH0426120A (en) Treating method for semiconductor substrate
US20050139230A1 (en) Method for cleaning semiconductor wafers
JP2006080501A (en) Cleaning solution and method of cleaning semiconductor substrate
CN112928017A (en) Cleaning method for effectively removing metal on surface of silicon wafer
JPH09321009A (en) Method for manufacturing semiconductor device
JP3535820B2 (en) Substrate processing method and substrate processing apparatus
JPH10183185A (en) Cleansing liquid, its formulation and production, cleansing, and production of semiconductor substrate
KR20050001332A (en) Process for the wet-chemical surface treatment of a semiconductor wafer
EP1562226B1 (en) A method for removing oxides from a Germanium semiconductor substrate surface
JP3454302B2 (en) Semiconductor substrate cleaning method
JP2003297792A (en) Method for cleaning substrate, cleaner and dryer, and method for manufacturing semiconductor device
JPH07321080A (en) Method for cleaning silicon wafer
JPH0750281A (en) Cleaning method for silicon wafer
JP2005210075A (en) Cleaning method of semiconductor wafer
JP3419439B2 (en) Method for cleaning semiconductor substrate
KR0171983B1 (en) Wafer cleaning method
JP2001326209A (en) Method for treating surface of silicon substrate
JPH10199847A (en) Method of cleaning wafer
RU2383965C1 (en) Method of treating silicon equipment
JPH07153728A (en) Silicon wafer surface treatment method by hot pure water cleaning
JP2001319914A (en) Method of manufacturing semiconductor device
JPH04103124A (en) Removal of pollutant from semiconductor substrate
KR100199373B1 (en) Method of cleaning wafer