JPH09307237A - Ceramic multilayer wiring board and manufacture thereof - Google Patents

Ceramic multilayer wiring board and manufacture thereof

Info

Publication number
JPH09307237A
JPH09307237A JP8116361A JP11636196A JPH09307237A JP H09307237 A JPH09307237 A JP H09307237A JP 8116361 A JP8116361 A JP 8116361A JP 11636196 A JP11636196 A JP 11636196A JP H09307237 A JPH09307237 A JP H09307237A
Authority
JP
Japan
Prior art keywords
layer
mixed
paste
sintered body
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8116361A
Other languages
Japanese (ja)
Inventor
Nozomi Tanifuji
望 谷藤
Norikazu Fukunaga
憲和 福永
Koji Sawada
孝二 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP8116361A priority Critical patent/JPH09307237A/en
Publication of JPH09307237A publication Critical patent/JPH09307237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic multilayer wiring board, having junctioned inner heat transfer sintered body, in which a surface conductor can be manufactured at the cost lower than the conventional plating method in a highly productive manner. SOLUTION: A mixed sintered layer 5, which is in the composition of W and/or Mo of 50 to 90wt.% and Ir and/or Pt of 10 to 50wt.%, is provided on the part directry under a heat generating element 1 between the heat transfer sintered body 3, which is mainly composed of W and/or Mo, and a metal thick film layer 2 which is a surface layer body in this board. Also, the upper surface of the mixed sintered layer 5 has the area larger than the projected area of the heat generating element in this manufacturing method, and the total thickness of the mixed sintered layer and the heat transfer sintered body is thicker than the thickness of one layer of a multilayer ceramic insulating layer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路部品とし
て使用されるセラミック多層配線基板およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic multilayer wiring board used as an electronic circuit component and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、高融点金属を内部配線層として用
いるセラミック多層配線基板において、発熱量の多いパ
ワー素子を表面に実装する場合に、発熱素子が過熱され
ないよう基板の構造が種々工夫されている。すなわち、
通常のセラミック多層配線基板では、実装した発熱素子
の放熱方法として下記のような方法が知られている。
2. Description of the Related Art Conventionally, in a ceramic multilayer wiring board using a refractory metal as an internal wiring layer, various structures of the board have been devised so that the heating element is not overheated when a power element with a large amount of heat generation is mounted on the surface. There is. That is,
In a general ceramic multilayer wiring board, the following method is known as a method of dissipating heat from a mounted heating element.

【0003】イ.発熱素子上部に金属製のヒートシンク
等をさらに設けて、周囲への放熱性を増加させる。しか
し、この方法では、ヒートシンクの実装によるコスト増
加や実装容積増加は避けられない。
[0003] b. A metal heat sink or the like is further provided on the upper part of the heating element to increase heat dissipation to the surroundings. However, with this method, the cost increase and the mounting volume increase due to the mounting of the heat sink cannot be avoided.

【0004】ロ.セラミック基板に発熱素子等の部品が
実装される基板表面に、金属Cu板を接合させたDBC
(ダイレクトボンドカッパー:銅直接接合)基板がある
が、これでは発熱素子から基板への熱伝導による放熱性
はすぐれているが、より微細な配線パターンが基板表面
に形成できる厚膜導体や厚膜抵抗体を用いた回路基板に
比べて、基板の小型化がはかれず、回路基板としての機
能が低い点が問題である。
B. DBC in which a metallic Cu plate is joined to the surface of a substrate on which parts such as heating elements are mounted on a ceramic substrate
Although there is a substrate (direct bond copper: copper direct bonding), this has excellent heat dissipation from the heat-generating element to the substrate, but a thick film conductor or thick film that can form a finer wiring pattern on the substrate surface. As compared with a circuit board using a resistor, the size of the board cannot be reduced and the function as a circuit board is low.

【0005】ハ.複数の絶縁層からなる多層基板上にパ
ワー素子を配置し、一以上の絶縁層のパワー素子下部領
域に、パワー素子の熱伝達用導体を充填した多層基板も
知られている(特開平7−162157号公報参照)。
この多層基板では基板内にMoやW粉末及びアルミナ粉
末との混合物が内蔵され、基板との同時焼成により、熱
伝達用導体を形成しているが、この上部に発熱素子を実
装する場合には、メッキ方式による表面導体層の形成が
必須であり、厚膜抵抗体や保護ガラス層等を形成するた
めの印刷、焼成工程と異なる余分な工程が必要となるた
め、基板の製造コストの上昇は避けられない。
[0005] c. There is also known a multilayer substrate in which a power element is arranged on a multilayer substrate composed of a plurality of insulating layers, and a heat transfer conductor of the power element is filled in a lower region of the power element of one or more insulating layers (JP-A-7- 162162 gazette).
In this multilayer substrate, a mixture of Mo, W powder and alumina powder is built in the substrate, and a heat transfer conductor is formed by simultaneous firing with the substrate. The formation of the surface conductor layer by the plating method is indispensable, and an extra step different from the printing and firing steps for forming the thick film resistor, the protective glass layer, etc. is required, which increases the manufacturing cost of the substrate. Unavoidable.

【0006】[0006]

【発明が解決しようとする課題】高融点金属を内部配線
層として用いるセラミック多層配線基板において、発熱
量の多い発熱素子を表面に実装する場合に、表層導体を
従来のメッキ法に比べてより製造コストが低く、生産性
の高い方式で、内部の熱伝導焼結体と接合しているセラ
ミック多層配線基板を提供するものである。
In a ceramic multilayer wiring board using a refractory metal as an internal wiring layer, when a heating element with a large heating value is mounted on the surface, a surface layer conductor is manufactured more than a conventional plating method. Provided is a ceramic multilayer wiring board which is bonded to an internal heat conductive sintered body in a low cost and high productivity system.

【0007】[0007]

【課題を解決するための手段】本発明は、金属厚膜層を
介して発熱素子を実装したセラミック多層配線基板にお
いて、発熱素子の直下部分にW及び/又はMoを主成分
とする熱伝導用焼結体を内蔵し、その熱伝導用焼結体と
表層導体である金属厚膜層との間に、W及び/又はMo
50〜90wt%とIr及び/又はPt10〜50wt
%の組成の混合焼結層を設けてあり、該混合焼結層の上
面は発熱素子の投影面積以上の面積を有し、かつ、混合
焼結層と前記熱伝導用焼結体との合計厚さが多層セラミ
ック絶縁層の1層分の厚さ以上であることを特徴とする
セラミック多層配線基板である。
DISCLOSURE OF THE INVENTION The present invention relates to a ceramic multilayer wiring board on which a heat generating element is mounted via a metal thick film layer, for heat conduction containing W and / or Mo as a main component directly below the heat generating element. A sintered body is built in, and W and / or Mo are provided between the sintered body for heat conduction and the metal thick film layer which is the surface conductor.
50 to 90 wt% and Ir and / or Pt 10 to 50 wt
% Mixed sintering layer is provided, the upper surface of the mixed sintering layer has an area equal to or larger than the projected area of the heating element, and the total of the mixed sintering layer and the heat conducting sintered body. The ceramic multilayer wiring board is characterized in that the thickness is equal to or larger than the thickness of one multilayer ceramic insulating layer.

【0008】上記混合焼結層は、さらに外掛けで20w
t%以下のアルミナ又は窒化アルミニウムを含有しても
よい。
[0008] The mixed sintered layer is further 20w on the outside.
It may contain t% or less of alumina or aluminum nitride.

【0009】又、本発明は、セラミックグリーンシート
を多層に重ね、内部の所要部に熱伝導用焼結体材料を配
置して同時焼成する方法において、発熱素子実装部の直
下部分のグリーンシート内にW及び/又はMo粉末を有
機バインダと共に混合した熱伝導用焼結体形成用ペース
トとさらにその上にW及び/又はMo粉末50〜90w
t%とIr及び/又はPt粉末10〜50wt%をバイ
ンダと共に混合したペーストを充填し、この両ペースト
充填部の上面は少なくとも発熱素子の投影面積以上の表
面積を有し、かつ合計厚さがグリーンシート1層以上と
なるようにし、グリーンシートと両ペースト充填部を同
時に焼成し、その後、表層に金属厚膜形成用ペーストを
配して焼成することを特徴とするセラミック多層配線基
板の製造方法である。
Further, according to the present invention, in a method of stacking ceramic green sheets in multiple layers, arranging a heat conducting sintered body material in a required portion inside and simultaneously firing the same, in the green sheet immediately below the heating element mounting portion. And W and / or Mo powder mixed with an organic binder to form a heat conductive sintered body forming paste, and further W and / or Mo powder 50 to 90w
A paste containing t% and 10 to 50 wt% of Ir and / or Pt powder mixed with a binder is filled, and the upper surfaces of both paste filled portions have a surface area at least larger than the projected area of the heating element, and the total thickness is green. A method for manufacturing a ceramic multi-layer wiring board, characterized in that the green sheet and both paste-filled portions are simultaneously fired so that the number of sheets is one or more, and then the metal thick film forming paste is placed on the surface layer and fired. is there.

【0010】上記熱伝導用焼結体形成用ペースト並びに
W及び/又はMoとIr及び/又はPtの混合ペースト
にさらに外掛けで20wt%以下のアルミナ又は窒化ア
ルミニウムを含有することもある。
In some cases, 20 wt% or less of alumina or aluminum nitride may be added to the paste for forming a sintered body for heat conduction and the mixed paste of W and / or Mo and Ir and / or Pt.

【0011】本発明において、混合焼結層におけるI
r、Ptは、W及び/又はMoの還元力、換言すれば
W、Moの酸化作用を抑制する金属であり、以下混合焼
結層における代表的な組合せ例としてWとIrの組合せ
の場合を例として説明する。
In the present invention, I in the mixed sintered layer
r and Pt are metals that suppress the reducing power of W and / or Mo, in other words, the oxidizing action of W and Mo. In the following, as a typical combination example in the mixed sintered layer, a combination of W and Ir will be described. This will be explained as an example.

【0012】W及び/又はMo粉末よりなるペーストを
基板のグリーンシート内部に充填し、さらにその上に、
所定組成比のWとIr粉末の混合ペーストを重なるよう
に充填して、還元性雰囲気中約1400〜1600℃
で、積層したグリーンシートと共に同時焼結することに
より、IrがW中へ固溶して合金化する。これにより、
W単体は減少し、Wの還元力を抑制することとなり、表
層導体としてCu厚膜用ペーストを印刷し、非酸化性雰
囲気で焼成する際、Cu厚膜用ペースト中の含有成分に
対する還元作用が抑制されることとなり、Cu厚膜の焼
結反応が安定し、緻密で高強度の膜質ができる。又、混
合焼結層中のIrは、Cu厚膜の焼成工程で、少量Cu
厚膜内へ固溶して、混合焼結層とCu厚膜界面近傍に強
固な接合層を形成し、これによりCu厚膜の接合強度が
向上する。
[0012] A paste made of W and / or Mo powder is filled inside the green sheet of the substrate, and on top of that,
A mixed paste of W and Ir powder having a predetermined composition ratio is filled so as to overlap each other, and the temperature is set to about 1400 to 1600 ° C. in a reducing atmosphere.
Then, by co-sintering with the laminated green sheets, Ir forms a solid solution in W and is alloyed. This allows
The amount of W alone decreases and the reducing power of W is suppressed, and when the Cu thick film paste is printed as the surface layer conductor and fired in a non-oxidizing atmosphere, the reducing action on the components contained in the Cu thick film paste is reduced. As a result, the sintering reaction of the Cu thick film is stabilized, and a dense and high-strength film quality can be obtained. Further, Ir in the mixed sintered layer is a small amount of Cu in the firing process of the Cu thick film.
It forms a solid solution in the thick film to form a strong bonding layer near the interface between the mixed sintered layer and the Cu thick film, thereby improving the bonding strength of the Cu thick film.

【0013】混合焼結層のIr含有量が10wt%未満
では、Wを合金化する量が少なく、W単体の残存量が多
くなるため、Wの還元力の抑制が不十分となる。又、I
rの含有量が50wt%を超えると、Wに比較して熱伝
導率の小さいIr量が増加するため、混合焼結層として
の熱伝導率の減少が顕著となるため、望ましくない。熱
伝導用焼結体形成用ペースト中、さらにはWとIrの混
合ペースト中に、それぞれ外掛けで20wt%以下のA
23を混合してもよい。
When the Ir content of the mixed sintered layer is less than 10 wt%, the amount of W alloyed is small and the amount of W alone remains large, so that the reducing power of W is insufficiently suppressed. Also, I
When the content of r exceeds 50 wt%, the amount of Ir having a smaller thermal conductivity than W increases, so that the thermal conductivity of the mixed sintered layer significantly decreases, which is not desirable. 20% by weight or less of A in the paste for forming the sintered body for heat conduction and further in the mixed paste of W and Ir
1 2 O 3 may be mixed.

【0014】そうすることにより、基板内部に充填する
混合ペーストをアルミナ質基板材料の同時焼成時におけ
る熱収縮率の差をより小さくすることができ、基板の反
り等の発生を防止することができる。
By doing so, it is possible to further reduce the difference in the thermal contraction rate of the mixed paste filling the inside of the substrate when the alumina-based substrate material is simultaneously fired, and to prevent the substrate from warping or the like. .

【0015】発熱素子から熱を効率良く実装場所である
表層導体よりセラミック絶縁基板下面側へ熱伝導させる
ために、基板内部へ充填する熱伝導用焼結体と混合焼結
層との合計厚さは多層セラミック絶縁層の1層分より好
ましくは2層分の厚さ以上であることが必要である。
又、混合焼結層の表面導体厚膜側の面積は発熱素子の投
影面積以上の表面面積を有することが必要である。
In order to efficiently conduct heat from the heat generating element to the lower surface side of the ceramic insulating substrate from the surface layer conductor, which is the mounting location, the total thickness of the heat conducting sintered body and the mixed sintering layer filled in the substrate. Must be at least as thick as one layer of the multilayer ceramic insulating layer, preferably at least two layers.
Further, the area of the mixed sintered layer on the surface conductor thick film side needs to have a surface area larger than the projected area of the heating element.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。図1において、1は発熱素子、2は例えば
Cuのような表面導体を形成する金属厚膜層である。3
はセラミック多層絶縁基板4内に内蔵されている熱伝導
用焼結体であり、発熱素子1の直下に位置している。5
は表面導体である金属厚膜層2と熱伝導用焼結体3との
間に介在させた混合焼結層である。熱伝導用焼結体3と
混合焼結体5とは一体となって、金属厚膜層2を介して
発熱素子1の直下にあり、その表面積(混合焼結層5の
最上面の面積)は少なくとも発熱素子1の投影面積以上
の面積を有する。そして、厚さはセラミック多層絶縁基
板4の構成単層である4a、4b、4cの一層分の厚さ
以上(図1の場合は2層分)とする。
Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a heating element, and 2 is a thick metal film layer forming a surface conductor such as Cu. 3
Is a sintered body for heat conduction built in the ceramic multilayer insulating substrate 4, and is located directly below the heat generating element 1. 5
Is a mixed sintered layer interposed between the metal thick film layer 2 which is a surface conductor and the heat conducting sintered body 3. The heat-conducting sintered body 3 and the mixed sintered body 5 are integrated with each other, directly below the heating element 1 through the thick metal film layer 2, and have a surface area (the area of the uppermost surface of the mixed sintered layer 5). Has an area at least larger than the projected area of the heating element 1. The thickness is set to be equal to or larger than the thickness of one layer of the single layers 4a, 4b and 4c constituting the ceramic multilayer insulating substrate 4 (two layers in the case of FIG. 1).

【0017】[0017]

【実施例】【Example】

実施例1 焼成後厚みが0.26mmとなるアルミナ質グリーンシ
ートの最上層と第2層を通して10×10mmの正方形
の穴をあけて、平均粒径2μmのWおよびアルミナ粉末
(W80wt%,アルミナ20wt%)に有機バインダ
を加えてペースト化したものを前記穴の下から200μ
m深さまで充填した。次にWとIr粉末表1に示す各種
割合でペースト化したものを穴上部の残りの部分に充填
し、これに最下層の第3層と合わせて積層した後、H2
+N2雰囲気中で、1500℃の温度で同時焼成した。
Example 1 A 10 × 10 mm square hole was made through the uppermost layer and the second layer of an alumina green sheet having a thickness of 0.26 mm after firing, and W and alumina powder (W80 wt%, alumina 20 wt%) having an average particle diameter of 2 μm were formed. %) With an organic binder added to form a paste 200 μm from the bottom of the hole
filled to m depth. Next, W and Ir powders, which were made into paste at various ratios shown in Table 1, were filled in the remaining portion on the upper part of the hole, and the third layer as the lowermost layer was laminated on the remaining portion, followed by H 2
Simultaneous firing was performed at a temperature of 1500 ° C. in a + N 2 atmosphere.

【0018】次にCu粉末を主成分とする市販のペース
トを混合焼結層上に11×11mmで焼成厚み17μm
となるように印刷し、N2雰囲気中で最高900℃で焼
成した。このCu厚膜の接着強度を評価した結果を表1
に併せて示す。接着強度の測定方法は、235℃±5℃
の溶融半田に基板を浸漬後、Cuのランド上に引張試験
用のリード線(線径0.6mm)を半田付けし、ピール
引張法により測定した。
Then, a commercially available paste containing Cu powder as a main component was mixed on the mixed and sintered layer at 11 × 11 mm and the thickness was 17 μm.
And printed at a temperature of up to 900 ° C. in a N 2 atmosphere. The results of evaluating the adhesive strength of this Cu thick film are shown in Table 1.
Are also shown. Adhesive strength is measured at 235 ° C ± 5 ° C
After immersing the substrate in the molten solder of No. 3, a lead wire for a tensile test (wire diameter: 0.6 mm) was soldered on the Cu land, and the peel tensile method was used.

【0019】又、Irの少ない例を比較例として示す。Further, an example in which Ir is small is shown as a comparative example.

【0020】さらに、本発明ではセラミック多層配線基
板がアルミナ以外に窒化アルミニウムでもよい。その場
合、混合焼結層にはアルミナに代ってAlNの添加がな
される。
Further, in the present invention, the ceramic multilayer wiring board may be aluminum nitride instead of alumina. In that case, AlN is added to the mixed sintered layer instead of alumina.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果より明らかな如く、実施例では
Cu厚膜と混合焼結層との接合強度は大きく良好であっ
た。これに対し、Irの配合量の少ない比較例は接合強
度が小さく不良であった。
As is clear from the results shown in Table 1, in the examples, the bonding strength between the Cu thick film and the mixed sintered layer was large and good. On the other hand, the comparative example with a small amount of Ir was poor in bonding strength and was defective.

【0023】次に、表1中のNo.8と同一の混合焼結
層組成をもつセラミック多層基板に発熱素子を実装した
場合の熱抵抗を有限要素法解析によるシミュレーション
により計算し、放熱特性が良好なDBC基板との比較テ
ストをした。
Next, No. 1 in Table 1 The thermal resistance when the heating element was mounted on the ceramic multilayer substrate having the same mixed sintered layer composition as in Example 8 was calculated by simulation by the finite element method analysis, and a comparison test with a DBC substrate having good heat dissipation characteristics was performed.

【0024】図2はシミュレーション対象モデルの全体
図で、4Wの発熱量を持つ11mm×11mm×0.6
mmtの発熱素子1を図1に示すセラミック多層絶縁基
板4で、20mm×20mm×0.78mmtの大きさ
のものの上に載置し、これを80mm×80mm×5m
mtのCu板6の上に取り付けたものである。これを風
速0m/sec(自然空冷)、20℃の環境下で、発熱
素子1の上面より下部のCu板6の裏側から大気中へ放
熱するまでの熱抵抗θj-a(℃/W)を計算した。混合
焼結層や熱伝導用焼結体(W80wt%+Al2320
wt%)およびセラミック多層絶縁基板4の各部の熱伝
導率を測定してシミュレーションした熱抵抗の結果を表
2に示す。又、比較として図3に示すDBC基板のシミ
ュレーションモデルについても熱抵抗を計算した。図3
において1は11mm×11mm×0.6mmtの発熱
素子で、7は11mm×11mm×0.5mmtの金属
Cuであり、8は20mm×20mm×0.78mmt
のアルミナ基板である。その結果も表2に併記する。
FIG. 2 is an overall view of the model to be simulated, which has a heating value of 4 W and is 11 mm × 11 mm × 0.6.
A heating element 1 having a size of mmt is placed on a ceramic multilayer insulating substrate 4 shown in FIG. 1 having a size of 20 mm × 20 mm × 0.78 mmt, which is 80 mm × 80 mm × 5 m.
It is mounted on the Cu plate 6 of mt. Calculate the thermal resistance θ ja (° C / W) from the backside of the Cu plate 6 below the upper surface of the heating element 1 to the atmosphere under the environment of 20 ° C with a wind speed of 0 m / sec (natural air cooling). did. Mixed sintered layer and sintered body for heat conduction (W80wt% + Al 2 O 3 20
wt%) and the thermal resistance of each portion of the ceramic multilayer insulating substrate 4 are measured and simulated, and the results of the thermal resistance are shown in Table 2. For comparison, the thermal resistance was also calculated for the simulation model of the DBC substrate shown in FIG. FIG.
1 is a heating element of 11 mm × 11 mm × 0.6 mmt, 7 is 11 mm × 11 mm × 0.5 mmt of metallic Cu, and 8 is 20 mm × 20 mm × 0.78 mmt.
Is an alumina substrate. The results are also shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】このように本実施例は、DBC基板に比べ
て熱抵抗は小さく、放熱特性もすぐれていることが判
る。
As described above, it is understood that the present embodiment has a smaller thermal resistance and a better heat dissipation characteristic than the DBC substrate.

【0027】次に、30mm×30mm×0.78mm
tの大きさで図1に示す構造を有するセラミック多層絶
縁基板を作成した。内蔵する熱伝導用焼結体と混合焼結
層は実施例1において用いたものと同じものを用いた。
基板表面にCu厚膜配線パターンを形成後、さらに厚膜
抵抗体および保護ガラス層をCu厚膜形成と同一の工程
を利用して、印刷および非酸化性雰囲気中で焼成して、
セラミック多層配線基板を作成した。基板表面に発熱素
子を含むチップ部品を半田付け後、回路基板として正常
に動作することを確認した。
Next, 30 mm × 30 mm × 0.78 mm
A ceramic multi-layer insulating substrate having the structure shown in FIG. The heat conductive sintered body and the mixed sintered layer incorporated therein were the same as those used in Example 1.
After forming the Cu thick film wiring pattern on the substrate surface, the thick film resistor and the protective glass layer are further printed and fired in a non-oxidizing atmosphere by using the same process as the Cu thick film formation,
A ceramic multilayer wiring board was created. After soldering the chip component including the heating element on the surface of the substrate, it was confirmed that the circuit substrate operates normally.

【0028】[0028]

【発明の効果】本発明は、熱伝導用焼結体を内蔵したセ
ラミック多層絶縁基板において、実装される発熱素子と
内部熱伝導部との接合性に優れ、良好な放熱特性を有す
るものである。そして、従来のように表面導体の形成に
当たり、メッキ処理工程を省略することができ、製造コ
ストを低下させ、かつ生産性の高いセラミック多層配線
基板を得ることができる。
According to the present invention, in a ceramic multi-layer insulating substrate containing a heat conducting sintered body, the heat generating element to be mounted and the internal heat conducting portion are excellent in bondability and have good heat dissipation characteristics. . Then, as in the conventional case, the plating treatment step can be omitted in forming the surface conductor, the manufacturing cost can be reduced, and a highly productive ceramic multilayer wiring board can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明例の熱抵抗測定のためのシミュレーショ
ン対象モデルの全体概念図である。
FIG. 2 is an overall conceptual diagram of a simulation target model for measuring thermal resistance according to an example of the present invention.

【図3】比較例のDBC基板の熱抵抗測定のためのシミ
ュレーション対象モデルの概念図である。
FIG. 3 is a conceptual diagram of a simulation target model for measuring thermal resistance of a DBC substrate of a comparative example.

【符号の説明】[Explanation of symbols]

1 発熱素子 2 金属厚膜層 3 熱伝導用焼結体 4 セラミック多層絶縁基板 5 混合焼結層 6 Cu板 7 金属Cu 8 アルミナ基板 DESCRIPTION OF SYMBOLS 1 Heating element 2 Metal thick film layer 3 Sintered body for heat conduction 4 Ceramic multilayer insulating substrate 5 Mixed sintering layer 6 Cu plate 7 Metal Cu 8 Alumina substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属厚膜層を介して発熱素子を実装した
セラミック多層配線基板において、発熱素子の直下部分
にW及び/又はMoを主成分とする熱伝導用焼結体を内
蔵し、その熱伝導用焼結体と表層導体である金属厚膜層
との間に、W及び/又はMo50〜90wt%とIr及
び/又はPt10〜50wt%の組成の混合焼結層を設
けてあり、該混合焼結層の上面は発熱素子の投影面積以
上の面積を有し、かつ、混合焼結層と前記熱伝導用焼結
体との合計厚さが多層セラミック絶縁層の1層分の厚さ
以上であることを特徴とするセラミック多層配線基板。
1. In a ceramic multilayer wiring board having a heating element mounted via a metal thick film layer, a heat conducting sintered body containing W and / or Mo as a main component is built in a portion directly below the heating element, A mixed sintered layer having a composition of W and / or Mo of 50 to 90 wt% and Ir and / or Pt of 10 to 50 wt% is provided between the heat conductive sintered body and the metal thick film layer which is a surface conductor. The upper surface of the mixed sintered layer has an area equal to or larger than the projected area of the heating element, and the total thickness of the mixed sintered layer and the heat conducting sintered body is one multilayer ceramic insulating layer. The above is a ceramic multilayer wiring board characterized by the above.
【請求項2】 混合焼結層がさらに外掛けで20wt%
以下のアルミナ又は窒化アルミニウムを含有する請求項
1記載のセラミック多層配線基板。
2. The mixed sintered layer is further 20% by weight on the outside.
The ceramic multilayer wiring board according to claim 1, which contains the following alumina or aluminum nitride.
【請求項3】 セラミックグリーンシートを多層に重
ね、内部の所要部に熱伝導用焼結体材料を配置して同時
焼成する方法において、発熱素子実装部の直下部分のグ
リーンシート内にW及び/又はMo粉末を有機バインダ
と共に混合した熱伝導用焼結体形成用ペーストとさらに
その上にW及び/又はMo粉末50〜90wt%とIr
及び/又はPt粉末10〜50wt%をバインダと共に
混合したペーストを充填し、この両ペースト充填部の上
面は少なくとも発熱素子の投影面積以上の表面積を有
し、かつ合計厚さがグリーンシート1層以上となるよう
にし、グリーンシートと両ペースト充填部を同時に焼成
し、その後、表層に金属厚膜形成用ペーストを配して焼
成することを特徴とするセラミック多層配線基板の製造
方法。
3. A method of stacking ceramic green sheets in a multi-layer, arranging a heat conducting sintered body material at a required internal portion and performing simultaneous firing, wherein W and / or W are provided in a green sheet directly below a heating element mounting portion. Or, a paste for forming a sintered body for heat conduction in which Mo powder is mixed with an organic binder, and further 50 to 90 wt% of W and / or Mo powder and Ir.
And / or Pt powder is filled with a paste in which 10 to 50 wt% is mixed with a binder, and the upper surfaces of the both paste filled portions have a surface area of at least the projected area of the heating element and the total thickness is one or more green sheets. And a green sheet and both paste-filled portions are simultaneously fired, and then a thick metal film forming paste is placed on the surface layer and fired.
【請求項4】 熱伝導用焼結体形成用ペーストがさらに
外掛けで20wt%以下のアルミナ又は窒化アルミニウ
ムを含有する請求項3記載のセラミック多層配線基板の
製造方法。
4. The method for producing a ceramic multilayer wiring board according to claim 3, wherein the paste for forming a sintered body for heat conduction further contains 20 wt% or less of alumina or aluminum nitride in an outer layer.
【請求項5】 W及び/又はMoとIr及び/又はPt
の混合ペーストにさらに外掛けで20wt%以下のアル
ミナ又は窒化アルミニウムを含有する請求項3又は4記
載のセラミック多層配線基板の製造方法。
5. W and / or Mo and Ir and / or Pt
5. The method for manufacturing a ceramic multilayer wiring board according to claim 3, wherein the mixed paste according to claim 4 further contains 20 wt% or less of alumina or aluminum nitride.
JP8116361A 1996-05-10 1996-05-10 Ceramic multilayer wiring board and manufacture thereof Pending JPH09307237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8116361A JPH09307237A (en) 1996-05-10 1996-05-10 Ceramic multilayer wiring board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8116361A JPH09307237A (en) 1996-05-10 1996-05-10 Ceramic multilayer wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09307237A true JPH09307237A (en) 1997-11-28

Family

ID=14685068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8116361A Pending JPH09307237A (en) 1996-05-10 1996-05-10 Ceramic multilayer wiring board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09307237A (en)

Similar Documents

Publication Publication Date Title
US7574793B2 (en) Process of forming a laminate ceramic circuit board
EP3605604B1 (en) Power module and method for manufacturing power module
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JP3520540B2 (en) Multilayer board
JP2692332B2 (en) Manufacturing method of aluminum nitride substrate
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
JP5665479B2 (en) Circuit board and electronic device
JPH09307237A (en) Ceramic multilayer wiring board and manufacture thereof
JP3588315B2 (en) Semiconductor element module
JP4721929B2 (en) Multilayer circuit board and electronic component module
JP2703426B2 (en) Circuit board
JP4493158B2 (en) Ceramic circuit board
JP2001185838A (en) Ceramic wiring board
JP2013045900A (en) Wiring board
JP4299421B2 (en) Manufacturing method of ceramic circuit board
JP2004006993A (en) Multilayer substrate
JP4295409B2 (en) Manufacturing method of ceramic circuit board
JPH08274422A (en) Circuit board
JP3628088B2 (en) Aluminum nitride multilayer wiring board and manufacturing method thereof
JP3934910B2 (en) Circuit board
JPH03116608A (en) Conductor paste and conductor
JP2000164996A (en) Ceramic wiring board
JPH0823052A (en) Thick film hybrid ic board provided with lead terminal
JPH1051089A (en) Wiring board and its manufacture
JP2000114441A (en) Multilayer metal plate and its manufacture