JPH09312945A - Winding method of motor coil - Google Patents

Winding method of motor coil

Info

Publication number
JPH09312945A
JPH09312945A JP14999196A JP14999196A JPH09312945A JP H09312945 A JPH09312945 A JP H09312945A JP 14999196 A JP14999196 A JP 14999196A JP 14999196 A JP14999196 A JP 14999196A JP H09312945 A JPH09312945 A JP H09312945A
Authority
JP
Japan
Prior art keywords
winding
windings
coil
wound
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14999196A
Other languages
Japanese (ja)
Inventor
Kenji Narita
憲治 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP14999196A priority Critical patent/JPH09312945A/en
Publication of JPH09312945A publication Critical patent/JPH09312945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize the stator core of a capacitor motor as the stator core of a brushless motor or a 3-phase induction motor and utilize the mold and coil winding apparatus of the capacitor motor. SOLUTION: Four 4-pole windings N1a-N1d with 3-slot pitches are wound in a stator core 1 having 16 slots. The winding directions of the windings which are adjacent to each other are opposite to each other to form coils of one phase. Four 4-pole windings N2a-N2d with 4-slot pitches are wound on the stator core 1 at positions apart from the respective windings N1a-N1d by an electrical angle of -112.5deg. with the poles of the respective windings as the winding centers. The directions of the windings N2a-N2d are the same as the directions of the windings N1a-N1d to form coils of one phase. Further, four 4-pole windings N3a-N3d with 4-slot pitches are wound on the stator core 1 at positions apart from the respective windings N1a-N1d by an electrical angle of +112.5deg. and the directions of the windings N3a-N3d are the same as the directions of the windings N1a-N1d to form coils of one phase. The above described coils of three phases are connected by the star-connection to compose stator windings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は空気調和機等に用
いるモータの巻線技術に係り、特に詳しくはコンデンサ
モータのステータコアをブラシレスモータや三相誘導電
動機等に利用可能としするモータの巻線方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winding technique for a motor used in an air conditioner and the like, and more particularly, to a winding method for a motor that allows a stator core of a capacitor motor to be used in a brushless motor, a three-phase induction motor or the like. It is about.

【0002】[0002]

【従来の技術】コンデンサモータには、例えば図8示す
ように、主コイル、副コイルおよび進相コンデンサから
なるコンデンサ始動式誘導モータ(単相誘導電動機)が
ある。なお、このコンデンサ始動式誘導モータのステー
タコア(例えば16スロット;溝)の4極巻線例として
は図9に示す方法があり、また図10に示すトロイダル
巻線方式のものがある。
2. Description of the Related Art As a capacitor motor, for example, as shown in FIG. 8, there is a capacitor starting type induction motor (single-phase induction motor) including a main coil, a sub coil and a phase advancing capacitor. As an example of 4-pole winding of the stator core (for example, 16 slots; groove) of this capacitor starting induction motor, there is a method shown in FIG. 9 and a toroidal winding method shown in FIG.

【0003】前記巻線例を簡単に説明すると、図9に示
す巻線方式の場合、16個のスロットを有するステータ
コアに3スロットピッチの4極の巻線を4個巻回し、こ
れら4個の巻線を所定に結線して主コイルとし、前記4
極の巻線の磁極中心から電気角で90度隔てた位置に3
スロットピッチの4極の巻線を4個巻回し、これら4個
の巻線を前記主コイルと同じく結線して副コイルとす
る。
To briefly explain the winding example, in the case of the winding method shown in FIG. 9, four 4-pole windings with a 3-slot pitch are wound around a stator core having 16 slots, and these four windings are used. The winding is connected in a predetermined manner to form a main coil,
3 at a position separated by 90 electrical degrees from the pole center of the pole winding
Four 4-pole windings having a slot pitch are wound, and these four windings are connected in the same manner as the main coil to form a sub coil.

【0004】図10に示すトロイダル巻線方式の場合、
16個のスロットを有するステータコアの各スロットに
対応するヨークに巻回し、これら16個の巻線を所定に
結線する。例えば、1番目、4番目、5番目、8番目、
9番目、12番目、13番目および16番目のスロット
に対応するヨークに回巻した巻線を主コイルとし、残り
のスロットに対応するヨークに巻回した巻線を副コイル
とする。
In the case of the toroidal winding method shown in FIG.
A stator core having 16 slots is wound around a yoke corresponding to each slot, and these 16 windings are connected in a predetermined manner. For example, 1st, 4th, 5th, 8th,
The windings wound around the yokes corresponding to the 9th, 12th, 13th, and 16th slots are the main coils, and the windings wound around the yokes corresponding to the remaining slots are the subcoils.

【0005】前記巻線を施したコンデサ始動式誘導モー
タは、進相コンデンサの容量を大きくすると、始動トル
クが増大することができ、また小型であるため、ファン
(空気調和機のファン等)を含む種々機器等に広く利用
されているが、ブラシと整流子の関係において摩擦によ
る火花が発生するだけなく、ブラシが消耗するという欠
点がある。
In the capacitor-starting induction motor having the windings, the starting torque can be increased by increasing the capacity of the phase advancing capacitor, and the size is small, so that the fan (air conditioner fan, etc.) is Although it is widely used in various devices including the brush, it has a drawback that sparks are generated due to friction in the relationship between the brush and the commutator and the brush is consumed.

【0006】一方、ブラシおよび整流子を必要としない
ブラシレスモータがあり、このブラシレスモータはブラ
シと整流子の関係をトランジスタに置き換えて回転制御
するため、コンデンサモータのような欠点がない。な
お、このブラシレスモータは殆どが三相モータである。
すなわち、トランジスタ制御によることから、多相(例
えば五相、七相)にするほど、コストがかかるからであ
る。
On the other hand, there is a brushless motor that does not require a brush and a commutator, and this brushless motor does not have the drawbacks of a condenser motor because the relationship between the brush and the commutator is replaced with a transistor to control the rotation. Most of the brushless motors are three-phase motors.
That is, since it is based on transistor control, the cost increases as the number of phases increases (for example, five phases and seven phases).

【0007】[0007]

【発明が解決しようとする課題】ところで、前記コンデ
ンサモータとブラシレスモータ(および三相誘導電動
機)とでは、別個の異なるステータコアを使用する必要
がある。すなわち、コンデンサモータの場合ステータコ
アのスロット数が極数の2n倍必要であり、ブラシレス
モータや三相誘導電動機の場合ステータコアのスロット
数が極数の3n倍必要だからである。なお、nは正の整
数である。
By the way, it is necessary to use different stator cores for the capacitor motor and the brushless motor (and the three-phase induction motor). That is, in the case of a capacitor motor, the number of slots in the stator core needs to be 2n times the number of poles, and in the case of a brushless motor or a three-phase induction motor, the number of slots in the stator core needs to be 3n times the number of poles. Note that n is a positive integer.

【0008】したがって、コンデンサモータのステータ
コア(例えば16スロット)をブラシレスモータや三相
誘導電動機に利用することができず、ステータコアの金
型を別々に作製し、しかも異なる巻線設備も必要であ
る。
Therefore, the stator core (for example, 16 slots) of the capacitor motor cannot be used for the brushless motor or the three-phase induction motor, and the mold of the stator core is separately manufactured, and different winding equipment is required.

【0009】また、ブラシレスモータ等にあっては、コ
ンデンサモータと比較にならないほど生産数が少なく、
生産数の少ないもののため、多大な設備投資をしなけれ
ばならず、どうしても製造コストが高くなってしまうと
いう問題点があった。
In the case of a brushless motor or the like, the number of products produced is so small that it cannot be compared with a condenser motor.
Since the number of products produced is small, there has been a problem that a large amount of capital investment has to be made, which inevitably increases the manufacturing cost.

【0010】この発明は前記課題に鑑みなされたもので
あり、その目的はコンデンサモータのステータコアをブ
ラシレスモータや三相誘導電動機のステータコアとして
利用することができ、つまり金型および巻線設備を兼用
することができ、設備投資を大幅に削減することがで
き、ひいてはモータのコスト低下を図ることができるよ
うにしたモータの巻線方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to be able to use a stator core of a capacitor motor as a stator core of a brushless motor or a three-phase induction motor, that is, to serve as a mold and a winding facility. Therefore, it is an object of the present invention to provide a method for winding a motor, which is capable of significantly reducing the capital investment, and eventually reducing the cost of the motor.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、この発明のモータの巻線方法は、16個のスロット
を有するステータコアに3スロットピッチの4極の巻線
を4個巻回し、かつ該4個の巻線の隣接する巻線を逆巻
きにして1つの相のコイルとし、該コイルを構成する巻
線の磁極中心に対して電気角で−112.5度隔てた位
置に4スロットピッチの4極の巻線を4個巻回し、かつ
該4個の巻線を前記コイルを構成する4極の巻線と同じ
向きに巻いて1つの相のコイルとし、前記コイルを構成
する各巻線の磁極中心に対して電気角で112.5度隔
てた位置に4スロットピッチの4極の巻線を4個巻回
し、かつ該4個の巻線を前記コイルを構成する4極の巻
線と同じ向きに巻いて1つの相のコイルとし、前記3つ
の相のコイルを星状に結線してステータ巻線を形成し、
かつ所定磁極を有する界磁ロータを組み込んでモータを
構成し、前記3つの相のコイルの通電を順次切り替える
ことにより前記ステータ巻線に回転磁界を発生させて前
記界磁ロータを回転可能としたことを特徴としている。
In order to achieve the above object, the motor winding method of the present invention comprises winding four 4-pole windings with a 3-slot pitch around a stator core having 16 slots. Further, adjacent windings of the four windings are reversely wound to form a coil of one phase, and four slots are provided at a position separated by an electrical angle of -112.5 degrees from the magnetic pole center of the windings forming the coil. Four windings each having a pitch of four poles are wound, and the four windings are wound in the same direction as that of the four poles forming the coil to form one phase coil, and each winding forming the coil. Four windings of four poles having a four-slot pitch are wound at a position separated by an electrical angle of 112.5 degrees from the magnetic pole center of the wire, and the four windings are wound into four poles forming the coil. Wind it in the same direction as the wire to make a coil of one phase, and coil the coils of the three phases in a star shape. Forming a stator winding by connecting,
In addition, a field rotor having predetermined magnetic poles is incorporated to form a motor, and a rotating magnetic field is generated in the stator winding by sequentially switching energization of the coils of the three phases to enable rotation of the field rotor. Is characterized by.

【0012】この発明のモータの巻線方法は、16個の
スロットを有するステータコアに3スロットピッチの4
極の巻線を4個巻回し、かつ該4個の巻線の隣接する巻
線を逆巻きにして1つの相のコイルとし、該コイルの巻
線の磁極中心から電気角で112.5度隔てた位置に4
スロットピッチの4極の巻線をコンセークエントポール
方式で逆向きに2個巻回して1つの相のコイルとすると
ともに、前記巻線の磁極中心から電気角で−112.5
度隔てた位置に4スロットピッチの4極の巻線をコンセ
ークエントポール方式で逆向きに2個巻回して1つの相
のコイルとし、前記3つの相のコイルを星状に結線して
ステータ巻線を形成し、かつ所定磁極を有する界磁ロー
タを組み込んでモータを構成し、前記3つの相のコイル
の通電を順次切り替えることにより前記ステータ巻線に
回転磁界を発生させて前記界磁ロータを回転可能とした
ことを特徴としている。
According to the motor winding method of the present invention, a stator core having 16 slots has four slots of three slots.
Four pole windings are wound, and adjacent windings of the four windings are reversely wound to form one phase coil, which is separated from the magnetic pole center of the coil by 112.5 degrees in electrical angle. In position 4
Two windings of four poles having a slot pitch are wound in a reverse direction by a consequent pole system to form a coil of one phase, and an electrical angle of -112.5 from the magnetic pole center of the winding.
Two coils of four poles with a pitch of four slots are wound in opposite directions by consequent pole method at two positions spaced apart to form one phase coil, and the three phase coils are connected in a star shape to form a stator. A field rotor having a winding and having a predetermined magnetic pole is incorporated to form a motor, and a rotating magnetic field is generated in the stator winding by sequentially switching energization of the coils of the three phases to generate the field rotor. It is characterized by being able to rotate.

【0013】この発明のモータの巻線方法は、前記4極
の巻線に代えて前記ステータコアの16個のスロットに
トロイダル巻線を施し、前記ステータ巻線に生じる磁速
分布と同等の磁速分布が発生するように、前記16個の
巻線を接続して3つの相のコイルを形成するとともに、
前記各巻線の巻線方向を選択し、かつ前記3つの相のコ
イルを星状に結線してステータ巻線を形成する。
In the motor winding method of the present invention, instead of the four-pole winding, 16 slots of the stator core are provided with toroidal windings, and a magnetic speed equivalent to the magnetic speed distribution generated in the stator winding is provided. In order to generate distribution, the 16 windings are connected to form coils of three phases, and
The winding direction of each winding is selected, and the coils of the three phases are connected in a star shape to form a stator winding.

【0014】この発明のモータの巻線方法は、16個の
スロットを有するステータコアにトロイダル巻線を巻回
する際、前記ステータコアの1,4,5,8,9,1
2,13および16番目のスロットに対応するヨークに
順次巻回し、かつ前記ステータコアの1,8,9および
16番目のトロイダル巻線と4,5および12番目のト
ロイダル巻線とを逆巻として1つの相のコイルとし、前
記ステータコアの14,10,6および2番目のスロッ
トに対応するヨークに順次巻回し、かつ前記ステータコ
アの14および6番目のトロイダル巻線と10および2
番目のトロイダイル巻線とを逆巻として1つの相のコイ
ルとし、前記ステータコアの3,15,11および7番
目のスロットに対応するヨークに順次巻回し、かつ前記
ステータコアの3および11番目のトロイダル巻線と1
5および7番目のトロイダル巻線とを逆巻として1つの
相のコイルとし、前記3つの相のコイルを星状に結線し
てステータ巻線を形成し、かつ所定磁極を有する界磁ロ
ータを組み込んでモータを構成し、前記3つの相のコイ
ルの通電を順次切り替えることにより前記ステータ巻線
に回転磁界を発生させて前記界磁ロータを回転可能とし
たことを特徴としている。
According to the motor winding method of the present invention, when the toroidal winding is wound around the stator core having 16 slots, 1, 4, 5, 8, 9, 1 of the stator core is wound.
The windings are sequentially wound around the yokes corresponding to the 2, 13 and 16th slots, and the 1, 8, 9 and 16th toroidal windings and the 4, 5 and 12th toroidal windings of the stator core are reversely wound as 1 A coil of one phase, which is sequentially wound around the yokes corresponding to the 14, 10 and 6 slots of the stator core and the 2nd slot, and 10 and 2 of the 14th and 6th toroidal windings of the stator core.
The third toroidal winding and the third toroidal winding of the stator core are sequentially wound around the yokes corresponding to the third, fifteenth, eleventh, and seventh slots of the stator core. Line and 1
The 5th and 7th toroidal windings are reversely wound to form a coil of one phase, the coils of the three phases are connected in a star shape to form a stator winding, and a field rotor having a predetermined magnetic pole is incorporated. The motor is constituted by, and the field rotor is rotatable by generating a rotating magnetic field in the stator winding by sequentially switching the energization of the coils of the three phases.

【0015】前述の場合、前記界磁ロータに代えてかご
型巻線のロータを用い、三相誘導電動機に適用してもよ
い。
In the above case, a squirrel-cage winding rotor may be used in place of the field rotor to be applied to a three-phase induction motor.

【0016】また、前記4極の巻線を施して3つ相のコ
イルを形成する際、該コイルの通電時の有効巻数および
巻線抵抗がほぼ同じになるように、前記コイルを構成す
る巻線の太さおよび巻線数を決定するとよい。
Further, when the four-pole winding is applied to form a three-phase coil, the windings of the coil are configured such that the effective number of turns and the winding resistance when the coil is energized are substantially the same. The thickness of the wire and the number of windings should be determined.

【0017】さらに、前記トロイダル巻線を施して3つ
相のコイルを形成する際、該コイルの通電時の有効巻数
および巻線抵抗がほぼ同じになるように、前記コイルを
構成するトロイダル巻線の太さおよび巻線数を決定する
とよい。
Further, when the three-phase coil is formed by applying the toroidal winding, the toroidal winding forming the coil is such that the effective number of turns and the winding resistance when the coil is energized are substantially the same. The thickness and the number of windings should be determined.

【0018】[0018]

【発明の実施の形態】以下、この発明の実施の形態を図
1ないし図7を参照して詳しく説明する。なお、図中、
図9および図10と同部分には同一符号を付して重複説
明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to FIGS. In the figure,
The same parts as those in FIGS. 9 and 10 are designated by the same reference numerals, and duplicate description will be omitted.

【0019】図1ないし図3において、このモータの巻
線方法は、16個のスロットを有するステータコア1に
3スロットピッチの4極の巻線N1a,N1b,N1
c,N1dを4個順次巻回し、かつこれら巻線N1a,
N1b,N1c,N1dの隣接同士を逆巻きにしてモー
タの1つの相のコイルとする(端子X,XX間のコイル
とする)。
Referring to FIGS. 1 to 3, the winding method of the motor is as follows. The stator core 1 having 16 slots has four pole windings N1a, N1b, N1 with a pitch of 3 slots.
c, N1d are wound four by one, and these windings N1a,
Adjacent N1b, N1c, and N1d are reversely wound to form a coil of one phase of the motor (coil between terminals X and XX).

【0020】また、巻線N1a,N1b,N1c,N1
dの磁極中心に対して電気角で−112.5度隔てた位
置に4スロットピッチの4極の巻線N2a,N2b,N
2c,N2dを順次巻回してモータの1つの相のコイル
とする(端子Y,YY間のコイルとする)。なお、図1
および図2の矢印に示すように、巻線N1a,N1cと
巻線N2a,N2cとの巻き方向が同じで、巻線N1
b,N1dと巻線N2b,N2dとの巻き方向が同じで
ある。
The windings N1a, N1b, N1c, N1
Four-pole windings N2a, N2b, N having a four-slot pitch at a position separated by an electrical angle of -112.5 degrees from the magnetic pole center of d.
2c and N2d are sequentially wound to form a coil of one phase of the motor (coil between terminals Y and YY). FIG.
As shown by the arrow in FIG. 2, the windings N1a and N1c and the windings N2a and N2c have the same winding direction, and the winding N1
The winding directions of b, N1d and windings N2b, N2d are the same.

【0021】さらに、巻線N1a,N1b,N1c,N
1dの磁極中心に対して電気角で112.5度隔てた位
置に4スロットピッチの4極の巻線N3a,N3b,N
3c,N3dを順次巻回してモータの1つの相のコイル
とする(端子Z,ZZ間のコイルとする)。なお、図1
および図2の矢印に示すように、巻線N1a,N1cと
巻線N3a,N3cとの巻き方向が同じで、巻線N1
b,N1dと巻線N3b,N3dとの巻き方向が同じで
ある。
Further, the windings N1a, N1b, N1c, N
Four-pole windings N3a, N3b, N having a four-slot pitch at positions 112.5 degrees apart from the magnetic center of 1d in terms of electrical angle.
3c and N3d are sequentially wound to form a coil of one phase of the motor (a coil between terminals Z and ZZ). FIG.
As shown by the arrow in FIG. 2, the windings N1a and N1c and the windings N3a and N3c have the same winding direction.
The winding directions of b, N1d and windings N3b, N3d are the same.

【0022】前記巻線N1a,N1b,N1c,N1d
の巻数をそれぞれN1とし、巻線N2a,N2b,N2
c,N2dの巻数をそれぞれN2とし、巻線N3a,N
3b,N3c,N3dの巻数をそれぞれN3とする。
The windings N1a, N1b, N1c, N1d
The number of turns of each is N1, and the windings N2a, N2b, N2
The numbers of turns of c and N2d are N2, respectively, and windings N3a and N3
The number of turns of 3b, N3c and N3d is N3.

【0023】また、下記表1に示すように、巻線N2
a,N2b,N2c,N2dの有効巻数については、短
節巻係数をsin67.5°としてN1×sin67.
5°に選定する。巻線N2a,N2b,N2c,N2d
の有効巻数については、短節巻係数をsin90°とし
てN2×sin90°(=N2)を選定する。巻線N3
a,N3b,N3c,N3dの有効巻数については、短
節巻係数をsin90°としてN3×sin90°(=
N3)に選定する。
Further, as shown in Table 1 below, the winding N2
a, N2b, N2c, and N2d, the effective winding numbers are N1 × sin67.
Select 5 °. Windings N2a, N2b, N2c, N2d
With regard to the effective number of turns, N2 × sin90 ° (= N2) is selected with the short-pitch winding coefficient set to sin90 °. Winding N3
Regarding the effective number of turns of a, N3b, N3c, and N3d, the short pitch winding coefficient is set to sin 90 °, and N3 × sin 90 ° (=
Select N3).

【0024】[0024]

【表1】 [Table 1]

【0025】前記3つの相のコイルの端子XX,YY,
ZZを接続し、つまり3つのコイルを星状に結線してモ
ータのステータ巻線を形成し、図3の波線矢印に示すよ
うに、各相のコイルの通電を順次切り替える。例えば、
図3に示すトランジスタを下記表2にしたがってオンす
ると、所定電圧がモータに印加され、つまり所定相の通
電が順次行われ、この通電の切り替えによりステータに
は回転磁界が生じる。なお、下記表2に示すオン以外は
トランジスタをオフとする。
Terminals XX, YY of the coils of the three phases,
ZZ is connected, that is, three coils are connected in a star shape to form a stator winding of the motor, and the energization of the coils of each phase is sequentially switched as shown by the broken line arrow in FIG. For example,
When the transistor shown in FIG. 3 is turned on according to Table 2 below, a predetermined voltage is applied to the motor, that is, energization of a predetermined phase is sequentially performed, and a rotating magnetic field is generated in the stator by switching this energization. Note that transistors other than the ones shown in Table 2 below are turned off.

【0026】[0026]

【表2】 [Table 2]

【0027】次に、前記モータの巻線方法による磁束分
布を図4の有効巻線ベクトル図を参照して説明する。こ
の場合、前述した巻線方法により各有効巻線ベクトル
は、巻線N1a,N1cの有効巻線ベクトルN1×si
n67.5°、N1dの有効巻線ベクトル−N1×si
n67.5°、巻線N2a,N2cの有効巻線ベクトル
−N2、巻線N2b,N2dの有効巻線ベクトルN2、
巻線N3a,N3cの有効巻線ベクトルN3および巻線
N3b,N3dの有効巻線ベクトル−N3で表せる。
Next, the magnetic flux distribution according to the winding method of the motor will be described with reference to the effective winding vector diagram of FIG. In this case, the effective winding vectors N1 × si of the windings N1a and N1c are calculated by the winding method described above.
n67.5 °, N1d effective winding vector-N1 × si
n67.5 °, effective winding vector −N2 of windings N2a and N2c, effective winding vector N2 of windings N2b and N2d,
It can be represented by the effective winding vector N3 of the windings N3a and N3c and the effective winding vector -N3 of the windings N3b and N3d.

【0028】また、図4の有効巻線ベクトル図から明か
なように、下記数式1および2が成立し、この数式1お
よび数式2から下記数式3を得ることができ、この数式
3により巻線の有効巻線の関係式N2=N3=N1/
1.32を得ることができる。
Further, as is apparent from the effective winding vector diagram of FIG. 4, the following equations 1 and 2 are established, and the following equation 3 can be obtained from the equations 1 and 2, and the winding wire is obtained by the equation 3. Relation of effective winding of N2 = N3 = N1 /
You can get 1.32.

【0029】[0029]

【数1】 [Equation 1]

【0030】[0030]

【数2】 [Equation 2]

【0031】[0031]

【数3】 (Equation 3)

【0032】すると、通電I1時は有効巻線ベクトルN
1×sin67.5°,−N2により合成ベクトルN1
×sin67.5°−N2になり、以下同様に通電I2
時は合成ベクトル−N2+N3に、通電I3時は合成ベ
クトル−N1×sin67.5°−N2に、通電I4時
は合成ベクトルN2−N1×sin67.5°に、通電
I5時は合成ベクトルN2−N3に、通電I6時は合成
ベクトルN1×sin67.5°+N2になる。しか
も、各合成ベクトルの相互角が60度となり、かつ各合
成ベクトルの大きさも同じになる。すなわち、有効巻数
をN1=1.32×N2,N2=N3に決定しているか
らである。
Then, at the time of energization I1, the effective winding vector N
1 × sin 67.5 °, -N2 yields composite vector N1
Xsin67.5 ° -N2, and the same applies to I2
When the energization is I3, the combined vector is -N1 * sin67.5 [deg.]-N2, when the energization is I4, the combined vector is N2-N1 * sin67.5 [deg.], And when the energized I5 is the combined vector N2-N3. At the time of energization I6, the combined vector becomes N1 × sin67.5 ° + N2. Moreover, the mutual angle of each composite vector is 60 degrees, and the size of each composite vector is also the same. That is, the number of effective turns is determined to be N1 = 1.32 × N2, N2 = N3.

【0033】言い替えると、各相のコイルに順次通電を
行うことにより、前記巻線を施したステータの磁束分布
が回転し、つまりステータには回転磁界が発生する。具
体的に説明すると、通電I1では、巻線N1a,N1c
による発生磁界(発生磁束)に対して逆巻の巻線N1
b,N1dによる発生磁界は逆向きとなり、巻線N2
a,N2cによる発生磁界に対して逆巻の巻線N2bお
よびN2dによる発生磁界は逆向きとなる。また、逆巻
の巻線N1b,N1dにはコイルとして順方向の電流が
流れることから、巻線N1b,N1dによる発生磁界は
巻線N2a,N2cによる発生磁界と同じ向きになり、
逆巻の巻線N2b,N2dにはコイルとして逆電流が流
れることから、巻線N2b,N2dによる発生磁界はN
1a,N1cによる発生磁界と同じ向きになる。なお、
端子X,Y,Zから端子XX,YY,ZZへ流れる電流
を順方向とし、その逆を逆方向としている。
In other words, by sequentially energizing the coils of each phase, the magnetic flux distribution of the stator having the windings rotates, that is, a rotating magnetic field is generated in the stator. Specifically, in the energization I1, the windings N1a and N1c are
Winding N1 reversely wound with respect to the magnetic field (generated magnetic flux) generated by
The magnetic fields generated by b and N1d are in opposite directions, and the winding N2
The magnetic fields generated by the reverse windings N2b and N2d are opposite to the magnetic fields generated by a and N2c. Further, since a forward current flows as a coil in the reverse windings N1b and N1d, the magnetic fields generated by the windings N1b and N1d have the same directions as the magnetic fields generated by the windings N2a and N2c,
Since a reverse current flows as a coil in the reverse windings N2b and N2d, the magnetic field generated by the windings N2b and N2d is N.
It has the same direction as the magnetic field generated by 1a and N1c. In addition,
The current flowing from the terminals X, Y, Z to the terminals XX, YY, ZZ is the forward direction, and the reverse is the reverse direction.

【0034】通電I2では、巻線N2a,N2b,N2
c,N2dによる発生磁界は前と同じ状態であり、巻線
N3aおよびN3cによる発生磁界が巻線N2b,N2
dによる発生磁界と同じ向きに、巻線N3b,N3dに
よる発生磁界が巻線N2c,N2aによる発生磁界と同
じ向きになる。つまり、通電I1から通電I2に切り替
わることにより、ステータの磁束分布が図2の紙面上で
時計方向に回転する。
In the energization I2, the windings N2a, N2b, N2
The magnetic fields generated by c and N2d are the same as before, and the magnetic fields generated by the windings N3a and N3c are the same as those of the windings N2b and N2.
The magnetic field generated by the windings N3b and N3d has the same direction as the magnetic field generated by the windings N2c and N2a in the same direction as the magnetic field generated by d. That is, by switching from the energization I1 to the energization I2, the magnetic flux distribution of the stator rotates in the clockwise direction on the paper surface of FIG.

【0035】通電I3では、巻線N3a,N3b,N3
c,N3dによる発生磁界は前と同じ状態であり、巻線
N1a,N1cによる発生磁界が巻線N3b,N3dに
よる発生磁界と同じ向きに、逆巻の巻線N1b,N1d
に逆電流が流れるため、巻線N1b,N1dによる発生
磁界が巻線N1a,N1cによる発生磁界と同じ向きに
なる。つまり、通電I2から通電I2に切り替わること
により、前回同様にステータの磁束分布が図2の紙面上
で時計方向に回転する。以下同様にして、通電I1ない
しI6を順次行い、かつ繰り返すと、ステータ巻線の磁
束分布が回転する(ステータ巻線には回転磁界が発生す
る)。
In the energization I3, the windings N3a, N3b, N3
The magnetic fields generated by c and N3d are in the same state as before, and the magnetic fields generated by the windings N1a and N1c are in the same direction as the magnetic fields generated by the windings N3b and N3d, and the reversely wound windings N1b and N1d.
Since a reverse current flows through the coils, the magnetic fields generated by the windings N1b and N1d have the same directions as the magnetic fields generated by the windings N1a and N1c. That is, by switching from the energization I2 to the energization I2, the magnetic flux distribution of the stator rotates clockwise on the paper surface of FIG. 2 as in the previous time. In the same manner, when the energizations I1 to I6 are sequentially performed and repeated, the magnetic flux distribution of the stator winding rotates (a rotating magnetic field is generated in the stator winding).

【0036】そこで、前記巻線方法によるステータ巻線
に4極の磁極を有する界磁ロータを組み込めば、そのス
テータ巻線に発生した回転磁界を追従するように界磁ロ
ータが回転する。
Therefore, if a field rotor having four magnetic poles is incorporated in the stator winding according to the winding method, the field rotor rotates so as to follow the rotating magnetic field generated in the stator winding.

【0037】図5はこの発明の第2の実施の形態を説明
するステータ巻線の模式図である。なお、図中、図1と
同等部分には同一符号を付して重複説明を省略する。
FIG. 5 is a schematic view of a stator winding for explaining the second embodiment of the present invention. In the figure, the same parts as those in FIG.

【0038】図5において、このモータの巻線方法は、
巻数N1の巻線N1a,N1b,N1c,N1dにより
モータの1つの相のコイルとし(図3に示す端子X,X
X間のコイルとし)、4極の巻線N1a,N1cの磁極
中心に対して電気角で112.5度隔てた位置に4スロ
ットピッチの4極の巻線N4a,N4bを同巻線N1
a,N1cと逆の向きに2個順次巻回して1つの相のコ
イルとし(図3に示す端子Y,YY間のコイルとし)、
4極の巻線N1a,N1cの磁極中心に対して電気角で
−112.5度隔てた位置に4スロットピッチの4極の
巻線N5a,N5bを同巻線N1a,N1cと逆の向き
に2個順次巻回して1つの相のコイルとする(図3に示
す端子Z,ZZ間のコイルとする。
In FIG. 5, the winding method of this motor is as follows.
A coil of one phase of the motor is formed by windings N1a, N1b, N1c, N1d having the number of turns N1 (terminals X, X shown in FIG. 3).
As a coil between X), four-pole windings N4a and N4b having a four-slot pitch are arranged at positions separated by 112.5 electrical degrees from the magnetic pole centers of the four-pole windings N1a and N1c.
a and N1c are wound in the opposite direction one by one to form one phase coil (a coil between terminals Y and YY shown in FIG. 3),
The four-pole windings N5a and N5b having a four-slot pitch are placed in positions opposite to the winding poles N1a and N1c at positions separated by an electrical angle of -112.5 degrees from the magnetic pole centers of the four-pole windings N1a and N1c. Two coils are sequentially wound to form one phase coil (a coil between terminals Z and ZZ shown in FIG. 3).

【0039】言い替えると、端子Y,YY間のコイルを
構成する2個の巻線N4a,N4bと端子Z,ZZ間の
コイルを構成する2個の巻線N5a,N5bとが交互に
位置し、つまりコンセークエントポール方式により4極
の巻線を1つ置きに巻回している。
In other words, the two windings N4a and N4b forming the coil between the terminals Y and YY and the two windings N5a and N5b forming the coil between the terminals Z and ZZ are alternately located, In other words, the consequent pole method is used to wind every other four-pole winding.

【0040】また、図6の矢印に示すように、巻線N4
a,N4b,N5a,N5bの巻方は全て同じ向きであ
り、巻線N4a,N4bの各巻数を2×N2として前実
施の巻線N2a、N2b,N2c,N2dのコイルに対
応させ、巻線N5a,N5bの各巻数を2×N3として
前実施の巻線N3a、N3b,N3c,N3dのコイル
に対応させている。なお、巻数および有効巻数は前実施
の形態と同じ値であり、つまり各有効巻数はN2=N3
=N1/1.32の関係にある。
As shown by the arrow in FIG. 6, the winding N4
The winding directions of a, N4b, N5a, and N5b are all in the same direction, and the number of turns of each of the windings N4a and N4b is set to 2 × N2 so as to correspond to the coils of the preceding windings N2a, N2b, N2c, and N2d. The number of turns of each of N5a and N5b is set to 2 × N3 to correspond to the coils of the windings N3a, N3b, N3c, and N3d of the previous implementation. The number of turns and the number of effective turns are the same as in the previous embodiment, that is, each number of effective turns is N2 = N3.
= N1 / 1.32.

【0041】前記3つの相のコイルの端子XX,YY,
ZZを接続し、つまり3つのコイルを星状に結線してモ
ータのステータ巻線を形成し、図3の波線矢印に示すよ
うに、各相のコイルの通電を順次切り替える。例えば、
図3に示すトランジスタを前述した表1にしたがってオ
ンすると、所定電圧がモータに印加され、つまり所定相
の通電が順次行われ、この通電の切り替えによりステー
タには回転磁界が生じる。
The terminals XX, YY of the coils of the three phases are
ZZ is connected, that is, three coils are connected in a star shape to form a stator winding of the motor, and the energization of the coils of each phase is sequentially switched as shown by the broken line arrow in FIG. For example,
When the transistor shown in FIG. 3 is turned on in accordance with Table 1 described above, a predetermined voltage is applied to the motor, that is, a predetermined phase of energization is sequentially performed, and a rotating magnetic field is generated in the stator by switching the energization.

【0042】具体的に説明すると、通電I1では、巻線
N1a,N1cによる発生磁界(発生磁束)に対して巻
線N1b,N1dによる発生磁界が逆向きとなり、また
巻線N4a,N4bには逆電流が流れることから、巻線
N4a,N4bによる発生磁界は巻線N1a,N1cに
よる発生磁界と同じ向きになる一方、この巻線N4a,
N4bによる磁界により逆の磁界が生じる(巻線N5
a,N5bに対応する部分には逆の磁界が生じる)。つ
まり、前実施の形態で説明した通電I1時と同等の磁束
分布になる。
More specifically, in the energization I1, the magnetic fields generated by the windings N1b and N1d are opposite to the magnetic fields (generated magnetic flux) generated by the windings N1a and N1c, and opposite to the windings N4a and N4b. Since the current flows, the magnetic field generated by the windings N4a and N4b has the same direction as the magnetic field generated by the windings N1a and N1c, while
An opposite magnetic field is generated by the magnetic field generated by N4b (winding N5
The opposite magnetic field is generated in the portions corresponding to a and N5b). That is, the magnetic flux distribution is the same as that at the time of energization I1 described in the previous embodiment.

【0043】通電I2では、巻線N4a,N4bによる
発生磁界は前と同じ状態のままであり、巻線N5a,N
5bによる発生磁界が巻線N4a,N4bによる発生磁
界と逆向きになる。つまり、前実施の形態で説明した通
電I2時と同等の磁束分布になる。したがって、通電I
1から通電I2に切り替わることにより、ステータの磁
束分布が図2の紙面上で時計方向に回転する。以下同様
に、通電I3ないしI6についても、前実施の形態と同
じ磁束分布を得ることができる。つまり、通電I1ない
しI6を順次行い、かつ繰り返すと、ステータ巻線の磁
束分布が回転する(ステータ巻線には回転磁界が発生す
る)。
At energization I2, the magnetic fields generated by the windings N4a and N4b remain the same as before, and the windings N5a and N4b
The magnetic field generated by 5b is in the opposite direction to the magnetic field generated by the windings N4a and N4b. That is, the magnetic flux distribution is the same as that at the time of energization I2 described in the previous embodiment. Therefore, energization I
By switching from 1 to energization I2, the magnetic flux distribution of the stator rotates clockwise on the paper surface of FIG. Similarly, for the energizations I3 to I6, the same magnetic flux distribution as in the previous embodiment can be obtained. That is, when the energizations I1 to I6 are sequentially performed and repeated, the magnetic flux distribution of the stator winding rotates (a rotating magnetic field is generated in the stator winding).

【0044】そこで、前記巻線方法によるステータ巻線
に4極の磁極を有する界磁ロータを組み込めば、そのス
テータ巻線に発生した回転磁界を追従するように界磁ロ
ータが回転する。
Therefore, if a field rotor having four magnetic poles is incorporated in the stator winding by the above winding method, the field rotor rotates so as to follow the rotating magnetic field generated in the stator winding.

【0045】したがって、前述した2つの巻線方法によ
れば、コンデンサモータのステータコアを三相のブラシ
レスモータや三相の誘導電動機のステータコアに利用す
ることができ、つまりステータコアの金型を兼用するこ
とができ、また巻線設備も利用することができ、設備投
資を大幅に削減することができ、ひいてはモータのコス
ト低下を図ることができる。
Therefore, according to the above-mentioned two winding methods, the stator core of the capacitor motor can be used as the stator core of the three-phase brushless motor or the three-phase induction motor, that is, the mold of the stator core can be used also. In addition, the winding equipment can be used, and the equipment investment can be significantly reduced, and the cost of the motor can be reduced.

【0046】なお、前記2つの実施の形態において、ス
テータにかご型巻線のロータを組み込んで4極の三相誘
導電動機としてもよい。この場合、図7に示すように、
交流電源を印加すれば、三相の誘導電動機として駆動す
ることができる。
In the above two embodiments, the rotor of the cage winding may be incorporated in the stator to form a four-pole three-phase induction motor. In this case, as shown in FIG.
If an AC power source is applied, it can be driven as a three-phase induction motor.

【0047】また、ステータコア1に巻回した各相のコ
イルは、通電時の有効巻数および巻線抵抗がほぼ同じに
なるように、その巻線の太さおよび巻線数を決定すると
よい。これにより、ステータ巻線に発生する回転磁界の
大きさを常に同じとすることができ、つまりロータの回
転をより滑らかにすることができる。
The coils of each phase wound around the stator core 1 may be determined in thickness and number of windings so that the effective number of windings and the winding resistance when energized are substantially the same. As a result, the magnitude of the rotating magnetic field generated in the stator winding can always be made the same, that is, the rotation of the rotor can be made smoother.

【0048】図6はこの発明の第3の実施の形態を説明
するステータ巻線の模式図である。なお、図中、図1と
同一部分には同一符号を付して重複説明を省略する。
FIG. 6 is a schematic diagram of a stator winding for explaining the third embodiment of the present invention. In the figure, the same parts as those in FIG.

【0049】図6において、このモータの巻線方法では
トロイダル巻線方式を採用し、前述した2つの巻線方法
による磁束分布と同等の磁束分布が発生するように、ス
テータコア1の16スロットに対応するヨークにトロイ
ダル巻線を施している。
In FIG. 6, a toroidal winding method is adopted in the winding method of this motor, and 16 slots of the stator core 1 are supported so that a magnetic flux distribution equivalent to the magnetic flux distribution by the two winding methods described above is generated. A toroidal winding is applied to the yoke.

【0050】具体的には、図3に示す端子X,XX間の
コイルを構成する巻線は、1,4,5,8,9,12,
13および16番目のスロットに対応するヨークに巻線
TN1,TN4,TN5,TN8,TN9,TN12,
TN13,TN16を順次巻回して得る。
Specifically, the windings forming the coil between the terminals X and XX shown in FIG. 3 are 1, 4, 5, 8, 9, 12,
The windings TN1, TN4, TN5, TN8, TN9, TN12, are connected to the yokes corresponding to the 13th and 16th slots.
It is obtained by sequentially winding TN13 and TN16.

【0051】図3に示す端子Y,YY間のコイルを構成
する巻線は、14,10,6および2番目のスロットに
対応するヨークに巻線TN14,TN10,TN6,T
N2を順次巻回して得る。
The windings constituting the coil between the terminals Y and YY shown in FIG. 3 have windings TN14, TN10, TN6, T on the yokes corresponding to the slots 14, 10, 6 and the second slot.
Obtained by sequentially winding N2.

【0052】図3に示す端子Z,ZZ間のコイルを構成
する巻線は、3,15,11および7番目のスロットに
対応するヨークに巻線TN3,TN15,TN11,T
N7を順次巻回して得る。
The windings forming the coil between the terminals Z and ZZ shown in FIG. 3 have windings TN3, TN15, TN11, T on the yokes corresponding to the third, fifth, eleventh and seventh slots.
It is obtained by sequentially winding N7.

【0053】なお、図6の矢印に示すように、各巻線の
巻方は、1,3,6,8,9,11,14および16番
目のスロットに対応するヨークに巻回した巻線TN1,
TN2,TN6,TN8,TN9,TN10,TN14
およびTN16を同じ向きとし、残りのスロットに対応
するヨークに巻回した巻線TN3,TN4,TN5,T
N7,TN10,TN12,TN13,TN15を逆方
向に同じ向きとしている。
As shown by the arrows in FIG. 6, the winding method is as follows: windings TN1 wound around yokes corresponding to the 1,3,6,8,9,11,14 and 16th slots. ,
TN2, TN6, TN8, TN9, TN10, TN14
And TN16 in the same direction, and windings TN3, TN4, TN5, T wound around the yokes corresponding to the remaining slots.
N7, TN10, TN12, TN13, and TN15 have the same direction in the opposite direction.

【0054】また、巻線NT1,TN4,TN5,TN
8,TN9,TN12,TN13,TN16の各巻数を
N1とし、巻線TN2,TN6,TN10,TN14の
各巻数を2×N2として前実施の巻線N2a、N2b,
N2c,N2dのコイルに対応させ、巻線TN3,TN
7,TN11,TN15の各巻数を2×N3(=2×N
2)として前実施の巻線N3a、N3b,N3c,N3
dのコイルに対応させているいる。なお、各有効巻数は
前実施の形態と同じであり、つまり各有効巻数はN2=
N3=N1/1.32の関係にある。
The windings NT1, TN4, TN5, TN
The number of turns of 8, TN9, TN12, TN13, TN16 is N1, the number of turns of each of the windings TN2, TN6, TN10, TN14 is 2 × N2, and the windings N2a, N2b,
Corresponding to the coils of N2c and N2d, windings TN3 and TN
7, the number of turns of TN11, TN15 is 2 × N3 (= 2 × N
2) Windings N3a, N3b, N3c, N3 of the previous implementation as
It corresponds to the coil of d. Note that each effective winding number is the same as that in the previous embodiment, that is, each effective winding number is N2 =
There is a relationship of N3 = N1 / 1.32.

【0055】前記3つの相のコイルの端子XX,YY,
ZZを接続し、つまり3つのコイルを星状に結線してモ
ータのステータ巻線を形成し、図3の波線矢印に示すよ
うに、各相のコイルの通電を順次切り替える。例えば、
図3に示すトランジスタを前述した表1にしたがってオ
ンすると、所定電圧がモータに印加され、つまり所定相
の通電が行われ、この通電の切り替えによりステータに
は回転磁界が生じる。
Terminals XX, YY of the coils of the three phases,
ZZ is connected, that is, three coils are connected in a star shape to form a stator winding of the motor, and the energization of the coils of each phase is sequentially switched as shown by the broken line arrow in FIG. For example,
When the transistor shown in FIG. 3 is turned on according to Table 1 described above, a predetermined voltage is applied to the motor, that is, a predetermined phase of energization is performed, and a rotating magnetic field is generated in the stator by switching this energization.

【0056】具体的に説明すると、通電I1では、巻線
TN1,TN16、巻線TN8,TN9c、巻線TN3
および巻線TN11による発生磁界(発生磁束)が同じ
で、巻線TN4,TN5、巻線TN12,TN13、巻
線TN6および巻線TN14による発生磁界が同じ向き
であり、また前記2つの発生磁界が逆向きになる。つま
り、前実施の形態で説明した通電I1時と磁束分布が同
じになる。
More specifically, in the energization I1, the windings TN1 and TN16, the windings TN8 and TN9c, and the winding TN3.
And the magnetic field generated by the winding TN11 (generated magnetic flux) is the same, the magnetic fields generated by the windings TN4, TN5, the windings TN12, TN13, the winding TN6 and the winding TN14 are in the same direction, and the two generated magnetic fields are It goes in the opposite direction. In other words, the magnetic flux distribution becomes the same as that at the time of energization I1 described in the previous embodiment.

【0057】通電I2では、巻線TN3,TN11によ
る発生磁界および巻線TN6,TN14による発生磁界
は前のままの状態であり、巻線TN2,TN10による
発生磁界が巻線TN3,TN11による発生磁界と同じ
向きに、巻線TN15,TN7による発生磁界が巻線T
N6,TN14による発生磁界と逆向きになる。つま
り、前実施の形態で説明した通電I2時と同じ磁束分布
となる。したがって、通電I1から通電I2に切り替わ
ることにより、ステータの磁束分布が図2の紙面上で時
計方向に回転する。以下同様に、通電I3ないしI6に
ついても、前実施の形態と同じ磁束分布を得ることがで
きる。つまり、通電I1ないしI6を順次行い、かつ繰
り返すと、ステータ巻線の磁束分布が回転する(ステー
タ巻線には回転磁界が発生する)。
In the energization I2, the magnetic fields generated by the windings TN3 and TN11 and the magnetic fields generated by the windings TN6 and TN14 are in the same states as before, and the magnetic fields generated by the windings TN2 and TN10 are generated by the windings TN3 and TN11. In the same direction as the magnetic field generated by the windings TN15 and TN7,
The direction is opposite to the magnetic field generated by N6 and TN14. That is, the magnetic flux distribution is the same as that at the time of energization I2 described in the previous embodiment. Therefore, by switching from energization I1 to energization I2, the magnetic flux distribution of the stator rotates in the clockwise direction on the paper surface of FIG. Similarly, for the energizations I3 to I6, the same magnetic flux distribution as in the previous embodiment can be obtained. That is, when the energizations I1 to I6 are sequentially performed and repeated, the magnetic flux distribution of the stator winding rotates (a rotating magnetic field is generated in the stator winding).

【0058】そこで、ステータ巻線に4極の磁極を有す
る界磁ロータを組み込めば、そのステータ巻線に発生し
た回転磁界を追従するように界磁ロータが回転する。
Therefore, if a field rotor having four magnetic poles is incorporated in the stator winding, the field rotor rotates so as to follow the rotating magnetic field generated in the stator winding.

【0059】そこで、前記巻線方法によるステータ巻線
に4極の磁極を有する界磁ロータを組み込み、図3に示
すように、各相のコイルの通電を順次切り替え、ステー
タ巻線に回転磁界を発生させれば、この回転磁界を追従
するように界磁ロータが回転する。
Therefore, a field rotor having four magnetic poles is incorporated in the stator winding according to the above winding method, and as shown in FIG. 3, the energization of the coils of each phase is sequentially switched to generate a rotating magnetic field in the stator winding. When generated, the field rotor rotates so as to follow this rotating magnetic field.

【0060】なお、前記ステータ巻線にかご型巻線のロ
ータを組み込んで4極の三相誘導電動機としてもよい。
この場合、図7に示すように、交流電源を印加すれば、
三相の誘導電動機として駆動することができる。
A rotor of a cage winding may be incorporated in the stator winding to form a four-pole three-phase induction motor.
In this case, if an AC power supply is applied, as shown in FIG.
It can be driven as a three-phase induction motor.

【0061】また、ステータコア1に巻回した各相のコ
イルは、通電時の有効巻数および巻線抵抗がほぼ同じに
なるように、その巻線の太さおよび巻線数を決定する。
これにより、ステータ巻線に発生する回転磁界の大きさ
を常に同じとすることができ、つまりロータの回転をよ
り滑らかにすることができる。
Further, the coils of each phase wound around the stator core 1 are determined in thickness and number of windings so that the effective number of windings and the winding resistance when energized are substantially the same.
As a result, the magnitude of the rotating magnetic field generated in the stator winding can always be made the same, that is, the rotation of the rotor can be made smoother.

【0062】さらに、前記巻線方法により、コンデンサ
モータのステータコアを三相のブラシレスモータや三相
の誘導電動機のステータコアに利用することができ、つ
まりステータコアの金型を兼用することができ、また巻
線設備も利用することができ、設備投資を大幅に削減す
ることができ、ひいてはモータのコスト低下を図ること
ができる。
Further, according to the winding method, the stator core of the capacitor motor can be used as the stator core of the three-phase brushless motor or the three-phase induction motor, that is, the die of the stator core can also be used. Wire equipment can also be used, equipment investment can be significantly reduced, and the cost of the motor can be reduced.

【0063】なお、図4に示す巻線ベクトルが得られる
巻線方法があれば、他の巻線方法にも適用してもよい。
If there is a winding method that can obtain the winding vector shown in FIG. 4, it may be applied to other winding methods.

【0064】[0064]

【発明の効果】以上説明したように、この発明のモータ
の巻線方法の請求項1によると、16スロットのステー
タコアに所定巻線を施してステータ巻線とし、このステ
ータ巻線に界磁ロータを組み込んでモータとしたので、
コンデンサモータのステータコアをブラシレスモータに
利用でき、つまりステータコアの金型を兼用することが
でき、かつ巻線設備を兼用することができ、これにより
設備投資を大幅に削減することができ、またブラシレス
モータのコスト低下が図れるという効果大なるものがあ
る。
As described above, according to the first aspect of the motor winding method of the present invention, the stator core of 16 slots is provided with a predetermined winding to form a stator winding, and the stator winding is connected to the field rotor. Since it was built as a motor,
The stator core of the capacitor motor can be used as a brushless motor, that is, the mold of the stator core can also be used, and the winding equipment can also be used, which can significantly reduce the equipment investment and also the brushless motor. There is a great effect that the cost can be reduced.

【0065】請求項2の発明によると、16スロットの
ステータコアに請求項1と異なる所定巻線を施してステ
ータ巻線とし、かつ請求項1と同等の磁束分布を得るよ
うにしたので、請求項1と同じ効果を奏する。
According to the invention of claim 2, a predetermined winding different from that of claim 1 is applied to the stator core of 16 slots to form a stator winding, and a magnetic flux distribution equivalent to that of claim 1 is obtained. Has the same effect as 1.

【0066】請求項3の発明によると、請求項1と同じ
磁束分布となるように、16スロットのステータコアに
所定トロイダル巻線を施すようにしたので、トロイダル
巻線方式でも請求項1と同じ効果を奏する。
According to the invention of claim 3, a predetermined toroidal winding is applied to the stator core of 16 slots so as to obtain the same magnetic flux distribution as in claim 1, so that the toroidal winding method has the same effect as that of claim 1. Play.

【0067】請求項4の発明によると、16スロットの
ステータコアに所定トロイダル巻線を施してステータ巻
線とし、請求項1と同等の磁束分布を得るようにしたの
で、トロイダル巻線方式でも請求項1と同じ効果を奏す
る。
According to the invention of claim 4, a predetermined toroidal winding is applied to the 16-slot stator core to form a stator winding, and a magnetic flux distribution equivalent to that of claim 1 is obtained. Has the same effect as 1.

【0068】請求項5の発明によると、請求項1,2,
3または4の巻線ステータに組み込む界磁ロータに代え
てかご型巻線のロータを用いたので、請求項1,2,3
または4の効果を三相の誘導電動機にも適用することが
できる。
According to the invention of claim 5, claims 1, 2,
A squirrel cage rotor is used instead of the field rotor incorporated in the winding stator of 3 or 4, so that
Alternatively, the effect of 4 can be applied to a three-phase induction motor.

【0069】請求項6の発明によると、請求項1または
2の巻線について、通電時の有効巻数および巻線抵抗が
3つのコイルでほぼ同じになるようにしたので、請求項
1または2の効果に加え、モータの回転がより滑らかに
なるという効果がある。
According to the invention of claim 6, in the winding of claim 1 or 2, the effective number of turns and the winding resistance at the time of energization are made substantially the same in the three coils. In addition to the effect, there is an effect that the rotation of the motor becomes smoother.

【0070】請求項7の発明によると、請求項3または
4のトロイダル巻線について、通電時の有効巻数および
巻線抵抗が3つのコイルでほぼ同じになるようにしたの
で、請求項3または4の効果に加え、モータの回転がよ
り滑らかになるという効果がある。
According to the invention of claim 7, in the toroidal winding of claim 3 or 4, the effective number of turns and the winding resistance at the time of energization are made substantially the same in the three coils. In addition to the above effect, there is an effect that the rotation of the motor becomes smoother.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の一形態を示し、モータのステ
ータ巻線を説明するための概略的模式図。
FIG. 1 is a schematic diagram for explaining a stator winding of a motor according to an embodiment of the present invention.

【図2】図1に示すモータのステータの概略的正面図。2 is a schematic front view of a stator of the motor shown in FIG.

【図3】図1に示すモータの動作を説明するための概略
的制御回路図。
FIG. 3 is a schematic control circuit diagram for explaining the operation of the motor shown in FIG.

【図4】図1に示すモータのステータ巻線を説明するた
めの概略的有効巻線ベクトル図。
FIG. 4 is a schematic effective winding vector diagram for explaining a stator winding of the motor shown in FIG.

【図5】この発明の第2の実施の形態を示し、モータの
ステータ巻線を説明するための概略的模式図。
FIG. 5 shows a second embodiment of the present invention and is a schematic diagram for explaining a stator winding of a motor.

【図6】この発明の第2の実施の形態を示し、モータの
ステータ巻線を説明するための概略的模式図。
FIG. 6 shows a second embodiment of the present invention and is a schematic diagram for explaining a stator winding of a motor.

【図7】この発明のモータを誘導電動機に適用した場合
の概略的制御回路図。
FIG. 7 is a schematic control circuit diagram when the motor of the present invention is applied to an induction motor.

【図8】従来のコンデンサモータの概略的制御回路図。FIG. 8 is a schematic control circuit diagram of a conventional capacitor motor.

【図9】図8に示すモータのステータ巻線を説明するた
めの概略的模式図。
9 is a schematic diagram for explaining a stator winding of the motor shown in FIG.

【図10】図8に示すモータの他のステータ巻線を説明
するための概略的模式図。
FIG. 10 is a schematic diagram for explaining another stator winding of the motor shown in FIG.

【符号の説明】[Explanation of symbols]

1 ステータコア(16ストロットの) N1a,N1b,N1c,N1d 巻線(有効巻数;N
1×sin67.5°) N2a,N2b,N2c,N2d 巻線(有効巻数;N
2=N3) N3a,N3b,N3c,N3d 巻線(有効巻数;N
3) N4a,N4b 巻線(有効巻数;2×N2=2×N
3) N5a,N5b 巻線(有効巻数;2×N3) TN1,TN4,TN5,TN8,TN9,TN12,
TN13,TN16トロイダル巻線(有効巻数;N1=
1.32×N2) TN2,TN6,TN10,TN14 トロイダル巻線
(有効巻数;2×N2=2×N3) TN3,TN7,TN11,TN15 トロイダル巻線
(有効巻数;2×N3)
1 Stator core (16 strottes) N1a, N1b, N1c, N1d Winding (effective number of turns; N
1 × sin 67.5 °) N2a, N2b, N2c, N2d Winding (effective number of turns; N
2 = N3) N3a, N3b, N3c, N3d Winding (effective number of turns; N
3) N4a, N4b windings (effective number of turns; 2 × N2 = 2 × N)
3) N5a, N5b windings (effective number of turns; 2 × N3) TN1, TN4, TN5, TN8, TN9, TN12,
TN13, TN16 toroidal winding (effective number of turns; N1 =
1.32 × N2) TN2, TN6, TN10, TN14 toroidal winding (effective winding number; 2 × N2 = 2 × N3) TN3, TN7, TN11, TN15 toroidal winding (effective winding number; 2 × N3)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 16個のスロットを有するステータコア
に3スロットピッチの4極の巻線を4個巻回し、かつ該
4個の巻線の隣接する巻線を逆巻きにして1つの相のコ
イルとし、該コイルを構成する巻線の磁極中心に対して
電気角で−112.5度隔てた位置に4スロットピッチ
の4極の巻線を4個巻回し、かつ該4個の巻線を前記コ
イルを構成する4極の巻線と同じ向きに巻いて1つの相
のコイルとし、前記コイルを構成する各巻線の磁極中心
に対して電気角で112.5度隔てた位置に4スロット
ピッチの4極の巻線を4個巻回し、かつ該4個の巻線を
前記コイルを構成する4極の巻線と同じ向きに巻いて1
つの相のコイルとし、前記3つの相のコイルを星状に結
線してステータ巻線を形成し、かつ所定磁極を有する界
磁ロータを組み込んでモータを構成し、前記3つの相の
コイルの通電を順次切り替えることにより前記ステータ
巻線に回転磁界を発生させて前記界磁ロータを回転可能
としたことを特徴とするモータの巻線方法。
1. A stator core having 16 slots, four windings of four poles having a three-slot pitch are wound, and adjacent windings of the four windings are reversely wound to form one phase coil. Winding four windings of four poles with a four-slot pitch at a position separated by an electrical angle of -112.5 degrees from the magnetic pole center of the windings forming the coil, and The coil is wound in the same direction as the four-pole winding forming the coil to form one phase coil, and the four-slot pitch is arranged at a position 112.5 degrees away from the magnetic pole center of each winding forming the coil by an electrical angle. Four windings of four poles are wound, and the four windings are wound in the same direction as the windings of four poles forming the coil.
A three-phase coil is connected to form a stator winding by connecting the three-phase coils in a star shape, and a field rotor having predetermined magnetic poles is incorporated to form a motor, and the three-phase coils are energized. Is sequentially switched to generate a rotating magnetic field in the stator winding so that the field rotor can be rotated.
【請求項2】 16個のスロットを有するステータコア
に3スロットピッチの4極の巻線を4個巻回し、かつ該
4個の巻線の隣接する巻線を逆巻きにして1つの相のコ
イルとし、該コイルの巻線の磁極中心から電気角で11
2.5度隔てた位置に4スロットピッチの4極の巻線を
コンセークエントポール方式で逆向きに2個巻回して1
つの相のコイルとするとともに、前記巻線の磁極中心か
ら電気角で−112.5度隔てた位置に4スロットピッ
チの4極の巻線をコンセークエントポール方式で逆向き
に2個巻回して1つの相のコイルとし、前記3つの相の
コイルを星状に結線してステータ巻線を形成し、かつ所
定磁極を有する界磁ロータを組み込んでモータを構成
し、前記3つの相のコイルの通電を順次切り替えること
により前記ステータ巻線に回転磁界を発生させて前記界
磁ロータを回転可能としたことを特徴とするモータの巻
線方法。
2. A stator core having 16 slots, four windings of four poles having a three-slot pitch are wound, and adjacent windings of the four windings are reversely wound to form one phase coil. , 11 in electrical angle from the center of the coil winding
Wind 2 coils of 4 poles with a pitch of 4 slots at positions separated by 2.5 degrees, in the reverse direction using the consequent pole method.
A coil of one phase is used, and two windings of four poles with a four-slot pitch are wound in opposite directions by a consequent pole method at a position separated by an electrical angle of -112.5 degrees from the magnetic pole center of the winding. As a coil of one phase, the coils of the three phases are connected in a star shape to form a stator winding, and a field rotor having predetermined magnetic poles is incorporated to form a motor. The winding method of the motor is characterized in that a rotating magnetic field is generated in the stator winding by sequentially switching the energization of to make the field rotor rotatable.
【請求項3】 前記4極の巻線に代えて前記ステータコ
アの16個のスロットにトロイダル巻線を施し、前記ス
テータ巻線に生じる磁速分布と同等の磁速分布が発生す
るように、前記16個の巻線を接続して3つの相のコイ
ルを形成するとともに、前記各巻線の巻線方向を選択
し、かつ前記3つの相のコイルを星状に結線してステー
タ巻線を形成するようにした請求項1記載のモータの巻
線方法。
3. A toroidal winding is applied to 16 slots of the stator core in place of the four-pole winding so that a magnetic speed distribution equivalent to that generated in the stator winding is generated. 16 windings are connected to form a coil of three phases, a winding direction of each winding is selected, and coils of the three phases are connected in a star shape to form a stator winding. The method of winding a motor according to claim 1, wherein
【請求項4】 16個のスロットを有するステータコア
にトロイダル巻線を巻回する際、前記ステータコアの
1,4,5,8,9,12,13および16番目のスロ
ットに対応するヨークに順次巻回し、かつ前記ステータ
コアの1,8,9および16番目のトロイダル巻線と
4,5および12番目のトロイダル巻線とを逆巻として
1つの相のコイルとし、前記ステータコアの14,1
0,6および2番目のスロットに対応するヨークに順次
巻回し、かつ前記ステータコアの14および6番目のト
ロイダル巻線と10および2番目のトロイダイル巻線と
を逆巻として1つの相のコイルとし、前記ステータコア
の3,15,11および7番目のスロットに対応するヨ
ークに順次巻回し、かつ前記ステータコアの3および1
1番目のトロイダル巻線と15および7番目のトロイダ
ル巻線とを逆巻として1つの相のコイルとし、前記3つ
の相のコイルを星状に結線してステータ巻線を形成し、
かつ所定磁極を有する界磁ロータを組み込んでモータを
構成し、前記3つの相のコイルの通電を順次切り替える
ことにより前記ステータ巻線に回転磁界を発生させて前
記界磁ロータを回転可能としたことを特徴とするモータ
の巻線方法。
4. When a toroidal winding is wound around a stator core having 16 slots, the toroidal windings are sequentially wound around the yokes corresponding to the 1, 4, 5, 8, 9, 12, 13 and 16th slots of the stator core. And the 1, 8, 9 and 16th toroidal windings and the 4, 5 and 12th toroidal windings of the stator core are reverse-wound to form one phase coil, and the stator core 14, 1
Wound sequentially around the yokes corresponding to the 0th, 6th and 2nd slots, and the 14th and 6th toroidal windings and the 10th and 2nd toroidal windings of the stator core are reverse-wound to form one phase coil, The stator core is sequentially wound around the yokes corresponding to the 3, 15th, 11th, and 7th slots, and the stator cores 3 and 1 are wound.
The first toroidal winding and the 15th and 7th toroidal windings are reverse-wound to form one phase coil, and the three phase coils are connected in a star shape to form a stator winding,
In addition, a field rotor having predetermined magnetic poles is incorporated to form a motor, and a rotating magnetic field is generated in the stator winding by sequentially switching energization of the coils of the three phases to enable rotation of the field rotor. A method of winding a motor characterized by:
【請求項5】 前記界磁ロータに代えてかご型巻線のロ
ータを用いた請求項1,2,3または4記載のモータの
巻線方法。
5. A winding method for a motor according to claim 1, 2, 3 or 4, wherein a squirrel cage rotor is used instead of the field rotor.
【請求項6】 前記4極の巻線を施して3つの相のコイ
ルを形成する際、該コイルの通電時の有効巻数および巻
線抵抗がほぼ同じになるように、前記コイルを構成する
巻線の太さおよび巻線数を決定した請求項1または2記
載のモータの巻線方法。
6. The windings constituting the coil such that when the four-pole winding is applied to form a coil of three phases, the number of effective turns and the winding resistance when the coil is energized are substantially the same. The winding method for a motor according to claim 1, wherein the thickness of the wire and the number of windings are determined.
【請求項7】 前記トロイダル巻線を施して3つの相の
コイルを形成する際、該コイルの通電時の有効巻数およ
び巻線抵抗がほぼ同じになるように、前記コイルを構成
するトロイダル巻線の太さおよび巻線数を決定した請求
項3または4記載のモータの巻線方法。
7. A toroidal winding forming the coil so that when the toroidal winding is applied to form a coil of three phases, the number of effective turns and the winding resistance when the coil is energized are substantially the same. The winding method for a motor according to claim 3 or 4, wherein the thickness and the number of windings are determined.
JP14999196A 1996-05-21 1996-05-21 Winding method of motor coil Pending JPH09312945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14999196A JPH09312945A (en) 1996-05-21 1996-05-21 Winding method of motor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14999196A JPH09312945A (en) 1996-05-21 1996-05-21 Winding method of motor coil

Publications (1)

Publication Number Publication Date
JPH09312945A true JPH09312945A (en) 1997-12-02

Family

ID=15487085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14999196A Pending JPH09312945A (en) 1996-05-21 1996-05-21 Winding method of motor coil

Country Status (1)

Country Link
JP (1) JPH09312945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144731A (en) * 2006-12-13 2008-06-26 Daikin Ind Ltd Compressor, air conditioner, and hot water heater
CN103762798A (en) * 2014-02-18 2014-04-30 苏州爱知高斯电机有限公司 Method for winding coil of three-phase motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144731A (en) * 2006-12-13 2008-06-26 Daikin Ind Ltd Compressor, air conditioner, and hot water heater
CN103762798A (en) * 2014-02-18 2014-04-30 苏州爱知高斯电机有限公司 Method for winding coil of three-phase motor

Similar Documents

Publication Publication Date Title
EP0295718B1 (en) Method for winding a motor with armature teeths and field magnet
JP2004032984A (en) Induction motor
JP4772503B2 (en) Three-phase synchronous machine including a permanent magnet type rotor having a squirrel-cage induction winding conductor, a traction drive device, and a production machine device
WO2006002207A2 (en) High phase order ac machine with short pitch winding
JPH09312945A (en) Winding method of motor coil
US20190312476A1 (en) Motor
JP2001169517A (en) Capacitor motor
JPH09312946A (en) Winding method of motor coil
JP3002927B2 (en) Brushless motor
Dudley et al. Connecting induction motors
JP3103435B2 (en) AC generator for vehicles
EP1514340A1 (en) Synchronous electrical concentrated coil machine
GB2362269A (en) Double wire winding in a brushless dc motor
JP2006094700A (en) Unit for switching wire connection pattern
US3052806A (en) Electric motors and stators therefor
JPH1098859A (en) Fan motor with two-pole to four-pole switch function and method for switching speed of the motor
JP2825912B2 (en) Commutator motor
JPH0984310A (en) Winding method for polyphase motor and the polyphase motor wound by the same method
JP2000060092A (en) Multipolar generator
JPH09201021A (en) Variable pole single-phase induction motor
JPH0715900A (en) Synchronous machine and control method for synchronous machine
JPH1155913A (en) Three-phase motor
JP2002010551A (en) Rotary electric machine
JP4034388B2 (en) Multiphase hybrid stepping motor
JPS58224549A (en) Structure of rotary electric machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030625