JPH09320964A - Manufacture of compound semiconductor - Google Patents

Manufacture of compound semiconductor

Info

Publication number
JPH09320964A
JPH09320964A JP13176796A JP13176796A JPH09320964A JP H09320964 A JPH09320964 A JP H09320964A JP 13176796 A JP13176796 A JP 13176796A JP 13176796 A JP13176796 A JP 13176796A JP H09320964 A JPH09320964 A JP H09320964A
Authority
JP
Japan
Prior art keywords
protective film
growth
compound semiconductor
stripe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13176796A
Other languages
Japanese (ja)
Inventor
Katsushi Fujii
克司 藤井
Kenji Shimoyama
謙司 下山
Yuichi Inoue
優一 井上
Hideki Goto
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13176796A priority Critical patent/JPH09320964A/en
Publication of JPH09320964A publication Critical patent/JPH09320964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance selectivity by forming protective films in the shape of a stripe, in a direction within a specific angle from the direction [100]B as the center on surface (100), and causing a single crystal thin film to grow selectively after that on the part where the protective films are not formed. SOLUTION: After a large number of protective films 300μm wide and composed of silicon nitrides are formed into a stripe-shape on a GaAsd substrate whose surface is surface (100) at intervals of 100μm so that the direction of the longer sides may be within ±45 degrees from the direction [011]B as the center, an Al0.3 Ga0.7 As layer about 0.5μm thick is selectively grown by MOVPE to manufacture a compound semiconductor. As a material gas, trimethylgallium (TMG), trimethylaluminum(TMA), and arsine (AsH3 ) are supplied with hydrogen as a carrier gas. The growing temperature and the growing pressure are 660 deg.C and 133hPa respectively, and 4cc of hydrogen chloride is added during the growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素化物および有
機金属を原料とする化合物半導体薄膜の気相成長におい
て、化合物半導体層を形成する方法に係わり、特に選択
成長用保護膜への堆積を抑制するのに適した化合物半導
体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a compound semiconductor layer in vapor phase growth of a compound semiconductor thin film made of a hydride and an organic metal as a raw material, and particularly to suppressing deposition on a protective film for selective growth. The present invention relates to a method for producing a compound semiconductor suitable for

【0002】[0002]

【従来の技術】最近の化合物半導体の素子構造を最適化
させる技術のひとつとして選択成長が用いられている
が、MBE法では選択成長は困難であるため、通常MO
CVD法が用いられている。MOCVD法の選択成長に
おける利点としては、基板またはエピタキシャル成長層
へのダメージが殆どないことおよび比較的低温でプロセ
スが行えるため、品質の高い選択成長領域が得られるこ
とにある。
2. Description of the Related Art Recently, selective growth has been used as one of the techniques for optimizing the device structure of compound semiconductors. However, since selective growth is difficult with the MBE method, it is usually MO.
The CVD method is used. The advantages of the MOCVD method in selective growth are that there is almost no damage to the substrate or the epitaxial growth layer and that the process can be performed at a relatively low temperature, so that a high-quality selective growth region can be obtained.

【0003】しかしながら、選択成長を行う際には、保
護膜上に多結晶の堆積が起こらないようにするため、成
長条件、混晶比、およびマスク幅等に大きな制約を受け
ていた。特に、Alを含んだ化合物の場合には、Alの
混晶比を上げるほど、そしてマスク幅を大きくするほ
ど、保護膜上に多結晶が堆積しやすくなるという問題が
あった。この解決方法としては、選択成長を行う際に成
長させる化合物の母体元素を含まないハライド法および
/またはハロゲンガスを加えることにより広い範囲にわ
たり保護膜上への多結晶の堆積が回避できることが報告
されている(WO93/01614)。
However, when selective growth is performed, growth conditions, mixed crystal ratios, mask widths, etc. are greatly restricted in order to prevent polycrystal deposition on the protective film. In particular, in the case of a compound containing Al, there is a problem that the higher the mixed crystal ratio of Al and the larger the mask width, the easier the polycrystal is deposited on the protective film. As a solution to this problem, it has been reported that the deposition of polycrystals on the protective film can be avoided over a wide range by adding a halide method and / or a halogen gas which does not include the host element of the compound to be grown during the selective growth. (WO93 / 01614).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この上
記の手法を用いてもまだ選択性が十分でない場合があっ
た。特に、保護膜で保護される領域が広い場合や、保護
膜に対して選択成長を行いたい領域が極端に狭い場合に
選択性が十分でない場合がある。
However, there are cases where the selectivity is not sufficient even when the above method is used. In particular, the selectivity may not be sufficient when the area protected by the protective film is large or when the area where selective growth is desired to be performed on the protective film is extremely narrow.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題を解決すべく鋭意検討した結果、ハライドガスおよび
/またはハロゲンガスを加えて選択成長を行う際に、特
定の結晶成長面と保護膜の方向を選択することにより、
選択性を向上し得ることを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that when a selective growth is performed by adding a halide gas and / or a halogen gas, By selecting the direction of the protective film,
The inventors have found that selectivity can be improved and have reached the present invention.

【0006】即ち、本発明の要旨は、III-V族化合物半
導体単結晶の{100}面に、ストライプ状の保護膜を
<011>B方向を中心として±45°以内の方向に形
成した後、III-V族化合物半導体の原料ガスとともにハ
ライドガスおよび/またはハロゲンガスを添加して、保
護膜が形成されていない部分にIII-V族化合物半導体単
結晶薄膜を選択成長させる工程を含むことを特徴とする
化合物半導体の製造方法に存する。
That is, the gist of the present invention is that after forming a stripe-shaped protective film on the {100} plane of a III-V group compound semiconductor single crystal in a direction within ± 45 ° centering on the <011> B direction. , A step of adding a halide gas and / or a halogen gas together with a source gas of a III-V group compound semiconductor to selectively grow a III-V group compound semiconductor single crystal thin film in a portion where a protective film is not formed. The present invention resides in a method for producing a characteristic compound semiconductor.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においては、III-V族化合物半導体単結晶の{1
00}ジャストの面上に選択成長を行うこととし、オフ
アングルはあっても0.5°以下とする。これにより、
リッジやグルーブ等の構造を高精度に作り込むことが可
能である。即ち、レーザの様に光を閉じ込める装置の場
合で、特に高出力が求められる場合等には、非常に対称
性の高いリッジやグルーブ等の構造を作り込むことが必
要となり、オフアングルに垂直な方向にリッジやグルー
ブ等の構造を作成する場合には対称性に狂いが生じてし
まうが、ジャストの面を成長面として用いることによ
り、どの様な方向に構造を作成してもその様な問題を回
避できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
In the present invention, the group III-V compound semiconductor single crystal {1
00} Just growth is performed on the surface, and the off angle is 0.5 ° or less. This allows
Structures such as ridges and grooves can be built in with high precision. That is, in the case of a device for confining light such as a laser, particularly when a high output is required, it is necessary to form a structure such as a ridge or a groove having a very high symmetry, which is perpendicular to the off angle. When a structure such as a ridge or groove is created in a certain direction, the symmetry will be out of order, but using the just surface as a growth surface will cause such a problem even if the structure is created in any direction. Can be avoided.

【0008】この{100}面上で選択成長を行うた
め、窒化珪素、酸化珪素等公知の材料および方法を用い
て保護膜を設けるが、選択性よく成長を行うには、{1
00}面上でストライプ状の保護膜を<011>B方向
を中心として±45°以内、好ましくは±30°以内の
方向に配置する。ここで<011>B方向とは、V族元
素が表面に出ている{111}B面の法線の{100}
面上への正射影の方向のことである。即ち、図1aに示
す(100)面に対しては[0−11]および[01−1]
で表される方向であって、この方向に形成したストライ
プ状保護膜を図1bに示した。他の{100}面につい
ても、それぞれについてこれと結晶学的に等価な方向を
選べばよい。なお、これに対して、III族元素が表面に
出ている{111}A面の法線の{100}面上への正
射影の方向のことを<011>A方向という。
In order to carry out selective growth on this {100} plane, a protective film is provided using a known material and method such as silicon nitride and silicon oxide. In order to carry out selective growth, {1
The stripe-shaped protective film on the {00} plane is arranged within ± 45 °, preferably ± 30 °, with the <011> B direction as the center. Here, the <011> B direction means {100} of the normal line of the {111} B plane on which the group V element is exposed.
It is the direction of orthographic projection onto a surface. That is, for the (100) plane shown in FIG. 1a, [0-11] and [01-1]
The stripe-shaped protective film formed in this direction is shown in FIG. 1b. For the other {100} planes as well, a direction crystallographically equivalent to this may be selected. On the other hand, the direction of the orthogonal projection of the normal line of the {111} A plane onto the {100} plane where the group III element appears on the surface is referred to as the <011> A direction.

【0009】また、かかるストライプ状の保護膜は、短
辺の幅が50μm以上で、かつ{100}面上で薄膜形
成領域に対する保護膜形成領域の割合が1以上、好まし
くは2以上、最も好ましくは2.5以上となる様に形成
するのが好ましいことがある。即ち、ブロードエリアの
レーザ等を製造する場合や、局所的に成長速度を上げる
必要がある場合等にその様な保護膜形成領域が大きく、
成長領域を狭くすることが要求され、その場合、一般に
選択性は著しく低下するが、本発明によれば、保護膜の
方位を選ぶことにより、選択性よく成長を行うことがで
きる。
In this stripe-shaped protective film, the width of the short side is 50 μm or more, and the ratio of the protective film forming region to the thin film forming region on the {100} plane is 1 or more, preferably 2 or more, and most preferably. In some cases, it is preferable to form it so that it is 2.5 or more. That is, when manufacturing a broad area laser or the like, or when it is necessary to locally increase the growth rate, such a protective film formation region is large,
It is required to narrow the growth region, and in that case, the selectivity is generally significantly lowered. However, according to the present invention, the growth can be performed with high selectivity by selecting the orientation of the protective film.

【0010】本発明で用いる化合物半導体の原料ガスと
しては、有機金属、水素化物、塩化物等公知のいずれの
ものも使用可能であり、有機金属としてはトリメチルガ
リスム(TMG)、トリエチルガリウム(TEG)、ト
リメチルアルミニウム(TMA)およびトリエチルイン
ジウム(TMI)等が、水素化物としてはアルシン(A
sH3)およびホスフィン(PH3)等が、塩化物とし
ては塩化ガリウム(GaCl)、ジエチルガリウムクロ
ライド(DEGaCl)および三塩化砒素(AsC
3)等が用いられるが、これらの中でも成長機構が比
較的簡単で、精密な成長速度の制御が比較的容易に行え
る等の点で、塩素を含まない有機金属および塩素を含ま
ない水素化物が好ましい。また、特に有機金属を用いる
場合に、本発明の選択性向上の効果は大きい。
As the raw material gas for the compound semiconductor used in the present invention, any known gas such as organic metal, hydride and chloride can be used, and as the organic metal, trimethyl galism (TMG) and triethyl gallium (TEG) are used. ), Trimethylaluminum (TMA), triethylindium (TMI) and the like are arsine (A
sH 3 ) and phosphine (PH 3) are chlorides such as gallium chloride (GaCl), diethyl gallium chloride (DEGaCl) and arsenic trichloride (AsC).
l 3 ), etc. are used. Among them, chlorine-free organometals and chlorine-free hydrides are preferred because of their relatively simple growth mechanism and relatively easy precise control of growth rate. Is preferred. Further, the effect of improving the selectivity of the present invention is great especially when an organic metal is used.

【0011】ハライドガスとしてはHBr、HI、H
F、HCl等のハロゲン化水素やCCl22等のハロゲ
ン化炭素が、ハロゲンガスとしてはCl2、I2、F2
Br2など、およびこれらの混合物が挙げられ、望まし
くはHClがよい。なお、原料ガスとして上記の塩化物
を用いた場合であって、Al混晶比が0.3〜0.4以
下の化合物半導体単結晶薄膜を成長させる場合には、別
途ハライドガスまたはハロゲンガスを導入しなくても、
ある程度選択性よく成長を行うことができる。
As the halide gas, HBr, HI, H
Hydrogen halides such as F and HCl, and carbon halides such as CCl 2 F 2 can be used as halogen gas such as Cl 2 , I 2 , F 2 ,
Br 2 and the like, and mixtures thereof, and preferably HCl. In addition, when the above-mentioned chloride is used as the source gas and a compound semiconductor single crystal thin film having an Al mixed crystal ratio of 0.3 to 0.4 is grown, a halide gas or a halogen gas is separately added. Without introducing
Growth can be performed with some selectivity.

【0012】これらのハライドガスおよび/またはハロ
ゲンガスの使用量は成長室の大きさ、成長温度、成長圧
力、使用する原料の種類等に依存するが、量が多すぎる
と薄膜成長が止まり、エッチングになってしまうエッチ
ングモード域となり、量が少なすぎると保護膜上に多結
晶が成長するデポジションモード域となるので、ハライ
ドガスおよび/またはハロゲンガスの流量を適宜調節し
てこれらの領域を避け、選択成長を行いたい領域には結
晶が成長するが、保護膜上には多結晶が成長しないセレ
クティブモードで成長を行うこととする。
The amount of these halide gas and / or halogen gas used depends on the size of the growth chamber, the growth temperature, the growth pressure, the type of raw material used, etc., but if the amount is too large, the thin film growth stops and etching occurs. It becomes the etching mode area which becomes, and when it is too small, it becomes the deposition mode area where the polycrystal grows on the protective film. Therefore, adjust the flow rate of halide gas and / or halogen gas appropriately to avoid these areas. It is assumed that crystals grow in a region where selective growth is desired, but growth is performed in a selective mode in which polycrystal does not grow on the protective film.

【0013】成長を行う際のガスの全圧は常圧以下が望
ましく、成長温度については一般に気相成長で用いられ
る条件でよく、一般的には500〜900℃程度だが、
低温側では選択性が低下する傾向にあり、一方あまりに
高温だとIII-V族元素の再蒸発や不純物の取り込みが問
題となる場合があるので、600〜850℃、より好ま
しくは650〜800℃程度がよい。ただし、本発明の
効果、即ち面方位や保護膜形成の方向による選択性の向
上効果はより低温側、即ち500〜700℃程度で顕著
であって、本発明は比較的穏やかな条件で効果的に選択
成長を行える点でも有用である。
The total pressure of the gas during the growth is preferably atmospheric pressure or less, and the growth temperature may be the conditions generally used in the vapor phase growth, generally about 500 to 900 ° C.
On the low temperature side, the selectivity tends to decrease, and on the other hand, if it is too high, re-evaporation of III-V group elements and incorporation of impurities may become a problem, so 600 to 850 ° C., more preferably 650 to 800 ° C. The degree is good. However, the effect of the present invention, that is, the effect of improving the selectivity depending on the plane orientation and the direction of forming the protective film is remarkable on the lower temperature side, that is, about 500 to 700 ° C., and the present invention is effective under relatively mild conditions. It is also useful in that selective growth can be performed.

【0014】本発明の製造方法は通常のIII-V族化合物
半導体薄膜の成長に有効であるが、特にアルミニウムを
含むIII-V族化合物半導体の成長に適している。具体的
には、AlInGaP、InAlAs、AlInP、A
lGaAsなどであり、特にAlGaAsへは好適であ
る。
The manufacturing method of the present invention is effective for the growth of ordinary III-V compound semiconductor thin films, but is particularly suitable for the growth of III-V compound semiconductors containing aluminum. Specifically, AlInGaP, InAlAs, AlInP, A
lGaAs and the like, and particularly suitable for AlGaAs.

【0015】[0015]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を越えない限り、下記実施
例により限定されるものではない。 (実施例)表面が(100)面であるGaAs基板上
に、窒化珪素からなる幅300μmのストライプ状の保
護膜を、長辺の方向が[0−11]方向(図1b)となる
様に100μm間隔で多数形成した後、MOVPE法に
より膜厚約0.5μmのAl 0.3Ga0.7As層を選択成
長させて化合物半導体を製造した。原料ガスとしては、
トリメチルガリウム(TMG)2.7×10-4mol/mi
n、トリメチルアルミニウム(TMA)1.0×10-4m
ol/minおよびアルシン(AsH3)250sccm(standard
cubic cm per minute)を、キャリアガスとしての水素
とともにガスの総流量が22slm(standard cubic liter
per minute)となるように供給し、成長温度は660
℃、成長圧力は133hPaとし、成長中に塩化水素を
4cc添加した。成長終了後、微分干渉光学顕微鏡で観
察したところ、保護膜中央部に多結晶の堆積が多少観察
されただけであった。 (比較例)長辺の方向が[011]方向(図1c)となる
様に保護膜を形成した以外は実施例と全く同様にしたと
ころ、保護膜の端部を除く大部分に多結晶の堆積が観察
された。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.
However, the present invention is not limited to the following
It is not limited by example. (Example) On a GaAs substrate having a (100) surface
A stripe-shaped protective layer made of silicon nitride with a width of 300 μm.
The direction of the long side of the protective film is the [0-11] direction (Fig. 1b).
After forming a large number at 100 μm intervals, MOVPE method
Al with a film thickness of about 0.5 μm 0.3Ga0.7Select As layer
Then, a compound semiconductor was manufactured. As the source gas,
Trimethylgallium (TMG) 2.7 × 10-Fourmol / mi
n, trimethyl aluminum (TMA) 1.0 x 10-Fourm
ol / min and arsine (AsHThree) 250sccm (standard
 cubic cm per minute) as hydrogen as carrier gas
And the total gas flow rate is 22 slm (standard cubic liter)
 per minute) and the growth temperature is 660
℃, growth pressure 133hPa, during the growth of hydrogen chloride
4 cc was added. After growth, view with a differential interference microscope.
As a result of observation, some polycrystal deposition was observed in the central part of the protective film.
It was only done. (Comparative example) The direction of the long side is the [011] direction (Fig. 1c).
Except that a protective film was formed in the same manner as in Example
Approximately, the deposition of polycrystals is observed on most of the protective film except the edges.
Was done.

【0016】[0016]

【発明の効果】本発明によれば、保護膜上への多結晶の
堆積がなく、成長領域にのみ選択性よくIII-V族化合物
半導体薄膜の成長を行うことができる。
According to the present invention, it is possible to grow a group III-V compound semiconductor thin film only in the growth region with good selectivity without depositing a polycrystal on the protective film.

【図面の簡単な説明】[Brief description of drawings]

【図1】aはIII-V族化合物半導体単結晶の面方位を示
す模型の(100)面側から見た上面図。bは実施例に
おいて<011>B方向に形成されたストライプ状保護
膜の方向の説明図。cは比較例において<011>A方
向に形成されたストライプ状保護膜の方向の説明図。
FIG. 1A is a top view of a model showing the plane orientation of a III-V compound semiconductor single crystal as seen from the (100) plane side. b is an explanatory view of the direction of the stripe-shaped protective film formed in the <011> B direction in the example. c is an explanatory view of the direction of the stripe-shaped protective film formed in the <011> A direction in the comparative example.

【符号の説明】[Explanation of symbols]

A.III族元素が表面となる面 B.V族元素が表面となる面 1.ストライプ状保護膜 A. Surface where Group III element is the surface B. A surface on which the group V element is the surface 1. Striped protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 秀樹 茨城県牛久市東猯穴町1000番地 三菱化学 株式会社筑波事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Goto 1000, Higashihuinana-cho, Ushiku-shi, Ibaraki Mitsubishi Chemical Corporation Tsukuba Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 III-V族化合物半導体単結晶の{10
0}面に、ストライプ状の保護膜を<011>B方向を
中心として±45°以内の方向に形成した後、III-V族
化合物半導体の原料ガスとともにハライドガスおよび/
またはハロゲンガスを添加して、保護膜が形成されてい
ない部分にIII-V族化合物半導体単結晶薄膜を選択成長
させる工程を含むことを特徴とする化合物半導体の製造
方法。
1. A III-V compound semiconductor single crystal {10
0} plane, a stripe-shaped protective film is formed within ± 45 ° with the <011> B direction as the center, and then a halide gas and //
Alternatively, a method for producing a compound semiconductor, including a step of adding a halogen gas to selectively grow a III-V group compound semiconductor single crystal thin film in a portion where a protective film is not formed.
【請求項2】 前記ハライドガスがハロゲン化水素また
はハロゲン化炭素である請求項1の方法。
2. The method according to claim 1, wherein the halide gas is hydrogen halide or carbon halide.
【請求項3】 前記ストライプ状の保護膜を、短辺の幅
が50μm以上でかつ{100}面の薄膜形成領域に対
する保護膜形成領域の割合が1以上となる様に形成する
請求項1乃至2の方法。
3. The striped protective film is formed so that the width of the short side is 50 μm or more and the ratio of the protective film forming region to the thin film forming region of the {100} plane is 1 or more. Method 2.
【請求項4】 前記選択成長の温度が500〜900℃
である請求項1乃至3の方法。
4. The selective growth temperature is 500 to 900 ° C.
The method of claims 1 to 3, wherein
JP13176796A 1996-05-27 1996-05-27 Manufacture of compound semiconductor Pending JPH09320964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13176796A JPH09320964A (en) 1996-05-27 1996-05-27 Manufacture of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13176796A JPH09320964A (en) 1996-05-27 1996-05-27 Manufacture of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH09320964A true JPH09320964A (en) 1997-12-12

Family

ID=15065696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13176796A Pending JPH09320964A (en) 1996-05-27 1996-05-27 Manufacture of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH09320964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855096B2 (en) 2007-09-28 2010-12-21 Mitsubishi Electric Corporation Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855096B2 (en) 2007-09-28 2010-12-21 Mitsubishi Electric Corporation Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7481881B2 (en) Method of manufacturing GaN crystal substrate
Ando et al. Selective area metalorganic chemical vapor deposition growth for hexagonal-facet lasers
JP4844086B2 (en) Semiconductor manufacturing method and satellite
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JPH09320964A (en) Manufacture of compound semiconductor
US5827365A (en) Compound semiconductor and its fabrication
EP0982763A1 (en) MOVPE growth of III-V compound semiconductor layers
JPH09320965A (en) Manufacture of compound semiconductor
JP2008303136A (en) Method for manufacturing compound semiconductor substrate
JP2669142B2 (en) Method for manufacturing window structure semiconductor laser
JPH0684805A (en) Compound semiconductor crystalline growth method
JP3242571B2 (en) Vapor growth method
JP2002217121A (en) Organic metal vapor deposition apparatus and its deposition method
JP2587150B2 (en) Compound semiconductor single crystal epitaxial substrate and method for growing the same
JP2754549B2 (en) Ga &lt;bottom 0&gt;. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal
JP2949886B2 (en) Semiconductor wafer and method of manufacturing the same
JPH0888185A (en) Semiconductor crystal growth method
JPH08293639A (en) Manufacture of semiconductor laser
JPH06177044A (en) Selective growth method for semiconductor crystal layer
JPH1167667A (en) Method for vapor phase growth of iii-v compound semiconductor crystal layer
JPH0450197A (en) Method for vapor growth of compound semiconductor
JPH05315210A (en) Gallium arsenide phosphide mixed-crystal epitaxial wafer
JPS6149389B2 (en)
JPH04213886A (en) Visible light semiconductor laser
JPH10256160A (en) Vapor growth method for iii-v compound semiconductor and semiconductor laser using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

A521 Written amendment

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050128