JPH09320589A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPH09320589A
JPH09320589A JP8140215A JP14021596A JPH09320589A JP H09320589 A JPH09320589 A JP H09320589A JP 8140215 A JP8140215 A JP 8140215A JP 14021596 A JP14021596 A JP 14021596A JP H09320589 A JPH09320589 A JP H09320589A
Authority
JP
Japan
Prior art keywords
silver oxide
positive electrode
negative electrode
battery
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8140215A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Hiroshi Nagashima
浩 長嶋
Hideki Terajima
英樹 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8140215A priority Critical patent/JPH09320589A/en
Publication of JPH09320589A publication Critical patent/JPH09320589A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a silver oxide battery having an excellent electric characteristic and a large capacity. SOLUTION: In a silver oxide battery in which a zinc-containing negative electrode mix 2 enclosed in a negative electrode cup 6 and a positive electrode mix 1 enclosed in a positive electrode can 3 are stacked with a separator 4 between them, silver oxide powders with an average particle size of not less than 10μm and not more than 5μm and with a bulk density of not less than 1.2g/cm<3> and not more than 1.7g/cm<3> are used in the positive electrode mix 1. The positive electrode mix 1 formed by mixing the silver oxide powders of the above size with a conductive material and a binder and molding them into a pellet shape is enclosed in the positive electrode can 3, the negative electrode mix 2 formed by mixing zinc in power form with a gelling agent and electrolytes and molding them into a pellet shape is enclosed in the negative electrode cup 6, and the positive electrode mix 1 and the negative electrode mix 2 are stacked with the separator 4 between them. Further, a solution of potassium hydroxide and a solution of sodium hydroxide that have high concentrations are added as the electrolytes, and the positive electrode can 3 and the negative electrode cΕp 6 are caulked via a sealing gasket 5 to form the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸化銀電池に関し、
更に詳しくは酸化銀電池の特性を向上させる酸化銀粉に
関する。
TECHNICAL FIELD The present invention relates to a silver oxide battery,
More specifically, it relates to silver oxide powder that improves the characteristics of a silver oxide battery.

【0002】[0002]

【従来の技術】酸化銀電池は電子腕時計や電子卓上計算
機等小型電子機器の供給電源として多用されており、こ
の酸化銀電池はこれら小型電子機器の普及に伴って、益
々需要が高まる方向にある。
2. Description of the Related Art Silver oxide batteries are widely used as a power supply for small electronic devices such as electronic wrist watches and electronic desk calculators, and the demand for silver oxide batteries is increasing with the spread of these small electronic devices. .

【0003】この酸化銀電池は亜鉛を負極活物質、酸化
銀を正極活物質とし、また、高濃度の水酸化カリウム溶
液、水酸化ナトリウム溶液等を電解液として用いる電池
である。具体的には粒状の亜鉛をゲル化剤、電解液と共
に混合してペレット状に成形した負極合剤を負極カップ
内に収容し、また、酸化銀粉を導電材、結着材と共に混
合してペレット状に成形した正極合剤を正極缶内に収容
し、更に、これら負極合剤と正極合剤をセパレータを介
して積層する。この負極合剤を収容した負極カップと正
極合剤を収容した正極缶とが封口ガスケットを介してか
しめられることで電池が形成されている。
This silver oxide battery uses zinc as a negative electrode active material, silver oxide as a positive electrode active material, and uses a high-concentration potassium hydroxide solution, sodium hydroxide solution, or the like as an electrolytic solution. Specifically, granular zinc is mixed with a gelling agent and an electrolytic solution to form a negative electrode mixture, which is stored in a negative electrode cup, and silver oxide powder is mixed with a conductive material and a binder to form pellets. The positive electrode mixture formed into a shape is housed in a positive electrode can, and the negative electrode mixture and the positive electrode mixture are laminated via a separator. A battery is formed by caulking a negative electrode cup containing the negative electrode mixture and a positive electrode can containing the positive electrode mixture via a sealing gasket.

【0004】従来から、このような酸化銀電池の酸化銀
粉は平均粒径が1〜10μm、かさ密度は0.8〜1.
2g/cm3 の範囲のものが用いられている。このよう
な酸化銀粉を用いた場合、電池の放電において、放電反
応で酸化銀が銀に変化することによる正極合剤の抵抗の
低下が不十分で、且つ、亜鉛が酸化亜鉛に変化すること
による負極合剤の抵抗の上昇のため、電気特性が低下し
てしまうことがあった。また、電池容量においても酸化
銀粉のかさ密度が低いため、高密度の正極合剤の成形が
困難で、十分な容量を得ることができないという欠点が
あった。
Conventionally, the silver oxide powder of such a silver oxide battery has an average particle diameter of 1 to 10 μm and a bulk density of 0.8 to 1.
The range of 2 g / cm 3 is used. When such a silver oxide powder is used, when the battery is discharged, the resistance of the positive electrode mixture is not sufficiently reduced due to the change of silver oxide into silver due to the discharge reaction, and zinc is changed into zinc oxide. Due to the increase in the resistance of the negative electrode mixture, the electrical characteristics sometimes deteriorated. Also, in terms of battery capacity, since the bulk density of the silver oxide powder is low, it is difficult to mold a high-density positive electrode mixture, and it is not possible to obtain a sufficient capacity.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の課題
は、酸化銀粉の平均粒径、およびかさ密度を最適にする
ことによって容量が大きく、且つ、電気特性の優れた酸
化銀電池を提供しようとするものである。
Therefore, an object of the present invention is to provide a silver oxide battery having a large capacity and excellent electrical characteristics by optimizing the average particle size and bulk density of silver oxide powder. To do.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題に鑑み
成されたものであり、負極カップに収容された亜鉛を含
有する負極合剤と、正極缶に収容された正極合剤がセパ
レータを介して積層されてなる酸化銀電池において、正
極合剤に平均粒径が10μm以上、50μm以下で、か
さ密度が1.2g/cm3 以上、1.7g/cm3 以下
の酸化銀粉を用いて課題を解決する。
The present invention has been made in view of the above problems, and a negative electrode mixture containing zinc contained in a negative electrode cup and a positive electrode mixture contained in a positive electrode can form a separator. In a silver oxide battery laminated by interposing, silver oxide powder having an average particle size of 10 μm or more and 50 μm or less and a bulk density of 1.2 g / cm 3 or more and 1.7 g / cm 3 or less is used as a positive electrode mixture. Solve the problem.

【0007】[0007]

【発明の実施の形態】本発明者らは従来の酸化銀粉の欠
点を解消すべく詳細に検討したところ、放電反応におけ
る正極合剤の抵抗の低下が不十分な原因は、酸化銀粉の
粒径が関与していることを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made a detailed study to eliminate the drawbacks of conventional silver oxide powders. As a result, the reason why the resistance of the positive electrode mixture in the discharge reaction is insufficiently decreased is that the particle size of the silver oxide powders is small. Was found to be involved.

【0008】即ち、酸化銀粉の粒径が小さい場合、酸化
銀粉が凝集しやすく、放電反応にて大きな塊状の銀、酸
化銀の混合物が形成される。その際、この塊の間に大き
な空間が発生することになり、塊間のコンタクトが低下
して正極合剤としての抵抗の低下が不十分になり、一
方、粒径が大きい場合、これ自体が比較的大きな塊のた
め、放電反応でこの塊の間に空間が発生し、やはり正極
合剤としての抵抗の低下が不十分になるものと考えられ
た。
That is, when the particle size of the silver oxide powder is small, the silver oxide powder easily aggregates, and a large lump of silver and silver oxide mixture is formed by the discharge reaction. At that time, a large space is generated between the agglomerates, the contact between the agglomerates is lowered, and the resistance of the positive electrode mixture is insufficiently lowered. It was considered that, because of the relatively large lumps, a space was generated between the lumps in the discharge reaction, and the decrease in resistance as the positive electrode mixture was also insufficient.

【0009】また、電池の容量を増大するためには正極
合剤を高密度で成形することが一つの方法であり、その
ためには酸化銀粉のかさ密度を高くすることが効果的で
あることをも見いだした。
In order to increase the capacity of the battery, one method is to form the positive electrode mixture with a high density, and for that purpose, it is effective to increase the bulk density of the silver oxide powder. I also found

【0010】つぎに、上述した観点から、本発明の実施
形態例について図1および図2を参照して説明する。図
1は本発明を適用した酸化銀電池の構成例の断面側面図
であり、図2はテストセルの構成の断面側面図である。
From the above viewpoint, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a sectional side view of a configuration example of a silver oxide battery to which the present invention is applied, and FIG. 2 is a sectional side view of a configuration of a test cell.

【0011】まず、酸化銀電池は前述したように、亜鉛
を負極活物質、酸化銀を正極活物質とし、高濃度の水酸
化カリウム溶液、水酸化ナトリウム溶液等を電解液とし
て用いる電池である。図1に示すように、酸化銀粉を導
電材、結着材と共に混合し、ペレット状に成形してなる
正極合剤1が正極缶3内に収容され、また、粒状の亜鉛
をゲル化剤および電解液と共に混合し、ペレット状に成
形してなる負極合剤2が負極カップ6内に収容され、こ
れら正極合剤1と負極合剤2とがセパレータ4を介して
積層される。更に、正極缶3と負極カップ6とが封口ガ
スケット5を介してかしめられることで電池が形成され
ている。
First, as described above, a silver oxide battery is a battery that uses zinc as a negative electrode active material, silver oxide as a positive electrode active material, and a high-concentration potassium hydroxide solution, sodium hydroxide solution, or the like as an electrolytic solution. As shown in FIG. 1, a positive electrode mixture 1 formed by mixing silver oxide powder with a conductive material and a binder and molding it into a pellet is housed in a positive electrode can 3, and granular zinc is used as a gelling agent and The negative electrode mixture 2 formed by mixing with the electrolytic solution and forming into a pellet is housed in the negative electrode cup 6, and the positive electrode mixture 1 and the negative electrode mixture 2 are laminated via the separator 4. Further, the positive electrode can 3 and the negative electrode cup 6 are caulked with the sealing gasket 5 interposed therebetween to form a battery.

【0012】本発明は上述した酸化銀電池の正極合剤1
において、平均粒径が10μm以上、50μm以下、か
さ密度が1.2g/cm3 以上、1.7g/cm3 以下
の酸化銀粉を用いることを特徴とする。尚、該酸化銀粉
は、反応式(1)に示す反応において、反応時間、反応
温度等の反応条件を制御することで容易に得ることがで
きる。 2AgNO3 +2KOH→Ag2 O+KNO3 +H2 O (1)
The present invention is a positive electrode mixture 1 for the above-mentioned silver oxide battery.
In the above, the silver oxide powder having an average particle diameter of 10 μm or more and 50 μm or less and a bulk density of 1.2 g / cm 3 or more and 1.7 g / cm 3 or less is used. The silver oxide powder can be easily obtained by controlling reaction conditions such as reaction time and reaction temperature in the reaction represented by the reaction formula (1). 2AgNO 3 + 2KOH → Ag 2 O + KNO 3 + H 2 O (1)

【0013】平均粒径が10μm以上、50μm以下の
酸化銀粉を用いることで、酸化銀粉が凝集しにくくな
り、放電反応によってスポンジ状の銀、酸化銀混合物が
形成される。従って、導電性が極めて高い銀のネットワ
ークが形成され、正極合剤としての抵抗が十分に低下す
る。
By using the silver oxide powder having an average particle size of 10 μm or more and 50 μm or less, the silver oxide powder is less likely to agglomerate, and a sponge-like silver / silver oxide mixture is formed by the discharge reaction. Therefore, a silver network having extremely high conductivity is formed, and the resistance as the positive electrode mixture is sufficiently reduced.

【0014】また、かさ密度が1.2g/cm3 以上、
1.7g/cm3 以下の酸化銀粉を用いることで、高密
度の正極合剤の成形が容易となり、大容量で電気特性に
優れた酸化銀電池の製造が可能となる。
Further, the bulk density is 1.2 g / cm 3 or more,
By using a silver oxide powder of 1.7 g / cm 3 or less, it becomes easy to mold a high density positive electrode mixture, and it is possible to manufacture a silver oxide battery having a large capacity and excellent electrical characteristics.

【0015】かさ密度が1.2g/cm3 未満の酸化銀
粉は、平均粒径も10μm以下となり、酸化銀粉の凝集
がおこりやすく、従って前述したように、放電反応によ
り大きな塊状の銀、酸化銀の混合物が形成され、正極合
剤としての抵抗の低下が不十分になり、また、高密度化
が困難になる。一方、かさ密度が1.7g/cm3 を越
えるものについては、酸化銀粉の製造に有効な前記反応
式(1)の手法では生成させることが困難である。
The silver oxide powder having a bulk density of less than 1.2 g / cm 3 has an average particle size of 10 μm or less, and the silver oxide powder is apt to agglomerate. A mixture is formed, the resistance of the positive electrode mixture is not sufficiently reduced, and it becomes difficult to increase the density. On the other hand, if the bulk density exceeds 1.7 g / cm 3 , it is difficult to generate it by the method of the above reaction formula (1) effective for producing silver oxide powder.

【0016】つぎに、本発明の実施例について、その実
験結果に基づいて説明する。
Next, examples of the present invention will be described based on the experimental results.

【0017】実施例1 つぎのように酸化銀電池を作製した。まず、平均粒径が
20μm、かさ密度が1.6g/cm3 の酸化銀粉を導
電材、結着材と共に混合し、その混合物をペレット状に
成形して正極合剤を作製し、この正極合剤を正極缶(正
極端子)内に収納した。この正極缶は所定の厚さのステ
ンレススチールにニッケルメッキを施した板を所定の形
状にプレス加工したものである。
Example 1 A silver oxide battery was prepared as follows. First, silver oxide powder having an average particle size of 20 μm and a bulk density of 1.6 g / cm 3 is mixed with a conductive material and a binder, and the mixture is molded into a pellet to prepare a positive electrode mixture. The agent was stored in a positive electrode can (positive electrode terminal). This positive electrode can is made by pressing a nickel-plated stainless steel plate having a predetermined thickness into a predetermined shape.

【0018】また、亜鉛粉末をゲル化剤とアルカリ電解
液と共に混合し、その混合物をペレット状に成形して負
極合剤を作製し、この負極合剤を負極カップ(負極端
子)に収納した。この負極カップは所定の厚さの銅、ス
テンレススチールおよびニッケルの三層クラッド板を所
定の形状にプレス加工したものである。
Further, zinc powder was mixed with a gelling agent and an alkaline electrolyte, and the mixture was molded into pellets to prepare a negative electrode mixture, and this negative electrode mixture was stored in a negative electrode cup (negative electrode terminal). This negative electrode cup is a three-layer clad plate of copper, stainless steel and nickel having a predetermined thickness, which is pressed into a predetermined shape.

【0019】その後、上述した正極合剤と負極合剤と
を、不織布、セロファン、およびポリエチレンをグラフ
ト重合した膜の三層からなるセパレータを間に挟んで積
層し、正極缶と負極カップをナイロン製のガスケットを
介してかしめることで外径11.6mm、高さ3.0m
mの電池を作製した。
Thereafter, the positive electrode mixture and the negative electrode mixture described above were laminated with a separator consisting of three layers of a non-woven fabric, cellophane, and a polyethylene graft-polymerized membrane sandwiched therebetween, and the positive electrode can and the negative electrode cup were made of nylon. By caulking through the gasket, the outer diameter is 11.6 mm and the height is 3.0 m
m were prepared.

【0020】実施例2〜実施例6 正極合剤に用いる酸化銀粉として、平均粒径が表1に示
すものを用いたこと以外は実施例1と同様にして酸化銀
電池を作製した。
Examples 2 to 6 Silver oxide batteries were prepared in the same manner as in Example 1 except that the silver oxide powder used in the positive electrode mixture had the average particle size shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】比較例1 平均粒径が8μm、かさ密度が1.0g/cm3 の酸化
銀粉を正極合剤に用いたこと以外は実施例1と同様にし
て酸化銀電池を作製した。
Comparative Example 1 A silver oxide battery was produced in the same manner as in Example 1 except that silver oxide powder having an average particle size of 8 μm and a bulk density of 1.0 g / cm 3 was used as the positive electrode mixture.

【0023】以上のようにして作製された電池について
電池の内部抵抗を評価した。電池の内部抵抗は温度20
℃下、正弦波交流法(1KHz)で測定することで評価
した。尚、この内部抵抗の測定は、放電深度が0%、4
0%、および80%のそれぞれの時点で行った。また、
測定に用いた電池の数は各20個であり、データはそれ
らの平均値である。実施例1〜6および比較例1の内部
抵抗の測定結果は前掲した表1に示されている。
The internal resistance of the battery manufactured as described above was evaluated. The internal resistance of the battery is 20
Evaluation was performed by measuring with a sine wave alternating current method (1 KHz) at ℃. The internal resistance was measured at a depth of discharge of 0%, 4
It was carried out at 0% and 80%, respectively. Also,
The number of batteries used for the measurement was 20 each, and the data is an average value thereof. The results of measuring the internal resistance of Examples 1 to 6 and Comparative Example 1 are shown in Table 1 above.

【0024】表1から分かるように、酸化銀粉の平均粒
径が10μm未満になると、電池の内部抵抗は放電深度
40%から80%の範囲で上昇することが認められた。
一方、平均粒径が50μmを越えた場合も、同様に内部
抵抗は放電深度40%から80%の範囲で上昇すること
が認められた。これらの原因として前述したように、酸
化銀粉の平均粒径が10μm未満のものを用いると酸化
銀粉が凝集し、放電反応に伴う正極合剤の抵抗の低下が
不十分になり、一方、平均粒径が50μmを越えるもの
を用いると、これ自体が比較的大きな塊のため、放電反
応でこの塊の間に空間が発生し、正極合剤としての抵抗
の低下が不十分になるからと考えられる。
As can be seen from Table 1, when the average particle size of the silver oxide powder is less than 10 μm, the internal resistance of the battery is found to increase in the range of 40% to 80% of the depth of discharge.
On the other hand, also when the average particle diameter exceeds 50 μm, it was similarly confirmed that the internal resistance increased in the range of the discharge depth of 40% to 80%. As described above, as a cause of these, when silver oxide powder having an average particle diameter of less than 10 μm is used, the silver oxide powder aggregates and the decrease in the resistance of the positive electrode mixture due to the discharge reaction becomes insufficient. It is considered that when a material having a diameter of more than 50 μm is used, a space is generated between the lumps due to the discharge reaction due to the relatively large lumps themselves, and the reduction of the resistance as the positive electrode mixture becomes insufficient. .

【0025】実施例7〜実施例14 正極合剤に用いる酸化銀粉として、かさ密度が表2に示
すものを用い、実施例1と同一の正極合剤の成形条件に
て同一寸法となるように正極合剤の量を調整し、正極合
剤の増えた容量と同一の容量を負極合剤にも加えて酸化
銀電池を作製した。尚、これらの酸化銀電池は図2に示
す正極活物質の電気容量を検査するためのテストセルで
行った。
Examples 7 to 14 As the silver oxide powder used in the positive electrode mixture, those having a bulk density shown in Table 2 were used, and the same size was obtained under the same positive electrode mixture forming conditions as in Example 1. The amount of the positive electrode mixture was adjusted, and the same capacity as the increased capacity of the positive electrode mixture was added to the negative electrode mixture to prepare a silver oxide battery. These silver oxide batteries were tested with a test cell for inspecting the electric capacity of the positive electrode active material shown in FIG.

【0026】[0026]

【表2】 [Table 2]

【0027】図2において、図1と同一の符号は同一の
部材を表す。図2の符号7は負極カップ6を押さえるた
めのポリテトラフルオロエチレン製のオーリングであ
り、符号8はそのオーリング7を押さえるためのアクリ
ル樹脂製の上蓋であり、符号10は正極合剤を収納する
ためのステンレス製の正極ケースである。尚、符号9は
上蓋8を正極ケース10に固定するための固定ネジであ
る。また、負極合剤量の変化に対しては、封口ガスケッ
ト5の底部の厚さを替えて対応した。
In FIG. 2, the same symbols as those in FIG. 1 represent the same members. Reference numeral 7 in FIG. 2 is a polytetrafluoroethylene O-ring for pressing the negative electrode cup 6, reference numeral 8 is an acrylic resin upper lid for pressing the O-ring 7, and reference numeral 10 is a positive electrode mixture. It is a positive electrode case made of stainless steel for storing. Reference numeral 9 is a fixing screw for fixing the upper lid 8 to the positive electrode case 10. Further, the change in the amount of the negative electrode mixture was dealt with by changing the thickness of the bottom portion of the sealing gasket 5.

【0028】以上のように作製された電池(実施例7〜
実施例14)について、放電容量と内部抵抗を測定し
た。電池の放電容量は、温度20℃、負荷抵抗30KΩ
で放電を行い、その電気容量を終止電圧1.4Vで測定
した。尚、測定に用いた電池の数は各20個であり、デ
ータはそれらの平均値とした。また、内部抵抗の評価は
前述と同様な方法で行った。電池の放電容量の測定結果
は前掲の表2に、また、内部抵抗の測定結果は表3に示
す。
The battery manufactured as described above (Examples 7 to 7)
Regarding Example 14), the discharge capacity and the internal resistance were measured. Battery discharge capacity is temperature 20 ℃, load resistance 30KΩ
Discharge was carried out, and the electric capacity was measured at a final voltage of 1.4V. The number of batteries used for the measurement was 20 each, and the data was the average value thereof. The evaluation of the internal resistance was performed by the same method as described above. The measurement result of the discharge capacity of the battery is shown in Table 2 above, and the measurement result of the internal resistance is shown in Table 3.

【0029】[0029]

【表3】 [Table 3]

【0030】表2から分かるように、酸化銀粉のかさ密
度が低下するに伴い、容量の低下が認められた。これは
前述したように酸化銀粉のかさ密度が低下するに伴い高
密度の正極合剤の成形が困難となるためである。
As can be seen from Table 2, a decrease in capacity was observed as the bulk density of the silver oxide powder decreased. This is because, as described above, as the bulk density of the silver oxide powder decreases, it becomes difficult to mold a high-density positive electrode mixture.

【0031】つぎに表3から分かるように、酸化銀粉の
かさ密度が1.2g/cm3 未満になると、電池の内部
抵抗は放電深度40%から80%の範囲で上昇すること
が認められた。これは、かさ密度が1.2g/cm3
満の酸化銀粉は、平均粒径も10μm以下と小さいもの
であり、従って酸化銀粉が凝集して放電反応に伴う正極
合剤の抵抗の低下が不十分になったためと考えられる。
また、酸化銀粉のかさ密度が1.7g/cmを越えたも
のは生成できなかった。
Next, as can be seen from Table 3, when the bulk density of the silver oxide powder was less than 1.2 g / cm 3 , it was recognized that the internal resistance of the battery increased in the range of the discharge depth of 40% to 80%. . This is because the silver oxide powder having a bulk density of less than 1.2 g / cm 3 has a small average particle size of 10 μm or less. Probably because it became enough.
In addition, silver oxide powder having a bulk density of more than 1.7 g / cm could not be produced.

【0032】以上、説明したように正極合剤に用いる酸
化銀粉の平均粒径は10μm以上、50μm以下、かさ
密度は1.2g/cm3 以上、1.7g/cm3 以下が
適当であることが示された。
As described above, it is appropriate that the silver oxide powder used in the positive electrode mixture has an average particle size of 10 μm or more and 50 μm or less and a bulk density of 1.2 g / cm 3 or more and 1.7 g / cm 3 or less. It has been shown.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
酸化銀電池において正極合剤に平均粒径は10〜50μ
m、かさ密度は1.2〜1.7g/cm3 の範囲の酸化
銀粉を用いることにより、電気特性にすぐれ、且つ、大
容量の酸化銀電池が得られる。
As described above, according to the present invention,
In silver oxide batteries, the positive electrode mixture has an average particle size of 10 to 50 μm.
By using a silver oxide powder having a m and a bulk density of 1.2 to 1.7 g / cm 3, a silver oxide battery having excellent electric characteristics and a large capacity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用した酸化銀電池の構成例の断面
側面図である。
FIG. 1 is a cross-sectional side view of a configuration example of a silver oxide battery to which the present invention has been applied.

【図2】 テストセルの構成の断面側面図である。FIG. 2 is a sectional side view of the configuration of the test cell.

【符号の説明】[Explanation of symbols]

1…正極合剤、2…負極合剤、3…正極缶、4…セパレ
ータ 5…封口ガスケット、6…負極カップ、7…オーリン
グ、8…上蓋 9…固定ネジ、10…正極ケース
DESCRIPTION OF SYMBOLS 1 ... Positive electrode mixture, 2 ... Negative electrode mixture, 3 ... Positive electrode can, 4 ... Separator 5 ... Sealing gasket, 6 ... Negative cup, 7 ... O-ring, 8 ... Top lid 9 ... Fixing screw, 10 ... Positive electrode case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質に酸化銀粉を用いる酸化銀電
池において、 前記酸化銀粉の平均粒径が10μm以上、50μm以下
であることを特徴とする酸化銀電池。
1. A silver oxide battery using silver oxide powder as a positive electrode active material, wherein the silver oxide powder has an average particle size of 10 μm or more and 50 μm or less.
【請求項2】 前記酸化銀粉のかさ密度が1.2g/c
3 以上、1.7g/cm3 以下であることを特徴とす
る、請求項1に記載の酸化銀電池。
2. The bulk density of the silver oxide powder is 1.2 g / c.
m 3 or more, and characterized in that 1.7 g / cm 3 or less, silver oxide battery as claimed in claim 1.
JP8140215A 1996-06-03 1996-06-03 Silver oxide battery Pending JPH09320589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140215A JPH09320589A (en) 1996-06-03 1996-06-03 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140215A JPH09320589A (en) 1996-06-03 1996-06-03 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPH09320589A true JPH09320589A (en) 1997-12-12

Family

ID=15263603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140215A Pending JPH09320589A (en) 1996-06-03 1996-06-03 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPH09320589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522336A (en) * 2009-03-27 2012-09-20 ゼットパワー, エルエルシー Improved cathode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522336A (en) * 2009-03-27 2012-09-20 ゼットパワー, エルエルシー Improved cathode

Similar Documents

Publication Publication Date Title
CN104067437B (en) Zinc secondary cell
CN110235284A (en) The manufacturing method of all-solid-state battery electrode and the manufacturing method of all-solid-state battery
US5744259A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
US4792505A (en) Electrodes made from mixed silver-silver oxides
JPH0547380A (en) Nickel hydroxide electrode for alkaline secondary battery
JPH09320589A (en) Silver oxide battery
JP3505823B2 (en) Flat alkaline battery
JP3505824B2 (en) Flat alkaline battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP2002117859A (en) Alkaline battery
JP5447772B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP3162595B2 (en) Method of manufacturing alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
JP5135579B2 (en) Flat alkaline battery
JP2001266886A (en) Non-sintering type positive electrode for alkaline storage battery and alkaline storage battery
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
US20090291362A1 (en) Flat-type alkaline primary battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPH0461468B2 (en)
JP2003017043A (en) Alkali battery and manufacturing method thereof
JPH0547379A (en) Nickel hydroxide electrode for alkaline secondary battery
JPS6364263A (en) Nonaqueous electrolytic solution cell
JP2007123051A (en) Alkaline zinc primary battery and alkaline zinc system compound positive electrode mixture used for it
JPS5820106B2 (en) Yuuki Denkai Shitsudenchi
JPS6178064A (en) Silver oxide battery
JPH0474833B2 (en)