JPH09304689A - Range finder - Google Patents

Range finder

Info

Publication number
JPH09304689A
JPH09304689A JP12465696A JP12465696A JPH09304689A JP H09304689 A JPH09304689 A JP H09304689A JP 12465696 A JP12465696 A JP 12465696A JP 12465696 A JP12465696 A JP 12465696A JP H09304689 A JPH09304689 A JP H09304689A
Authority
JP
Japan
Prior art keywords
light
lens system
lens
distance measuring
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12465696A
Other languages
Japanese (ja)
Other versions
JP3655697B2 (en
Inventor
Yasushi Ogata
小方康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP12465696A priority Critical patent/JP3655697B2/en
Priority to US08/859,780 priority patent/US5877850A/en
Publication of JPH09304689A publication Critical patent/JPH09304689A/en
Application granted granted Critical
Publication of JP3655697B2 publication Critical patent/JP3655697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the thickness of a lens system and the size of a camera incorporating a range finder by applying a diffraction optical element to a range-finding lens system. SOLUTION: In the range-finding lens system, a light projecting lens system or a light receiving lens system is provided with the diffraction optical element constituted in such a manner that both surfaces r1 and r4 are of plane surfaces and at least one of them is of a diffraction surface. For instance, a plate lens having a thickness of 1mm is used and all power is concentrated on the surface r1 . The light emitting part of an infrared ray emitting diode(IRED) is covered with a planar resin package. The surface r1 paraxially has the total positive power with respect to rays of light at a projection angle of 0 deg., but the peripheral part of the surface r1 has a strong divergent action. The surface r4 is paraxially powerless, but the peripheral part of the surface r4 has a strong convergent action. Therefore, the surface r1 has such a shape that negative power gradually becomes stronger as it goes further away from the center. The surface r4 has such a shape that the positive power gradually becomes stronger as it goes further away from the center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回折型光学素子を
用いた測距装置に関するものであり、特に、赤外光を被
写体に向けて投光し、被写体よりの反射光を受光して被
写体までの距離を測定するアクティブ方式の測距装置の
光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device using a diffractive optical element, and in particular, it projects infrared light toward an object and receives reflected light from the object to receive the object. The present invention relates to an optical system of an active distance measuring device that measures a distance to.

【0002】[0002]

【従来の技術】従来より、赤外光を被写体に向けて投光
し、その反射光を検出して距離を測定するいわゆるアク
ティブ方式の測距装置はよく知られており、すでに多く
の製品にも応用されている。この方式は、投光レンズ系
を通して被写体に向けて赤外光を投射し、投光レンズ系
から一定距離、すなわち基線長だけ離れて設けられた受
光レンズ系を介して検出装置にて被写体からの反射光を
受光する。そして、検出装置上の位置情報から被写体ま
での距離を算出する手法である。
2. Description of the Related Art Conventionally, a so-called active type distance measuring device for projecting infrared light toward a subject and detecting a reflected light thereof to measure a distance is well known, and has already been used in many products. Has also been applied. In this method, infrared light is projected toward a subject through a light-projecting lens system, and is detected from the object by a detection device via a light-receiving lens system provided at a fixed distance from the light-projecting lens system, that is, a base line length. Receives reflected light. Then, this is a method of calculating the distance to the subject from the position information on the detection device.

【0003】以下、図1を参照にしてこの方式を具体的
に説明する。図1はアクティブ方式の測距装置の要部を
示すブロック図である。図において、11は赤外発光ダ
イオード(以下、IREDと称す。)、11aは赤外発
光ダイオード11の制御部、12は赤外発光ダイオード
11から発せられた光を投射する投光レンズ系、13は
被写体、14は被写体13からの反射光を集光する受光
レンズ系、15は集光された光の位置検出装置(以下、
PSDと称す。)、16は距離算出手段、17は合焦用
レンズの位置演算等を行う制御手段、18は駆動ドライ
バー、19は駆動モーターである。IRED11として
は、図示のように発光部を曲率の付いた樹脂製のパッケ
ージにて覆ったもの、あるいは発光部を平面状の樹脂製
パッケージにて覆ったもの等がある。また、制御手段1
7にはCPUが内蔵されており、その出力はドライバー
18によるレンズ合焦繰り出しのための動力源となるモ
ーター19を駆動する。
Hereinafter, this method will be described in detail with reference to FIG. FIG. 1 is a block diagram showing a main part of an active distance measuring apparatus. In the figure, reference numeral 11 denotes an infrared light emitting diode (hereinafter referred to as IRED); 11a, a control unit of the infrared light emitting diode 11; 12, a light projecting lens system for projecting light emitted from the infrared light emitting diode 11; Is a subject, 14 is a light receiving lens system that collects reflected light from the subject 13, and 15 is a position detecting device (hereinafter, referred to as a focus detection device) of the collected light.
It is called PSD. ) And 16 are distance calculating means, 17 is control means for calculating the position of the focusing lens, 18 is a driving driver, and 19 is a driving motor. Examples of the IRED 11 include one in which the light emitting unit is covered with a resin package having a curvature as shown in the figure, one in which the light emitting unit is covered with a planar resin package, and the like. Control means 1
The CPU 7 has a built-in CPU. The output of the CPU 7 drives a motor 19 serving as a power source for the lens 18 to be focused by the driver 18.

【0004】図1に示される構成の測距装置において、
被写体距離をd、投光レンズ系12と受光レンズ系14
の間隔、すなわち基線長をW、受光レンズ系14の焦点
距離をf、PSD15上に集光された光の位置をxとす
ると、以下の関係式が得られる。
In the distance measuring device having the configuration shown in FIG.
The object distance is d, the light projecting lens system 12 and the light receiving lens system 14
Where W is the baseline length, f is the focal length of the light-receiving lens system 14, and x is the position of the light focused on the PSD 15, the following relational expression is obtained.

【0005】 d=W・f/x ・・・(a) PSD15から両側へ出力される光電流をI1 、I2
すると、その比I1 /I2 は入射光強度には依存せず、
入射光位置xのみで決定される。ここで、PSD15全
長をtとすると、以下の関係式が得られる。
D = W · f / x (a) If the photocurrents output from the PSD 15 to both sides are I 1 and I 2 , the ratio I 1 / I 2 does not depend on the incident light intensity. ,
It is determined only by the incident light position x. Here, assuming that the PSD 15 total length is t, the following relational expression is obtained.

【0006】 I1 /I2 ={(t/2)+x}/{(t/2)−x} ・・・(b) 上記(a)式と(b)式から以下の関係式が得られる。 I1 /I2 ={t+(2・W・f/d)}/{t−(2・W・f/d)} ・・・(c) したがって、PSD15の光電流比I1 /I2 を求めれ
ば、被写体距離dは一義的に決定される。
I 1 / I 2 = {(t / 2) + x} / {(t / 2) −x} (b) The following relational expression is obtained from the above equations (a) and (b). To be I 1 / I 2 = {t + (2 · W · f / d)} / {t− (2 · W · f / d)} (c) Therefore, the photocurrent ratio I 1 / I 2 of the PSD 15 Is obtained, the subject distance d is uniquely determined.

【0007】以上に説明した三角測距の原理に基づく測
距装置において、測距範囲を画面中央にしか持っていな
い場合、もし主要被写体が画面中心にないと、測距装置
は他の被写体あるいは背景、多くの場合遠方に合焦する
ため、いわゆる中抜けの状態になり、主要被写体はピン
ボケ写真となってしまう。
In the distance measuring device based on the above-described principle of triangulation, if the distance measuring range is only in the center of the screen, and if the main subject is not in the center of the screen, the distance measuring device will detect other subjects or Since the focus is on the background, in most cases, at a distance, a so-called hollow image occurs, and the main subject becomes an out-of-focus photograph.

【0008】このような欠点を補うために、測距用の投
射光を複数用い、画面内の複数の範囲を測距できるよう
にしたいわゆる多点測距と呼ばれる技術が提案されてい
る。例えば、多点測距用の投光レンズ系として、特開平
4−248509号等のものが知られている。
In order to compensate for such a drawback, a technique called so-called multi-point distance measurement has been proposed in which a plurality of projection light beams for distance measurement are used to measure a plurality of ranges in a screen. For example, as a projection lens system for multi-point distance measurement, one disclosed in JP-A-4-248509 is known.

【0009】次に、回折型光学素子(以下、Diffr
active Optical Elementを略し
てDOEと称する。)について説明する。DOEに関し
ては、「光学」22巻635〜642頁及び730〜7
37頁に詳しく解説されている。また、その応用し
て、"Hybrid diffractive-refractive lenses and achr
omats" Appl. Opt. 27,2960-2971、又は"International
Lens Design Conference(1990)"SPIE,1354 等に記載さ
れたものが知られている。あるいは、本出願人による特
開平7−270677号の中でも説明されている。
Next, a diffractive optical element (hereinafter referred to as Diffr
Active Optical Element is abbreviated as DOE. ) Will be described. Regarding DOE, "Optics" Vol. 22, pp. 635-642 and 730-7
It is explained in detail on page 37. In addition, by applying it, "Hybrid diffractive-refractive lenses and achr
omats "Appl. Opt. 27,2960-2971 or" International
The one described in Lens Design Conference (1990) "SPIE, 1354, etc. is known, or is also described in Japanese Patent Application Laid-Open No. 7-270677 by the present applicant.

【0010】従来のレンズが媒質の界面における屈折作
用に基づいているのに対し、DOEは光の回折作用に基
づいている。一般的に、図2で示すような回折格子へ光
が入射したとき、回折作用にて射出される光は以下の関
係式を満たす。 sinθ−sinθ’=mλ/d ・・・(d) ただし、θは入射角、θ’は射出角、λは光の波長、d
は回折格子のピッチ、mは回折次数である。
DOE is based on the diffraction effect of light, whereas conventional lenses are based on the refraction effect at the interface of media. Generally, when light is incident on a diffraction grating as shown in FIG. 2, the light emitted by the diffraction satisfies the following relational expression. sin θ−sin θ ′ = mλ / d (d) where θ is the incident angle, θ ′ is the exit angle, λ is the wavelength of light, and d
Is the pitch of the diffraction grating, and m is the diffraction order.

【0011】しだかって、(d)式に従ってリング状の
回折格子のピッチを適切に構成してやれば、光を一点に
集光させること、すなわちレンズ作用を持たせることが
できる。このとき、j番目の格子のリング半径をrj
回折面の焦点距離をfとすると、1次近似の領域にて以
下の式を満たす。
Therefore, if the pitch of the ring-shaped diffraction grating is appropriately configured according to the equation (d), it is possible to focus the light at one point, that is, to give a lens effect. At this time, the ring radius of the j-th lattice is r j ,
Assuming that the focal length of the diffraction surface is f, the following equation is satisfied in a first-order approximation region.

【0012】 rj 2 =2jλf ・・・(e) 一方、回折格子の構成法としては、明暗のリングにて構
成する振幅変調型、屈折率あるいは光路長を変える位相
変調型等が提案されている。振幅変調型のDOEでは複
数の回折次数光が発生するため、例えば入射光の光量と
1次回折光の光量比(以下、回折効率と称する。)は最
大でも6%程度である。あるいは、振幅変調型のDOE
を漂白処理等を施して改良したとしても、回折効率は最
大で34%程度である。しかし、位相変調型のDOEで
は、その断面形状を図3(a)に示すような鋸形状で構
成すれば回折効率を100%まで向上できる。このよう
なDOEをキノフォームと称している。このとき、鋸状
の山の高さは次式で与えられる。 h=mλ/(n−1) ・・・(f) ただし、hは山の高さ、nは基材の屈折率である。
R j 2 = 2jλf (e) On the other hand, as a method of constructing the diffraction grating, an amplitude modulation type configured by a bright and dark ring, a phase modulation type changing the refractive index or the optical path length, etc. have been proposed. There is. Since a plurality of diffraction order lights are generated in the amplitude modulation type DOE, for example, the ratio of the light amount of the incident light to the light amount of the first-order diffracted light (hereinafter referred to as diffraction efficiency) is at most about 6%. Or DOE of amplitude modulation type
Even if is improved by performing bleaching or the like, the diffraction efficiency is at most about 34%. However, in a phase modulation type DOE, the diffraction efficiency can be improved up to 100% if the cross-sectional shape is configured in a sawtooth shape as shown in FIG. Such a DOE is called a kinoform. At this time, the height of the serrated peak is given by the following equation. h = mλ / (n-1) (f) where h is the height of the crest and n is the refractive index of the base material.

【0013】(e)式からも予測されるように、回折効
率100%は只一つの波長に対してのみ達成される。ま
た、キノフォーム形状を図3(b)のように階段近似し
たものはバイナリー光学素子と呼ばれたりするが、これ
はリソグラフィー的手法にて比較的容易に製作できる。
バイナリー光学素子では、4段階近似で81%、8段階
近似で95%、16段階近似で99%の回折効率が得ら
れることが知られている。
As predicted from the equation (e), the diffraction efficiency of 100% can be achieved for only one wavelength. A kinoform shape obtained by stepwise approximation as shown in FIG. 3B is called a binary optical element, which can be manufactured relatively easily by a lithographic technique.
It is known that a binary optical element can obtain a diffraction efficiency of 81% in 4-step approximation, 95% in 8-step approximation, and 99% in 16-step approximation.

【0014】以上の説明は、平面型のDOEを前提にし
ているが、体積型のDOEでは性質が異なり、その回折
には回折理論を厳密に適用しなければならない。以下に
示す本発明の実施例は、基本的に平面型のDOEを対象
としている。
Although the above description is premised on the planar DOE, the volume DOE has different properties, and the diffraction theory must be strictly applied to the diffraction. The embodiments of the present invention described below are basically directed to a planar DOE.

【0015】DOEの設計法についてもいくつかの方法
が知られているが、本発明ではウルトラ・ハイ・インデ
ックス法を用いている。この手法については、"Mathema
tical equivalence between a holographic optical el
ement and ultra-high indexlens"J. Opt. Sos. Am. 6
9,486-487 、又は、"Using a conventional opticaldes
ign program to design holographic optical element
s" Opt. Eng. 19,649-653 等に示されている。すなわ
ち、DOEは厚みが0で屈折率が非常に大きな屈折面と
等価であることが知られている。
Although several methods are known for designing a DOE, the present invention uses the ultra high index method. For information on this technique, see "Mathema
tical equivalence between a holographic optical el
ement and ultra-high indexlens "J. Opt. Sos. Am. 6
9,486-487 or "Using a conventional opticaldes
ign program to design holographic optical element
s "Opt. Eng. 19,649-653. That is, it is known that DOE is equivalent to a refracting surface having a thickness of 0 and a very large refractive index.

【0016】このようなDOEをアクティブ方式の測距
装置へ応用した例としては、本出願人による特開平7−
63982号のものが知られている。この公報におい
て、マスターレンズのIRED側にコンバーターレンズ
を挿入して変倍を行うものであるが、このとき、コンバ
ーターレンズの主点位置を適切に設定し、マスターレン
ズを固定したまま変倍が可能となっている。このような
ことは、従来の屈折レンズ系のみでは、収差補正上不可
能なことと言える。この公報のレンズは、マスターレン
ズが凸平面状、コンバーターレンズが凹平面状からな
り、それぞれの平面が回折面にて構成されている。
As an example of applying such a DOE to an active distance measuring apparatus, Japanese Patent Application Laid-Open No. 7-
No. 63982 is known. In this publication, a converter lens is inserted on the IRED side of the master lens to perform zooming. At this time, zooming is possible by appropriately setting the principal point position of the converter lens and fixing the master lens. It has become. This can be said to be impossible for aberration correction only with a conventional refractive lens system. In the lens of this publication, the master lens has a convex flat surface and the converter lens has a concave flat surface, and each flat surface is a diffractive surface.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、特開平
7−63982号のものは、曲率の大きな面のレンズに
回折面を追加したものであるからレンズが厚く小型化で
きない。光の強度は距離の2乗に反比例して弱くなる
が、アクティブ方式の場合、被写体をある光で照明し
て、その被写体からの反射光を検知する訳であるから、
被写体までの距離が遠くなると反射光の強度は急激に弱
くなる。しかし、日中の明るい場所でも測距しなければ
ならず、測距用の信号光を低ノイズにて用いるために赤
外光が採用されている。したがって、測距用の光は十分
な明るさが求められ、その結果、投光及び受光レンズに
はFナンバーで1前後の明るさが要求される。このよう
な要求を満たすために、レンズは必然的に厚くなってし
まうが、近年のカメラ小型化に伴って、これらの測距用
レンズ系の小型化が求められている。
However, in Japanese Patent Laid-Open No. 7-63982, since a diffractive surface is added to a lens having a large curvature, the lens is thick and cannot be miniaturized. The intensity of light weakens in inverse proportion to the square of the distance, but in the case of the active method, the subject is illuminated with a certain light and the reflected light from the subject is detected.
As the distance to the subject increases, the intensity of the reflected light decreases rapidly. However, the distance must be measured even in a bright place in the daytime, and infrared light is used to use the signal light for distance measurement with low noise. Therefore, the light for distance measurement is required to have sufficient brightness, and as a result, the light projecting and receiving lenses are required to have a brightness of about 1 in F number. The lens inevitably becomes thicker in order to meet such requirements, but with the recent miniaturization of cameras, miniaturization of these distance measuring lens systems is required.

【0018】測距用レンズ系の直径は仕様にて決まって
しまうので、これを小さくするためにはFナンバーを大
きくするか、あるいは焦点距離を小さくする以外にな
い。
Since the diameter of the distance measuring lens system is determined by the specifications, the only way to reduce the diameter is to increase the F number or decrease the focal length.

【0019】本発明は従来技術のこのような問題点に鑑
みてなされたものであり、本発明においては、レンズ全
長の短縮を課題として考え、特にレンズの厚みを薄くす
ることによって測距用レンズ系が占める体積を削減する
ことを目的としている。さらに、このときに発生する収
差を十分に補正する方法を見出すことも目的としてい
る。
The present invention has been made in view of the above problems of the prior art. In the present invention, it is considered that the total lens length is shortened, and in particular, the distance measuring lens is reduced by reducing the thickness of the lens. The purpose is to reduce the volume occupied by the system. Furthermore, it is also an object to find a method for sufficiently correcting the aberration generated at this time.

【0020】[0020]

【課題を解決するための手段】本発明の測距装置は、発
光手段と、該発光手段から発する光を被写体に向けて投
射する投光レンズ系と、前記被写体による反射光を集光
する受光レンズ系と、その光を検知する検出手段とを有
する測距離装置において、前記投光レンズ系あるいは受
光レンズ系は、両面が平面にて構成され、その中少なく
とも1面が回折面にて構成された回折型光学素子を有す
ることを特徴とするものである。
A distance measuring device of the present invention comprises a light emitting means, a light projecting lens system for projecting light emitted from the light emitting means toward a subject, and a light receiving means for collecting reflected light from the subject. In a distance measuring device having a lens system and a detecting means for detecting the light thereof, the light projecting lens system or the light receiving lens system has flat surfaces on both sides, and at least one of them has a diffractive surface. And a diffractive optical element.

【0021】本発明のもう1つの測距装置は、発光手段
と、該発光手段から発する光を被写体に向けて投射する
投光レンズ系と、前記被写体による反射光を集光する受
光レンズ系と、その光を検知する検出手段とを有する測
距離装置において、前記投光レンズ系あるいは受光レン
ズ系は、少なくとも被写体側の面が非球面からなり、反
対側の面が回折面からなる回折型光学素子を有すること
を特徴とするものである。
Another distance measuring device of the present invention comprises a light emitting means, a light projecting lens system for projecting light emitted from the light emitting means toward an object, and a light receiving lens system for condensing light reflected by the object. A distance measuring device having a detecting means for detecting the light, in the projection lens system or the light receiving lens system, at least the surface on the object side is an aspherical surface and the opposite surface is a diffractive surface. It is characterized by having an element.

【0022】なお、回折型光学素子が、両面が平面にて
構成され、その中少なくとも1面が回折面にて構成され
ている場合に、その回折型光学素子は被写体側の面にて
正の球面収差を発生し、反対側の面にて負の球面収差を
発生するものであることが望ましい。
When the diffractive optical element is composed of flat surfaces on both sides and at least one of them is a diffractive surface, the diffractive optical element has a positive surface on the object side. It is desirable that spherical aberration is generated and negative spherical aberration is generated on the opposite surface.

【0023】以下、本発明において上記のような構成を
とる理由と作用について説明する。上記のように、回折
面を用いることによって、平面のまま強いパワーを持た
せることができる。従来の屈折レンズ系で強いパワーを
与えると、その面の曲率が大きくなり、特に測距用レン
ズ系の場合には、Fナンバーが小さいことと相まって、
屈折面のサグ量(レンズ面の面頂からの変化量)が非常
に大きい。あるいは、屈折レンズ系の両面にパワーを分
散しようとしても収差補正上被写体側の面にパワーが集
中するため、この点は改善されないので、レンズの厚み
が非常に大きくなってしまう。これに対して、回折面は
サグ量を0にできるので薄肉化の効果は大きい。実際の
回折面は、キノフォーム形状を仮定すると、(f)式よ
り数波長〜数10波長レベルの凹凸があるが実質的に平
面と見なしてよい。また、レンズの厚みも、加工上の制
約条件や組立上の条件等で決まる量まで薄くすることが
可能である。このような薄型化は屈折レンズ系では不可
能である。また、一般的に、DOEは色分散が大きいと
いう欠点があるが、測距用レンズ系においては、赤外光
の波長幅が狭いので問題にならない。したがって、測距
用レンズ系へのDOEの適用は非常に有効であると言え
る。
The reason why the above-mentioned structure is adopted and the operation of the present invention will be described below. As described above, by using the diffractive surface, it is possible to give a strong power as a flat surface. When a conventional refracting lens system is given strong power, the curvature of its surface becomes large, and especially in the case of a distance measuring lens system, the F number is small,
The amount of sag on the refracting surface (the amount of change from the top of the lens surface) is very large. Alternatively, even if it is attempted to disperse the power on both surfaces of the refracting lens system, the power is concentrated on the surface on the object side for aberration correction, and this point is not improved, so the lens thickness becomes very large. On the other hand, since the diffractive surface can reduce the sag amount to zero, the effect of reducing the thickness is great. Assuming a kinoform shape, an actual diffractive surface has irregularities of several wavelengths to several tens of wavelengths according to the expression (f), but may be regarded as a substantially flat surface. Also, the thickness of the lens can be reduced to an amount determined by processing constraints, assembling conditions, and the like. Such thinning is impossible with a refractive lens system. In addition, DOEs generally have the disadvantage of large chromatic dispersion, but do not pose a problem in the lens system for distance measurement because the wavelength width of infrared light is narrow. Therefore, it can be said that the application of DOE to the lens system for distance measurement is very effective.

【0024】上記のことは、平面状のレンズ(いわゆる
プレートレンズ)に限ったことではなく、プリズムの入
射面や射出面が曲率を持つレンズ(以後、プリズムレン
ズと称す。)においても、任意の面を回折面にて構成
し、レンズ系の小型化を達成することができる。
The above is not limited to the planar lens (so-called plate lens), but any lens having a curvature in the entrance surface or exit surface of the prism (hereinafter referred to as a prism lens) is also optional. It is possible to achieve the downsizing of the lens system by forming the surface with a diffractive surface.

【0025】次に、DOEにおける収差補正について説
明する。DOEにおいて、リング格子のピッチを適切に
設定すれば、入射光を一点に集光できるということは、
非球面による球面収差の補正と同様の作用を示している
ことになる。すなわち、DOEは非球面作用を持ってい
ることが知られている。したがって、測距装置が画面中
心のみに対応している場合には、球面収差のみの補正で
済むから、プレートレンズやプリズムレンズに限らず、
片面のDOEにて用いることができる。
Next, aberration correction in DOE will be described. In DOE, if the pitch of the ring grating is appropriately set, the incident light can be condensed at one point.
This shows the same effect as the correction of spherical aberration by the aspherical surface. That is, it is known that DOE has an aspherical action. Therefore, when the distance measuring device supports only the center of the screen, only spherical aberration needs to be corrected.
It can be used in one-sided DOE.

【0026】一方、いわゆる多点測距の場合には、測距
範囲が画面中心及び周辺にあるから、測距用レンズ系と
しては球面収差のみならずコマ収差の補正も重要であ
る。そこで、図4に示す配置を考える。プレートレンズ
の被写体側の面をrF 面、反対側の面をrR 面とし、各
面は回折面にて構成されているとする。そして、無限位
置から平行光が入射するとし、このとき各面におけるマ
ージナル光線の光線高をy、主光線の光線高をy’とす
る。また、絞りはrF 面と一致しているとする。ウルト
ラ・ハイ・インデックス法に従えば、回折面の屈折率は
非常に大きく、逆に曲率は非常に小さいから、rF 面で
発生する球面収差及びコマ収差はほぼ0である。一方、
R 面では収斂光束が通過するために、負の球面収差と
正のコマ収差が発生し性能を劣化させる。ここで、絞り
位置と収差係数の関係を考えると、"Design of a wide
field diffractive landscape lens"Appl. Opt. 28,395
0-3959より、DOEの場合は、以下の関係が得られる。
On the other hand, in the case of so-called multi-point distance measurement, since the distance measurement range is at the center and periphery of the screen, correction of not only spherical aberration but also coma aberration is important as a lens system for distance measurement. Therefore, consider the arrangement shown in FIG. It is assumed that the subject side surface of the plate lens is the r F surface and the opposite surface is the r R surface, and each surface is a diffractive surface. Then, suppose that parallel light is incident from an infinite position, and at this time, the ray height of the marginal ray on each surface is y, and the ray height of the principal ray is y '. Further, it is assumed that the diaphragm coincides with the r F plane. According to the ultra-high index method, the refractive index of the diffractive surface is very large, and conversely the curvature is very small, so spherical aberration and coma that occur in the r F surface are almost zero. on the other hand,
Since the convergent light beam passes through the r R surface, negative spherical aberration and positive coma aberration occur, degrading the performance. Here, considering the relationship between the diaphragm position and the aberration coefficient, "Design of a wide
field diffractive landscape lens "Appl. Opt. 28,395
From 0-3959, the following relationship is obtained in the case of DOE.

【0027】 SI* =SI ・・・(g) SII* =SII+(y’/y)SI ・・・(h) ただし、SI及びSIIは絞り密着時の3次の球面収差及
びコマ収差係数、SI*及びSII* は絞りが一致してい
ない場合の各収差係数である。図4(a)の場合、rR
面で発生するコマ収差をrF 面にてキャンセルすること
はできないから、(h)式に従って、SIにてSIIをキ
ャンセルさせる必要がある。しかし、y’が小さいの
で、結局SIが負で大きな値になってしまう。rR 面で
発生した負の球面収差をrF 面の非球面作用にて補正す
るために、rF 面では逆に大きな正の球面収差が発生す
る。絞りがrR 面に密着の場合も、rF 面で正の球面収
差を発生させ、rR 面で発生する負の球面収差を補正す
ることに変わりはない。
SI * = SI (g) SII * = SII + (y '/ y) SI (h) where SI and SII are the third-order spherical aberration and the coma aberration coefficient when the diaphragm is in close contact, SI * and SII * are the respective aberration coefficients when the diaphragms do not match. In the case of FIG. 4A, r R
Since the coma aberration generated on the surface cannot be canceled on the r F surface, it is necessary to cancel SII by SI according to the equation (h). However, since y'is small, SI ends up being a large negative value. negative spherical aberration generated by the r R surface in order to correct by aspherical function of r F face, large positive spherical aberration in the reverse occurs at r F surface. Even when the diaphragm is in close contact with the r R surface, the positive spherical aberration is generated on the r F surface and the negative spherical aberration generated on the r R surface is corrected.

【0028】以上、説明したように多点測距において十
分な収差補正を行うために、被写体と反対側の面でコマ
収差をキャンセルするだけの球面収差を発生させること
が必要であり、そのためにこの面は回折面であることが
望ましい。もし、従来の屈折面であれば、回折面程には
収差補正ができないので、測距レンズ系として使用可能
な投光角あるいは受光角が大幅に制限される。ただし、
投光角及び受光角とは、光軸に対し被写体へ向けて投射
される角度あるいは集光できる角度のことである。ま
た、球面収差補正のために、被写体側の面は正の球面収
差を発生するため発散作用面であり、反対側の面は負の
球面収差を発生するため収斂作用面であることが望まし
い。
As described above, in order to perform sufficient aberration correction in multi-point distance measurement, it is necessary to generate spherical aberration sufficient to cancel coma on the surface on the side opposite to the subject. This surface is preferably a diffractive surface. If a conventional refracting surface is used, aberrations cannot be corrected as much as a diffracting surface, so that the light projecting angle or light receiving angle that can be used as a distance measuring lens system is significantly limited. However,
The light projecting angle and the light receiving angle are angles with respect to the optical axis that are projected toward a subject or can be collected. Further, in order to correct spherical aberration, it is desirable that the surface on the subject side is a diverging surface because positive spherical aberration is generated and the surface on the opposite side is a converging surface because negative spherical aberration is generated.

【0029】しかし、被写体側の面から正の球面収差を
発生させるためには、回折面に限らず、平面状の非球面
項にて実現することも可能である。この場合、非球面形
状は被写体に対して凹面を向けるような形状になる。ま
た、十分な収差補正を達成するためには以下の条件式を
満たすことが望ましい。 0.15<d/D<0.30 ・・・ ただし、dは回折型光学素子の中心厚、Dは回折型光学
素子の直径である。式の下限の0.15を越えて薄く
なると、球面収差とコマ収差の補正が両立しない。式
の上限の0.30を越えて厚くなると、大型化してしま
い好ましくない。ただし、プリズムレンズ等の場合は、
式の上限に限られるものではない。
However, in order to generate the positive spherical aberration from the surface on the object side, not only the diffractive surface but also a planar aspherical term can be used. In this case, the aspherical shape is such that the concave surface faces the subject. Further, in order to achieve sufficient aberration correction, it is desirable to satisfy the following conditional expression. 0.15 <d / D <0.30, where d is the center thickness of the diffractive optical element and D is the diameter of the diffractive optical element. If the thickness is less than the lower limit of 0.15, the spherical aberration and the coma aberration cannot be corrected at the same time. If the thickness exceeds the upper limit of 0.30 in the formula, the thickness becomes large, which is not preferable. However, in the case of prism lens etc.,
It is not limited to the upper limit of the formula.

【0030】次に、プリズムレンズの場合の収差補正を
考える。前記プレートレンズと同様だが、図4(b)に
おいて、rR 面でのy’がyと比べて大きくなるので、
コマ収差補正が有利になる。rR 面で発生するコマ収差
をキャンセルするのに小さな球面収差量で可能であるか
ら、rF 面で発生する球面収差量も小さくて済む。その
結果、プリズムレンズの場合は、両面共に収斂作用を持
つことが望ましい。
Next, the aberration correction in the case of a prism lens will be considered. Similar to the plate lens, but in FIG. 4B, y ′ on the r R plane is larger than y, so
Coma aberration correction is advantageous. Since a small amount of spherical aberration can be used to cancel the coma aberration generated on the r R surface, the amount of spherical aberration generated on the r F surface can be small. As a result, in the case of a prism lens, it is desirable that both surfaces have a converging action.

【0031】プレートレンズ及びプリズムレンズの場合
について収差補正の説明をした。特にプレートレンズの
場合は、被写体側の面が発散作用面で反対側の面は収斂
作用面であることが説明された。しかし、レンズ全長を
短縮するためには、後側主点を少しでも被写体側に寄せ
たいから、被写体側の面に正パワーを集中させたい。そ
うするとレンズ中心部は収斂作用だが周辺部では発散作
用を持つような構造になるから、キノフォームの鋸の歯
の向きが途中で変わることになり、加工上の困難を伴
う。この点においては、後述するようにプリズムレンズ
として構成した方が有利である。ただし、加工精度が許
せば、発散作用と収斂作用が混合した回折面を用いるこ
とに何ら問題はない。
Aberration correction has been described for plate lenses and prism lenses. In particular, in the case of a plate lens, it was explained that the surface on the subject side is a divergent surface and the surface on the opposite side is a convergent surface. However, in order to shorten the overall lens length, we want to bring the rear principal point closer to the subject side, so we want to concentrate positive power on the subject side surface. Then, the lens central portion has a converging action, but the peripheral portion has a diverging action, so that the direction of the sawtooth of the kinoform changes in the middle, which causes processing difficulties. In this respect, it is advantageous to form the prism lens as described later. However, if the processing accuracy permits, there is no problem in using a diffractive surface in which the diverging action and the converging action are mixed.

【0032】一方、プリズムレンズの場合、その被写体
と反対側の面を回折面として全パワーを集中させると、
その面からIREDあるいはPSDまでの距離がプリズ
ムレンズの焦点距離と等価になるから、全長が大幅に長
くなってしまう。したがって、プリズムレンズの後側主
点位置はなるべく被写体側へ寄せることが望ましく、こ
れを実現するためには両面共に回折面で構成し、被写体
側の面は正パワーを与え、被写体と反対側の面は負パワ
ーを与えていわゆるテレフォトタイプの構成となすのが
よい。このとき、以下の条件式を満たすことが望まし
い。
On the other hand, in the case of a prism lens, if the surface opposite to the subject is used as a diffractive surface to concentrate all the power,
Since the distance from that surface to the IRED or PSD is equivalent to the focal length of the prism lens, the total length is significantly increased. Therefore, it is desirable that the position of the principal point on the rear side of the prism lens be as close to the subject side as possible. To achieve this, both sides should be constructed with diffractive surfaces, and the subject side surface should give positive power and It is preferable that the surface be given a negative power and have a so-called telephoto type structure. At this time, it is desirable to satisfy the following conditional expressions.

【0033】 0.8<φ1 /φ<1.6 ・・・ ただし、φ1 は被写体側の面のパワー、φは発光手段あ
るいは検出手段を含まない全系のパワーである。φ1
φ=1の場合に、屈折面で必要なサグ量の1/3程度の
全長改善が可能である。式の下限の0.8を越える
と、レンズ全長短縮の効果が小さくなる。一方、上限の
1.6を越えると、最終面からIREDあるいはPSD
までの距離、いわゆるバックフォーカスが確保できなく
なる。
0.8 <φ 1 /φ<1.6, where φ 1 is the power of the surface on the subject side, and φ is the power of the entire system not including the light emitting means or the detecting means. φ 1 /
When φ = 1, it is possible to improve the total length by about 1/3 of the sag amount required on the refracting surface. Beyond the lower limit of 0.8 in the formula, the effect of shortening the overall lens length is reduced. On the other hand, if the upper limit of 1.6 is exceeded, IRED or PSD will be applied from the final surface.
It becomes impossible to secure the distance to the so-called back focus.

【0034】もし、被写体と反対側の面に正パワーを集
中すると、バックフォーカスが焦点距離と等価になり、
全長が非常に大きくなるが、このスペースに反射面等の
別部材を配置するような場合には有利である。ただし、
このうような配置にすると、収差補正の作用がプレート
レンズの場合と同様になり、特に、被写体側の面が発散
作用と収斂作用の混合面になるので注意を要する。
If the positive power is concentrated on the surface opposite to the subject, the back focus becomes equivalent to the focal length,
Although the total length becomes very large, it is advantageous when another member such as a reflecting surface is arranged in this space. However,
With such an arrangement, the aberration correcting action becomes similar to that of the plate lens, and in particular, the surface on the subject side becomes a mixed surface of the diverging action and the converging action.

【0035】以上説明してきた内容に従って測距用レン
ズ系を設計したとして、これらを製造するために、フォ
トエッチング法や超精密旋盤法等の方法が知られてい
る。何れも格子の最小ピッチが加工上重要であるが、後
述する実施例によっては、最小ピッチが数μmあるいは
それ以下になっており、加工の困難が予測される。ま
た、ピッチが波長の数倍程度まで細かくなると、最早平
面型のDOEとして見なせなくなる。このような問題を
解決するためには、高次の回折光を用いることが望まし
い。前記の(d)式から分かるように、回折光の角度
θ’は回折次数mとピッチdにて決まるから、回折次数
を大きくすると、ピッチdも大きくなる。したがって、
本発明の場合は、以下の条件式を満たすような領域を有
することが望ましい。
Assuming that the distance measuring lens system is designed according to the contents described above, methods such as a photoetching method and an ultraprecision lathe method are known for manufacturing these. In each case, the minimum pitch of the lattice is important for processing, but the minimum pitch is several μm or less depending on the examples described later, and processing difficulty is predicted. Also, if the pitch becomes as fine as several times the wavelength, it can no longer be regarded as a planar DOE. In order to solve such a problem, it is desirable to use high-order diffracted light. As can be seen from the equation (d), the angle θ ′ of the diffracted light is determined by the diffraction order m and the pitch d. Therefore, when the diffraction order is increased, the pitch d is also increased. Therefore,
In the case of the present invention, it is desirable to have a region that satisfies the following conditional expression.

【0036】 2≦|m|≦30 ・・・ ただし、mは回折次数であり、収斂作用の場合を正とす
る。式の上限の30は回折効率の制約から決まる。一
般に、設計波長に対しては100%程度の回折効率が得
られるが、使用波長が異なるとその回折効率は低下す
る。したがって、設計波長に対して、実際上使用可能な
波長幅は制限されることになる。この傾向は回折次数が
大きくなる程顕著になり、使用可能な波長が狭くなって
行く。現在、一般的に用いられているIREDでは波長
幅が±20nm程度であり、式の上限値に対して波長
幅の両端にて回折効率がほぼ0になる。したがって、
の上限を越えると、IREDの持つ全てのエネルギーを
有効に利用できなくなるので、好ましくない。一方、
の下限の2を越えると、基本次数になり最小ピッチが小
さくなりすぎて加工が困難となる。
2 ≦ | m | ≦ 30, where m is the diffraction order, and the case of the converging action is positive. The upper limit of 30 in the equation is determined by the constraint of diffraction efficiency. Generally, a diffraction efficiency of about 100% can be obtained with respect to a design wavelength, but the diffraction efficiency decreases when the used wavelength is different. Therefore, the practically usable wavelength width is limited with respect to the design wavelength. This tendency becomes more remarkable as the diffraction order increases, and the usable wavelength becomes narrower. In the currently used IRED, the wavelength width is about ± 20 nm, and the diffraction efficiency becomes almost 0 at both ends of the wavelength width with respect to the upper limit value of the equation. Therefore,
If the upper limit of is exceeded, all the energy of the IRED cannot be used effectively, which is not preferable. on the other hand,
If the lower limit of 2 is exceeded, the fundamental order will be obtained, and the minimum pitch will be too small, making machining difficult.

【0037】また、IREDにはいくつかの種類があ
り、各々の発光波長は異なる。これらのIREDを同一
のDOEレンズにて共通使用するためには、波長幅が±
40nm程度に対応する必要があり、このとき、以下の
条件式を満たすことが望ましい。 2≦|m|≦15 ・・・ 式の上限値の15に対して波長幅の両端にて回折効率
がほぼ0になる。
There are several types of IREDs, and the respective emission wavelengths are different. In order to commonly use these IREDs with the same DOE lens, the wavelength width must be ±
It is necessary to correspond to about 40 nm, and at this time, it is desirable to satisfy the following conditional expressions. 2 ≦ | m | ≦ 15 The diffraction efficiency becomes almost 0 at both ends of the wavelength width with respect to the upper limit of 15 of the formula.

【0038】また、式を満たすようにDOE全面を高
次回折光を用いるように構成してもよいし、あるいはD
OE面を分割して各領域毎に使用回折次数を変えてもよ
い。(e)式から分かるように、一般的には、ピッチが
小さくなるDOEの周辺部で高次回折光を用いることが
有効である。
Further, the entire surface of the DOE may be constructed so as to use high-order diffracted light so as to satisfy the formula, or D
The OE plane may be divided and the used diffraction orders may be changed for each region. As can be seen from the equation (e), it is generally effective to use the high-order diffracted light in the peripheral portion of the DOE where the pitch becomes small.

【0039】前記した回折効率に関して、設計波長から
ずれて行くと、設計回折次数光以外の不要次数光が逆に
強くなって行く。このとき、各次数光の焦点距離は設計
次数と不要次数の比率で決まるから、高次回折光を用い
る程設計次数光と不要次数光の分離が難しくなり、信号
のノイズが増えることになる。この点を考慮しても、
式を満たす方がより望ましい。もし、IREDで代表さ
れる発光部材の波長特性が変わった場合は、上記の考え
方を適用して式あるいは式を修正すればよい。
With respect to the above-mentioned diffraction efficiency, when the wavelength deviates from the design wavelength, unnecessary order light other than the design diffraction order light becomes conversely stronger. At this time, since the focal length of each order light is determined by the ratio between the design order and the unnecessary order, the more the higher order diffracted light is used, the more difficult it becomes to separate the design order light from the unnecessary order light, and the signal noise increases. With this in mind,
It is more desirable to satisfy the formula. If the wavelength characteristic of the light emitting member represented by IRED is changed, the above concept may be applied to modify the equation or the equation.

【0040】[0040]

【発明の実施の形態】以下、本発明の測距装置の測距用
レンズ系の実施例1〜13について説明する。本発明に
よる測距用レンズ系の回折面は、ウルトラ・ハイ・イン
デックス法を用いて設計しており、具体的には、回折面
は厚みが0で設計波長900nmのときの屈折率が15
33の屈折型レンズとして表現されている。したがっ
て、後記する数値データにおいても、以下に示すような
通常の非球面式にて記載する。すなわち、光軸方向をZ
軸、光軸と垂直な方向をY軸とすると、非球面は以下の
式にて表せられる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples 1 to 13 of a distance measuring lens system of a distance measuring apparatus according to the present invention will be described below. The diffractive surface of the lens system for distance measurement according to the present invention is designed by using the ultra high index method. Specifically, the diffractive surface has a thickness of 0 and a refractive index of 15 at a design wavelength of 900 nm.
It is represented as 33 refractive lenses. Therefore, also in the numerical data described later, it is described by a normal aspherical formula as shown below. That is, the optical axis direction is Z
When the direction perpendicular to the axis and the optical axis is the Y axis, the aspherical surface is expressed by the following equation.

【0041】 Z=CY2 /{1+√(1−C2 2 )} +A4 4 +A6 6 +A8 8 +A1010・・・(i) ただし、Cは面頂における曲率(=1/r、rは曲率半
径)、A4 、A6 、A8、A10はそれぞれ4次、6次、
8次、10次の非球面係数である。
Z = CY 2 / {1 + √ (1-C 2 Y 2 )} + A 4 Y 4 + A 6 Y 6 + A 8 Y 8 + A 10 Y 10 (i) where C is the curvature at the crest (= 1 / r, r is the radius of curvature), A 4 , A 6 , A 8 and A 10 are the 4th and 6th orders, respectively.
Eighth and tenth order aspherical coefficients.

【0042】また、回折面と厚みが0で接する面あDO
Eの基材表面である。そして、実際の製造においては、
回折面の非球面形状と基材表面の形状との差及び屈折率
から位相変化を求め、この位相変化を回折格子のピッチ
に換算して基材表面上に回折格子を形成する。
Further, the surface DO which is in contact with the diffractive surface at a thickness of 0
This is the substrate surface of E. And in actual production,
The phase change is obtained from the difference between the aspherical shape of the diffractive surface and the shape of the base material surface and the refractive index, and the phase change is converted into the pitch of the diffraction grating to form the diffraction grating on the surface of the base material.

【0043】なお、次の各実施例は全て投光レンズ系と
して設計されており、基材はアクリル、被写体までの距
離は5mに設定されている。
The following examples are all designed as a projection lens system, the base material is acrylic, and the distance to the subject is set to 5 m.

【0044】〔実施例1〕この実施例の測距用レンズ系
の断面図を図5に示す。この実施例は厚みが1mmのプ
レートレンズであり、r1 面に全てのパワーが集中して
いる。IREDは発光部を平面状の樹脂製パッケージに
て覆ったものである。図5中に実施例1における投光角
0°の光線を示す。r1 面は近軸的には全正パワーを有
しているが、周辺部においては強い発散作用を持ってい
ることが分かる。r4 面は近軸的にはパワーレスである
が、周辺部においては強い収斂作用を持っていることが
分かる。したがって、r1 面は中心から離れるに従って
徐々に負パワーが強くなる形状であり、r4 面は中心か
ら離れるに従って徐々に正パワーが強くなる形状であ
る。
Example 1 A sectional view of the distance measuring lens system of this example is shown in FIG. This embodiment is a plate lens with a thickness of 1 mm, and all the power is concentrated on the r 1 surface. The IRED has a light emitting portion covered with a flat resin package. FIG. 5 shows a light beam having a projection angle of 0 ° in the first embodiment. It can be seen that the r 1 plane has a total positive power paraxially, but has a strong diverging action in the peripheral portion. It can be seen that the r 4 plane is paraxially powerless, but has a strong converging effect in the peripheral portion. Therefore, the r 1 surface has a shape in which the negative power gradually increases with distance from the center, and the r 4 surface has a shape in which the positive power gradually increases with distance from the center.

【0045】〔実施例2〕この実施例の測距用レンズ系
の断面図は図5と同様である。この実施例も厚みが1m
mのプレートレンズであり、r4 面に全てのパワーが集
中している。IREDも実施例1と同じである。r1
は近軸的にはパワーレスであるが、周辺部においては強
い発散作用を持っており、r4 面はレンズ全面で強い正
パワーを有している。
Example 2 The sectional view of the distance measuring lens system of this example is the same as FIG. This example also has a thickness of 1 m
It is a plate lens of m, and all the power is concentrated on the r 4 surface. IRED is the same as that in the first embodiment. The r 1 surface is paraxially powerless, but has a strong diverging effect in the peripheral portion, and the r 4 surface has a strong positive power over the entire lens surface.

【0046】〔実施例3〕この実施例の測距用レンズ系
の断面図を図6に示す。この実施例も厚みが1mmのプ
レートレンズである。IREDは発光部を曲率の付いた
樹脂製パッケージにて覆っている。図6に実施例1にお
ける投光角0°の光線を示す。r1 面からr4 面までの
パワーをφとしたとき、r1 面は1.5φの正パワーを
有し、r4面は約−0.5φの負パワーを有している。
しかし、図6から分かるように、r1 面は近軸的には正
パワーであるが周辺部においては強い発散作用を持って
おり、r4 面は近軸的には負パワーであるが周辺部にお
いては強い収斂作用を持っている。
Example 3 FIG. 6 shows a sectional view of the distance measuring lens system of this example. This example is also a plate lens having a thickness of 1 mm. The IRED covers the light emitting portion with a resin package having a curvature. FIG. 6 shows a light beam having a projection angle of 0 ° in the first embodiment. When the power from the r 1 surface to the r 4 surface is φ, the r 1 surface has a positive power of 1.5φ and the r 4 surface has a negative power of about −0.5φ.
However, as can be seen from FIG. 6, the r 1 surface has a positive power in the paraxial direction but has a strong diverging action in the peripheral portion, and the r 4 surface has a negative power in the paraxial direction but has a peripheral power. The part has a strong astringent effect.

【0047】〔実施例4〕この実施例の測距用レンズ系
の断面図は図6と同様である。この実施例は厚みが3m
mのプレートレンズであり、厚くすることで製造時に生
ずる歪みや変形を緩和しようとしている。IREDは実
施例3と同じである。r1 面からr4 面までのパワーφ
に対し、r1 面とr4 面で約0.5φずつのパワーを等
分している。両面共に近軸的には正パワーであるが、r
1 面は周辺部において強い発散作用を持っており、r4
面は周辺部において強い収斂作用を持っている。
Example 4 The sectional view of the distance measuring lens system of this example is the same as FIG. This example has a thickness of 3 m
It is a plate lens with a thickness of m, and its thickness is intended to mitigate distortion and deformation that occur during manufacturing. IRED is the same as in Example 3. Power φ from r 1 surface to r 4 surface
On the other hand, the power of about 0.5φ is equally divided between the r 1 surface and the r 4 surface. Both sides have paraxial positive power, but r
One surface has a strong diverging effect in the peripheral area, and r 4
The surface has a strong astringent effect in the peripheral area.

【0048】〔実施例5〕この実施例の測距用レンズ系
の断面図は図6と同様である。この実施例も厚みが1m
mのプレートレンズであり、IREDは実施例3と同様
である。r1 面からr4 面までのパワーφに対し、r1
面は約−0.5φのパワーを有しており、r4 面は1.
5φのパワーを有している。r1 面はレンズ全面で強い
発散作用を有しており、r4 面はレンズ全面で強い収斂
作用を有している。
Example 5 The sectional view of the distance measuring lens system of this example is the same as FIG. This example also has a thickness of 1 m
m plate lens, and IRED is the same as that in the third embodiment. For the power φ from the r 1 surface to the r 4 surface, r 1
The surface has a power of about -0.5φ, and the r 4 surface is 1.
It has a power of 5φ. The r 1 surface has a strong diverging effect on the entire lens surface, and the r 4 surface has a strong converging effect on the entire lens surface.

【0049】〔実施例6〕この実施例の測距用レンズ系
の断面図を図7に示す。この実施例は厚みが1.5mm
のプレートレンズであり、IREDは実施例3と同じで
ある。本実施例はr1 面が回折面で、r3 面は非球面か
らなる屈折面である。図7に実施例6における投光角0
°の光線を示す。r1 面に全パワーが集中している本実
施例では、r3 面で発生するコマ収差を補正できないの
で、使用可能な投光角が小さい。しかし、球面収差の補
正が容易なので、r1 面はレンズ全面で収斂作用を有す
る。
Example 6 A sectional view of the distance measuring lens system of this example is shown in FIG. This example has a thickness of 1.5 mm
And the IRED is the same as that of the third embodiment. In this embodiment, the r 1 surface is a diffractive surface, and the r 3 surface is a refracting surface composed of an aspherical surface. In FIG. 7, the projection angle 0 in Example 6 is 0.
Depicts a ray of light. In the present embodiment in which the total power is concentrated on the r 1 surface, the coma aberration generated on the r 3 surface cannot be corrected, so the usable projection angle is small. However, since it is easy to correct spherical aberration, the r 1 surface has a converging effect on the entire surface of the lens.

【0050】〔実施例7〕この実施例の測距用レンズ系
の断面図を図8に示す。この実施例は厚みが2.5mm
のプレートレンズであり、IREDは実施例3と同じで
ある。本実施例はr1 面は非球面からなる屈折面であ
り、r3 面が回折面である。図8に実施例7における投
光角0°の光線を示す。本実施例では、r3 面に全パワ
ーが集中しており、レンズ周辺部でも収斂作用を有して
いる。r1 面は球面収差補正のために、周辺部で発散作
用を有するように、被写体側へ凹面を向けた非球面形状
になっている。
[Embodiment 7] A sectional view of a distance measuring lens system of this embodiment is shown in FIG. This example has a thickness of 2.5 mm
And the IRED is the same as that of the third embodiment. In this embodiment, the r 1 surface is a refracting surface composed of an aspherical surface, and the r 3 surface is a diffracting surface. FIG. 8 shows a ray having a projection angle of 0 ° in Example 7. In this embodiment, the total power is concentrated on the r 3 surface, and the lens peripheral portion also has a converging action. In order to correct spherical aberration, the r 1 surface has an aspherical shape with a concave surface facing the subject side so as to have a diverging action in the peripheral portion.

【0051】〔実施例8〕この実施例の測距用レンズ系
の断面図を図9に示す。この実施例は厚みが1mmのプ
レートレンズであり、IREDは実施例3と同じであ
る。本実施例はr1面が回折面で全パワーが集中してお
り、r3 面は単なる平面である。図9に実施例8におけ
る投光角0°の光線を示す。本実施例では、r3 面で発
生するコマ収差を補正できないので、使用可能な投光角
が特に小さい。しかし、r1 面はレンズ全面で収斂作用
を有する。
[Embodiment 8] A sectional view of a distance measuring lens system of this embodiment is shown in FIG. This example is a plate lens having a thickness of 1 mm, and the IRED is the same as that in Example 3. In this embodiment, the r 1 surface is a diffracting surface and the total power is concentrated, and the r 3 surface is a simple plane. FIG. 9 shows a light beam having a projection angle of 0 ° in the eighth embodiment. In this embodiment, since the coma aberration generated on the r 3 surface cannot be corrected, the usable projection angle is particularly small. However, the r 1 surface has a converging effect on the entire surface of the lens.

【0052】〔実施例9〕この実施例の測距用レンズ系
の断面図を図10に示す。この実施例も厚みが1mmの
プレートレンズであり、IREDは実施例3と同じであ
る。本実施例はr3 面が回折面で全パワーが集中してお
り、r1 面は単なる平面である。図10に実施例9にお
ける投光角0°の光線を示す。本実施例では、r3 面で
発生するコマ収差を補正したときに逆に大きくなる球面
収差をr1 面にて補正できないから、使用可能な投光角
が特に小さい。しかし、r3 面はレンズ全面で収斂作用
を有する。
[Embodiment 9] A sectional view of a distance measuring lens system of this embodiment is shown in FIG. This example is also a plate lens having a thickness of 1 mm, and the IRED is the same as that in the third example. In this embodiment, the r 3 surface is a diffracting surface and the total power is concentrated, and the r 1 surface is a simple plane. FIG. 10 shows a light beam having a projection angle of 0 ° in Example 9. In the present embodiment, since the spherical aberration which becomes large when the coma aberration generated on the r 3 surface is corrected cannot be corrected on the r 1 surface, the usable projection angle is particularly small. However, the r 3 surface has a converging effect on the entire surface of the lens.

【0053】〔実施例10〕この実施例の測距用レンズ
系の断面図を図11に示す。この実施例は厚みが11m
mのプリズムレンズであり、プリズムの入射面及び射出
面共に回折面にて構成されている。また、IREDは実
施例3と同じである。r1 面からr4 面までのパワーφ
に対し、r1 面は1.3φの正パワーを有し、r4 面は
−0.96φの負パワーを有する。図11に実施例10
における投光角0°の光線を示す。r 1 面はレンズ全面
で収斂作用を持ち、r4 面は近軸的には負パワーである
がレンズ周辺部では収斂作用を持つ。
[Embodiment 10] Lens for distance measurement of this embodiment
A cross-sectional view of the system is shown in FIG. This example has a thickness of 11 m
m prism lens, the entrance surface and exit of the prism
Both surfaces are composed of diffractive surfaces. Also, IRED is
This is the same as in Example 3. r1R from the surfaceFourPower to surface φ
Against r1The surface has a positive power of 1.3φ, rFourThe surface is
It has a negative power of -0.96φ. Example 10 in FIG.
3 shows a ray of light with a projection angle of 0 °. r 1The surface is the entire surface of the lens
Has a converging effect on rFourThe surface is paraxially negative power
Has a converging effect on the lens periphery.

【0054】〔実施例11〕この実施例の測距用レンズ
系の断面図を図12に示す。この実施例も厚みが11m
mのプリズムレンズであり、IREDは実施例1と同じ
である。r1 面からr4 面までのパワーφに対し、r1
面は1.5φの正パワーを有し、r4 面は−2.4φの
負パワーを有する。図12に実施例11における投光角
0°の光線を示す。r1 面はレンズ全面で収斂作用を持
ち、r4 面は近軸的には負パワーであるがレンズ周辺部
では収斂作用を持つ。
[Embodiment 11] A sectional view of a distance measuring lens system of this embodiment is shown in FIG. This example also has a thickness of 11 m
m prism lens, and IRED is the same as that in the first embodiment. For the power φ from the r 1 surface to the r 4 surface, r 1
The surface has a positive power of 1.5φ and the r 4 surface has a negative power of −2.4φ. FIG. 12 shows a light beam having a projection angle of 0 ° in the eleventh embodiment. The r 1 surface has a converging effect on the entire surface of the lens, and the r 4 surface has a paraxial negative power but has a converging effect on the peripheral portion of the lens.

【0055】〔実施例12〕この実施例の測距用レンズ
系の断面図は図11と同様である。この実施例は厚みが
11mmのプリズムレンズであり、IREDは実施例3
と同じである。r1面に全パワーが集中している。した
がって、r1 面はレンズ全面で収斂作用を有しており、
4 面は近軸的にはパワーレスであるが周辺部では収斂
作用を有している。
[Embodiment 12] A sectional view of a distance measuring lens system of this embodiment is similar to that of FIG. This example is a prism lens having a thickness of 11 mm, and the IRED is a third example.
Is the same as All power is concentrated on the r 1 side. Therefore, the r 1 surface has a converging effect on the entire surface of the lens,
The r 4 surface is paraxially powerless, but has a converging effect in the peripheral portion.

【0056】〔実施例13〕この実施例の測距用レンズ
系の断面図を図13に示す。この実施例は厚みが11m
mのプリズムレンズであり、IREDは実施例3と同じ
である。r4 面に全パワーが集中している。図13に実
施例13における投光角0°の光線を示す。本実施例で
は、バックフォーカスを長くとれるので、r4 面とr5
面の間に反射部材等を配置することが可能である。r1
面は近軸的にはパワーレスであるが周辺部では発散作用
を持っており、r4 面はレンズ全面で収斂作用を持って
いる。
[Embodiment 13] A sectional view of a distance measuring lens system of this embodiment is shown in FIG. This example has a thickness of 11 m
m prism lens, and IRED is the same as that in the third embodiment. All the power is concentrated on the r 4 surface. FIG. 13 shows a light beam having a projection angle of 0 ° in Example 13. In this embodiment, since the back focus can be long, the r 4 surface and the r 5
It is possible to arrange a reflecting member or the like between the surfaces. r 1
The surface is paraxially powerless, but has a diverging effect on the peripheral portion, and the r 4 surface has a converging effect on the entire surface of the lens.

【0057】以下に、上記実施例1〜13の数値データ
を示す。各データ中、fは焦点距離、FNO. はFナンバ
ー、r1 、r2 …は各レンズ面の曲率半径、d1 、d2
…は各レンズ面間の間隔、n900,1 、n900,2 …は各レ
ンズの波長900nmの屈折率であり、また、非球面形
状は前記(i)式にて表される。
The numerical data of Examples 1 to 13 are shown below. In each data, f is the focal length, F NO. Is the F number, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2.
Is the distance between the lens surfaces, n 900,1 , n 900,2 is the refractive index of each lens at a wavelength of 900 nm, and the aspherical shape is represented by the formula (i).

【0058】実施例1 f =14mm, FNO=1.2, 投光角= 0°及び 4° r1 = 2.1448×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 1 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = ∞ (回折面) d4 =12.717 r5 = ∞ d5 = 1 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-5.8215 ×10-7 A6 =-1.3958 ×10-9 A8 = 6.8921 ×10-12 A10= 0 第4面 A4 =-6.7525 ×10-7 A6 = 2.0832 ×10-9 A8 =-7.9662 ×10-13 A10= 0 。Example 1 f = 14 mm, F NO = 1.2, projection angle = 0 ° and 4 ° r 1 = 2.1448 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 1 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = ∞ (diffraction surface) d 4 = 12.717 r 5 = ∞ d 5 = 1 n 900,4 = 1.54 r 6 = (Light emitting part) Aspherical coefficient 1st surface A 4 = -5.8215 × 10 -7 A 6 = -1.3958 × 10 -9 A 8 = 6.8921 × 10 -12 A 10 = 0 4th surface A 4 = -6.7525 × 10 -7 A 6 = 2.0832 × 10 -9 A 8 = -7.9662 × 10 -13 A 10 = 0.

【0059】実施例2 f =14mm, FNO=1.2, 投光角= 0°及び 4° r1 = ∞ (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 1 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = -2.1448 ×104 (回折面) d4 =13.390 r5 = ∞ d5 = 1 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-6.1013 ×10-7 A6 =-4.8847 ×10-10 A8 = 2.4813 ×10-11 A10= 0 第4面 A4 =-5.8116 ×10-7 A6 = 2.5805 ×10-9 A8 = 1.8095 ×10-12 A10= 0 。Example 2 f = 14 mm, F NO = 1.2, projection angle = 0 ° and 4 ° r 1 = ∞ (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 1 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = -2.1448 × 10 4 (diffraction surface) d 4 = 13.390 r 5 = ∞ d 5 = 1 n 900,4 = 1.54 r 6 = (Emitting part) Aspherical coefficient 1st surface A 4 = -6.1013 × 10 -7 A 6 = -4.8847 × 10 -10 A 8 = 2.4813 × 10 -11 A 10 = 0 4th surface A 4 =- 5.8116 × 10 -7 A 6 = 2.5805 × 10 -9 A 8 = 1.8095 × 10 -12 A 10 = 0.

【0060】実施例3 f =5.7mm, FNO=0.5, 投光角= 0°及び 4° r1 = 1.2256 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 1 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = 3.3673 ×104 (回折面) d4 = 6.910 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-9.2391 ×10-7 A6 =-3.4826 ×10-9 A8 =-1.0916 ×10-10 A10= 1.6840 ×10-12 第4面 A4 =-1.2463 ×10-6 A6 = 4.8701 ×10-9 A8 =-2.9498 ×10-11 A10= 5.8222 ×10-13 Example 3 f = 5.7 mm, F NO = 0.5, projection angle = 0 ° and 4 ° r 1 = 1.2256 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 1 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = 3.3673 × 10 4 (diffraction surface) d 4 = 6.910 r 5 = 2 d 5 = 3 n 900, 4 = 1.54 r 6 = (light emitting portion) aspheric coefficients first surface A 4 = -9.2391 × 10 -7 A 6 = -3.4826 × 10 -9 A 8 = -1.0916 × 10 -10 A 10 = 1.6840 × 10 - 12 4th surface A 4 = -1.2463 × 10 -6 A 6 = 4.8701 × 10 -9 A 8 = -2.9498 × 10 -11 A 10 = 5.8222 × 10 -13 .

【0061】実施例4 f =5.7mm, FNO=0.51, 投光角= 0°及び 4° r1 = 3.5150 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 3 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = -3.5150 ×104 (回折面) d4 = 6.863 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-3.0750 ×10-7 A6 =-1.7935 ×10-9 A8 =-1.8762 ×10-11 A10= 0 第4面 A4 =-3.8426 ×10-7 A6 = 9.7227 ×10-10 A8 = 2.2937 ×10-12 A10= 0 。Example 4 f = 5.7 mm, F NO = 0.51, Projection angle = 0 ° and 4 ° r 1 = 3.5150 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 3 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = -3.5150 × 10 4 (diffraction surface) d 4 = 6.863 r 5 = 2 d 5 = 3 n 900 , 4 = 1.54 r 6 = (light emitting part) aspherical coefficient 1st surface A 4 = -3.0750 × 10 -7 A 6 = -1.7935 × 10 -9 A 8 = -1.8762 × 10 -11 A 10 = 0 4th Surface A 4 = -3.8426 × 10 -7 A 6 = 9.7227 × 10 -10 A 8 = 2.2937 × 10 -12 A 10 = 0.

【0062】実施例5 f =5.7mm, FNO=0.51, 投光角= 0°及び 4° r1 = -3.3673 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 1 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = -1.2256 ×104 (回折面) d4 = 8.287 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-1.0312 ×10-6 A6 =-2.3641 ×10-9 A8 = 1.3448 ×10-10 A10= 4.0484 ×10-13 第4面 A4 =-8.7222 ×10-7 A6 = 5.1336 ×10-9 A8 = 6.0068 ×10-11 A10=-6.0473 ×10-13 Example 5 f = 5.7 mm, F NO = 0.51, Projection angle = 0 ° and 4 ° r 1 = -3.3673 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 1 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = -1.2256 × 10 4 (diffraction surface) d 4 = 8.287 r 5 = 2 d 5 = 3 n 900,4 = 1.54 r 6 = (Light emitting part) Aspherical coefficient 1st surface A 4 = -1.0312 × 10 -6 A 6 = -2.3641 × 10 -9 A 8 = 1.3448 × 10 -10 A 10 = 4.0484 × 10 -13 4th surface A 4 = -8.7222 × 10 -7 A 6 = 5.1336 × 10 -9 A 8 = 6.0068 × 10 -11 A 10 = -6.0473 × 10 -13 .

【0063】実施例6 f =5.7mm, FNO=0.6, 投光角= 0°及び 2° r1 = 1.8384 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 = 1.500 n900,2=1.48536 r3 = ∞ (非球面) d3 = 6.909 r4 = 2 d4 = 3 n900,4=1.54 r5 = (発光部) 非球面係数 第1面 A4 =-2.8866 ×10-7 A6 = 2.0838 ×10-8 A8 =-4.2432 ×10-10 A10= 0 第4面 A4 =-1.0916 ×10-3 A6 = 1.0979 ×10-4 A8 =-2.6908 ×10-6 A10= 0 。Example 6 f = 5.7 mm, F NO = 0.6, projection angle = 0 ° and 2 ° r 1 = 1.8384 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 1.500 n 900,2 = 1.48536 r 3 = ∞ (aspherical surface) d 3 = 6.909 r 4 = 2 d 4 = 3 n 900,4 = 1.54 r 5 = (light emitting part) aspherical surface 1st surface A 4 = -2.8866 × 10 -7 A 6 = 2.0838 × 10 -8 A 8 = -4.2432 × 10 -10 A 10 = 0 4th surface A 4 = -1.0916 × 10 -3 A 6 = 1.0979 × 10 -4 A 8 = -2.6908 × 10 -6 A 10 = 0.

【0064】実施例7 f =5.7mm, FNO=0.5, 投光角= 0°及び 8° r1 = ∞ (非球面) d1 = 2.500 n900,1=1.48536 r2 = ∞ d2 = 0 n900,2=1533 r3 = -1.8384 ×104 (回折面) d3 = 7.919 r4 = 2 d4 = 3 n900,4=1.54 r5 = (発光部) 非球面係数 第1面 A4 =-1.3334 ×10-3 A6 = 3.2738 ×10-6 A8 =-1.1015 ×10-8 A10= 0 第4面 A4 =-3.7607 ×10-7 A6 = 4.0414 ×10-9 A8 =-1.6501 ×10-11 A10= 0 。Example 7 f = 5.7 mm, F NO = 0.5, projection angle = 0 ° and 8 ° r 1 = ∞ (aspherical surface) d 1 = 2.500 n 900,1 = 1.48536 r 2 = ∞ d 2 = 0 n 900,2 = 1533 r 3 = -1.8384 × 10 4 (diffraction surface) d 3 = 7.919 r 4 = 2 d 4 = 3 n 900,4 = 1.54 r 5 = (light emitting part) aspherical coefficient 1st surface A 4 = -1.3334 × 10 -3 A 6 = 3.2738 × 10 -6 A 8 = -1.1015 × 10 -8 A 10 = 0 4th surface A 4 = -3.7607 × 10 -7 A 6 = 4.0414 × 10 -9 A 8 = -1.6501 × 10 -11 A 10 = 0.

【0065】実施例8 f =5.7mm, FNO=0.5, 投光角= 0°及び 1° r1 = 1.8384 ×104 (回折面) d1 = 0 n900,1=1533 r2 = ∞ d2 = 1 n900,2=1.48536 r3 = ∞ d3 = 7.246 r4 = 2 d4 = 3 n900,4=1.54 r5 = (発光部) 非球面係数 第1面 A4 =-4.3469 ×10-8 A6 = 1.4065 ×10-10 A8 =-9.2547 ×10-13 A10= 8.8378 ×10-15 Example 8 f = 5.7 mm, F NO = 0.5, projection angle = 0 ° and 1 ° r 1 = 1.8384 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1533 r 2 = ∞ d 2 = 1 n 900,2 = 1.48536 r 3 = ∞ d 3 = 7.246 r 4 = 2 d 4 = 3 n 900,4 = 1.54 r 5 = (light emitting part) aspherical coefficient 1st surface A 4 = -4.3469 × 10 -8 A 6 = 1.4065 × 10 -10 A 8 = -9.2547 × 10 -13 A 10 = 8.8378 × 10 -15 .

【0066】実施例9 f =5.7mm, FNO=0.5, 投光角= 0°及び 1° r1 = ∞ d1 = 1 n900,1=1.48536 r2 = ∞ d2 = 0 n900,2=1533 r3 = -1.8384 ×104 (回折面) d3 = 7.919 r4 = 2 d4 = 3 n900,4=1.54 r5 = (発光部) 非球面係数 第3面 A4 = 4.4932 ×10-8 A6 =-1.4928 ×10-10 A8 = 8.9191 ×10-13 A10=-7.9424 ×10-15 Example 9 f = 5.7 mm, F NO = 0.5, projection angle = 0 ° and 1 ° r 1 = ∞ d 1 = 1 n 900,1 = 1.48536 r 2 = ∞ d 2 = 0 n 900, 2 = 1533 r 3 = -1.8384 × 10 4 (diffractive surface) d 3 = 7.919 r 4 = 2 d 4 = 3 n 900,4 = 1.54 r 5 = (light emitting part) aspherical coefficient third surface A 4 = 4.4932 × 10 -8 A 6 = -1.4928 × 10 -10 A 8 = 8.9191 × 10 -13 A 10 = -7.9424 × 10 -15 .

【0067】実施例10 f =6.7mm, FNO=0.7, 投光角= 0°及び 4° r1 = 1.6498 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 =11.000 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = 2.2330 ×104 (回折面) d4 = 0.302 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-4.9722 ×10-8 A6 =-4.1296 ×10-11 A8 = 5.3685 ×10-13 A10= 0 第4面 A4 =-2.2297 ×10-6 A6 = 7.0577 ×10-8 A8 = 1.0391 ×10-9 A10= 0 。Example 10 f = 6.7 mm, F NO = 0.7, projection angle = 0 ° and 4 ° r 1 = 1.6498 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 11.000 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = 2.2330 × 10 4 (diffraction surface) d 4 = 0.302 r 5 = 2 d 5 = 3 n 900, 4 = 1.54 r 6 = (Emitting part) Aspherical coefficient 1st surface A 4 = -4.9722 × 10 -8 A 6 = -4.1296 × 10 -11 A 8 = 5.3685 × 10 -13 A 10 = 0 4th surface A 4 = -2.2297 × 10 -6 A 6 = 7.0577 × 10 -8 A 8 = 1.0391 × 10 -9 A 10 = 0.

【0068】実施例11 f =14mm, FNO=1.2, 投光角= 0°及び 1.5° r1 = 1.4299 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 =11.000 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = 0.8860 ×104 (回折面) d4 = 2.282 r5 = ∞ d5 = 1 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-5.5277 ×10-8 A6 = 1.1894 ×10-10 A8 =-3.6395 ×10-13 A10= 0 第4面 A4 =-7.5492 ×10-6 A6 = 7.5230 ×10-7 A8 =-4.3785 ×10-8 A10= 0 。Example 11 f = 14 mm, F NO = 1.2, Projection angle = 0 ° and 1.5 ° r 1 = 1.4299 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 11.000 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = 0.8860 × 10 4 (diffraction surface) d 4 = 2.282 r 5 = ∞ d 5 = 1 n 900,4 = 1.54 r 6 = (Emitting part) Aspheric surface Coefficient 1st surface A 4 = -5.5277 × 10 -8 A 6 = 1.1894 × 10 -10 A 8 = -3.6395 × 10 -13 A 10 = 0 4th surface A 4 = -7.5492 × 10 -6 A 6 = 7.5230 × 10 -7 A 8 = -4.3785 × 10 -8 A 10 = 0.

【0069】実施例12 f =6.7mm, FNO=0.7, 投光角= 0°及び 4° r1 = 2.1448 ×104 (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 =11.000 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = ∞ (回折面) d4 = 2.524 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-4.4019 ×10-8 A6 =-9.0995 ×10-11 A8 =-8.5912 ×10-13 A10= 0 第4面 A4 =-4.8320 ×10-7 A6 = 5.0122 ×10-9 A8 = 2.5673 ×10-11 A10= 0 。Example 12 f = 6.7 mm, F NO = 0.7, projection angle = 0 ° and 4 ° r 1 = 2.1448 × 10 4 (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 11.000 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = ∞ (diffraction surface) d 4 = 2.524 r 5 = 2 d 5 = 3 n 900,4 = 1.54 r 6 = (Emitting part) Aspherical coefficient 1st surface A 4 = -4.4019 × 10 -8 A 6 = -9.0995 × 10 -11 A 8 = -8.5912 × 10 -13 A 10 = 0 4th surface A 4 = -4.8320 × 10 -7 A 6 = 5.0122 × 10 -9 A 8 = 2.5673 × 10 -11 A 10 = 0.

【0070】実施例13 f =6.7mm, FNO=0.75, 投光角= 0°及び 6° r1 = ∞ (回折面) d1 = 0 n900,1=1553 r2 = ∞ d2 =11.000 n900,2=1.48536 r3 = ∞ d3 = 0 n900,3=1553 r4 = -2.1448 ×104 (回折面) d4 = 9.930 r5 = 2 d5 = 3 n900,4=1.54 r6 = (発光部) 非球面係数 第1面 A4 =-6.8621 ×10-8 A6 =-2.9838 ×10-10 A8 =-1.6615 ×10-12 A10= 0 第4面 A4 =-3.9838 ×10-8 A6 = 6.3101 ×10-11 A8 = 1.8613 ×10-13 A10= 0 。Example 13 f = 6.7 mm, F NO = 0.75, projection angle = 0 ° and 6 ° r 1 = ∞ (diffraction surface) d 1 = 0 n 900,1 = 1553 r 2 = ∞ d 2 = 11.000 n 900,2 = 1.48536 r 3 = ∞ d 3 = 0 n 900,3 = 1553 r 4 = -2.1448 × 10 4 (diffraction surface) d 4 = 9.930 r 5 = 2 d 5 = 3 n 900,4 = 1.54 r 6 = (Emitting part) Aspherical coefficient 1st surface A 4 = -6.8621 × 10 -8 A 6 = -2.9838 × 10 -10 A 8 = -1.6615 × 10 -12 A 10 = 0 4th surface A 4 = -3.9838 × 10 -8 A 6 = 6.3101 × 10 -11 A 8 = 1.8613 × 10 -13 A 10 = 0.

【0071】以上の実施例1、6、8、10の収差図を
それぞれ図14、図15、図16、図17に示す。各収
差図中、(a)は球面収差、(b)は非点収差、(c)
は歪曲収差を示す。また、各図中、FIYは投光角を表
す。
Aberration diagrams of Examples 1, 6, 8 and 10 described above are shown in FIGS. 14, 15, 16 and 17, respectively. In each aberration diagram, (a) is spherical aberration, (b) is astigmatism, and (c).
Indicates distortion. Moreover, in each figure, FIY represents a light projection angle.

【0072】以上、回折面を投光レンズ系へ適用する実
施例を示した。これらの実施例を受光レンズ系へ応用で
きることは明らかである。
The embodiments in which the diffractive surface is applied to the projection lens system have been described above. It is obvious that these embodiments can be applied to the light receiving lens system.

【0073】以上の本発明の測距装置は、例えば次のよ
うに構成することができる。 〔1〕 発光手段と、該発光手段から発する光を被写体
に向けて投射する投光レンズ系と、前記被写体による反
射光を集光する受光レンズ系と、その光を検知する検出
手段とを有する測距離装置において、前記投光レンズ系
あるいは受光レンズ系は、両面が平面にて構成され、そ
の中少なくとも1面が回折面にて構成された回折型光学
素子を有することを特徴とする測距装置。
The distance measuring apparatus of the present invention described above can be constructed, for example, as follows. [1] A light emitting unit, a light projecting lens system for projecting light emitted from the light emitting unit toward a subject, a light receiving lens system for condensing light reflected by the subject, and a detecting unit for detecting the light. In the distance measuring device, the light-projecting lens system or the light-receiving lens system has a diffractive optical element in which both surfaces are flat and at least one surface is a diffractive surface. apparatus.

【0074】〔2〕 上記〔1〕において、前記投光レ
ンズ系あるいは前記受光レンズ系は回折型光学素子のみ
からなることを特徴とする測距装置。
[2] A distance measuring device according to the above [1], wherein the light projecting lens system or the light receiving lens system is composed of only a diffractive optical element.

【0075】〔3〕 上記〔1〕において、前記回折型
光学素子は両面共に回折面からなることを特徴とする測
距装置。
[3] A distance measuring device according to the above [1], wherein both surfaces of the diffractive optical element are diffractive surfaces.

【0076】〔4〕 上記〔1〕において、前記回折型
光学素子は被写体側の面が回折面からなり、反対側の面
は非球面からなることを特徴とする測距装置。
[4] The distance measuring device as described in [1] above, wherein the surface of the diffractive optical element on the object side is a diffractive surface and the surface on the opposite side is an aspherical surface.

【0077】〔5〕 発光手段と、該発光手段から発す
る光を被写体に向けて投射する投光レンズ系と、前記被
写体による反射光を集光する受光レンズ系と、その光を
検知する検出手段とを有する測距離装置において、前記
投光レンズ系あるいは受光レンズ系は、少なくとも被写
体側の面が非球面からなり、反対側の面が回折面からな
る回折型光学素子を有することを特徴とする測距装置。
[5] Light emitting means, a light projecting lens system for projecting light emitted from the light emitting means toward an object, a light receiving lens system for condensing light reflected by the object, and detecting means for detecting the light. In the distance measuring device having the above, the light projecting lens system or the light receiving lens system has a diffractive optical element in which at least a surface on the subject side is an aspherical surface and a surface on the opposite side is a diffractive surface. Ranging device.

【0078】〔6〕 上記〔5〕において、被写体側の
非球面は、被写体に対して凹面からなることを特徴とす
る測距装置。
[6] The distance measuring device according to the above [5], wherein the aspherical surface on the object side is a concave surface with respect to the object.

【0079】〔7〕 上記〔5〕において、回折型光学
素子は下記条件式を満たすことを特徴とする測距装置。
0.15<d/D<0.30
・・・ただし、dは前記回折型光学素子の中
心厚、Dは前記回折型光学素子の直径である。
[7] A rangefinder according to the above [5], wherein the diffractive optical element satisfies the following conditional expression.
0.15 <d / D <0.30
..., where d is the center thickness of the diffractive optical element, and D is the diameter of the diffractive optical element.

【0080】〔8〕 上記〔1〕において、前記回折型
光学素子は被写体側の面が回折面からなることを特徴と
する測距装置。
[8] A distance measuring apparatus according to the above [1], wherein the surface of the diffractive optical element on the object side is a diffractive surface.

【0081】[0081]

〔9〕 上記〔1〕において、前記回折型
光学素子は被写体と反対側の面が回折面からなることを
特徴とする測距装置。
[9] In the above [1], the diffractive optical element has a surface on the side opposite to the subject as a diffractive surface.

【0082】〔10〕 上記〔1〕において、前記回折
型光学素子は薄い平板からなることを特徴とする測距装
置。
[10] A distance measuring device according to the above [1], wherein the diffractive optical element is formed of a thin flat plate.

【0083】〔11〕 上記〔1〕において、前記回折
型光学素子はプリズムからなることを特徴とする測距装
置。
[11] A distance measuring device according to the above [1], wherein the diffractive optical element is a prism.

【0084】〔12〕 上記〔11〕において、前記回
折型光学素子は両面共にレンズ周辺部で収斂作用を有す
ることを特徴とする測距装置。
[12] The distance measuring device as described in [11] above, wherein both surfaces of the diffractive optical element have a converging function at the lens peripheral portion.

【0085】〔13〕 上記〔11〕において、前記回
折型光学素子は被写体側の面はレンズ周辺部にて発散作
用を有し、反対側の面はレンズ周辺部にて収斂作用を有
することを特徴とする測距装置。
[13] In the above [11], the surface of the diffractive optical element on the object side has a diverging effect on the peripheral portion of the lens, and the surface on the opposite side has a converging effect on the peripheral portion of the lens. Characteristic distance measuring device.

【0086】〔14〕 上記〔11〕において、前記回
折型光学素子は被写体側の面は正パワーを有し、反対側
の面は負パワーを有することを特徴とする測距装置。
[14] In the above-mentioned [11], the diffractive optical element has a surface on the object side having positive power and a surface on the opposite side has negative power.

【0087】〔15〕 上記〔14〕において、前記回
折型光学素子は下記条件式を満たすことを特徴とする測
距装置。 0.8<φ1 /φ<1.6 ・・・ ただし、φ1 は前記の被写体側の面のパワー、φは前記
発光手段あるいは前記検出手段を含まない全系のパワー
である。
[15] A distance measuring apparatus according to the above [14], wherein the diffractive optical element satisfies the following conditional expression. 0.8 <φ 1 /φ<1.6, where φ 1 is the power of the surface on the subject side, and φ is the power of the entire system not including the light emitting means or the detecting means.

【0088】〔16〕 上記〔1〕において、前記回折
型光学素子は被写体側の面にて正の球面収差を発生し、
反対側の面にて負の球面収差を発生することを特徴とす
る測距装置。
[16] In the above [1], the diffractive optical element produces a positive spherical aberration on the object side surface,
A distance measuring device characterized in that negative spherical aberration is generated on the opposite surface.

【0089】〔17〕 上記〔1〕において、前記回折
型光学素子は被写体と反対側の面にて発生するコマ収差
が非常に小さいことを特徴とする測距装置。
[17] The distance measuring device as described in [1] above, wherein the diffractive optical element has a very small coma aberration generated on the surface opposite to the subject.

【0090】〔18〕 上記〔1〕において、前記回折
型光学素子の回折面の少なくとも1面はレンズ周辺部に
て負パワーを有することを特徴とする測距装置。
[18] The distance measuring device as described in [1] above, wherein at least one of the diffractive surfaces of the diffractive optical element has a negative power in the lens peripheral portion.

【0091】〔19〕 上記〔18〕において、その回
折面は被写体側の面であることを特徴とする測距装置。
[19] A rangefinder according to the above [18], wherein the diffractive surface is a surface on the object side.

【0092】〔20〕 上記〔1〕において、前記回折
型光学素子の回折面の少なくとも1面はレンズ周辺部に
て正パワーを有することを特徴とする測距装置。
[20] A rangefinder according to the above [1], characterized in that at least one of the diffractive surfaces of the diffractive optical element has positive power in the lens peripheral portion.

【0093】〔21〕 上記〔1〕において、前記回折
型光学素子は下記条件式を満たすような領域を有するこ
とを特徴とする測距装置。 2≦|m|≦30 ・・・ ただし、mは回折次数であり、収斂作用の場合を正とす
る。
[21] A distance measuring device according to the above [1], wherein the diffractive optical element has a region satisfying the following conditional expression. 2 ≦ | m | ≦ 30 However, m is the diffraction order, and the case of the converging action is positive.

【0094】[0094]

【発明の効果】以上の本発明の測距装置に用いられる投
光レンズ系あるいは受光レンズ系によれば、従来の屈折
型レンズ系に比べて薄型化が可能であるから、測距装置
を搭載するカメラの小型化に寄与する。また、本発明の
ように回折面を適切に用いることによって、性能良好な
多点測距装置を得ることができる。
As described above, according to the light projecting lens system or the light receiving lens system used in the distance measuring device of the present invention, it is possible to make the device thinner than the conventional refracting lens system, so that the distance measuring device is mounted. Contributes to miniaturization of the camera. Further, by properly using the diffractive surface as in the present invention, it is possible to obtain a multi-point distance measuring device having good performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用可能なアクティブ方式の測距装置
の要部のブロック図である。
FIG. 1 is a block diagram of a main part of an active distance measuring apparatus to which the present invention can be applied.

【図2】回折格子の回折作用を説明するための図であ
る。
FIG. 2 is a diagram for explaining a diffraction effect of a diffraction grating.

【図3】振幅変調型回折型光学素子の断面形状を示す図
である。
FIG. 3 is a diagram showing a cross-sectional shape of an amplitude modulation type diffractive optical element.

【図4】回折型光学素子による収差補正を検討するため
の図である。
FIG. 4 is a diagram for considering aberration correction by a diffractive optical element.

【図5】実施例1の測距用レンズ系の断面図である。5 is a cross-sectional view of a distance measuring lens system of Example 1. FIG.

【図6】実施例3の測距用レンズ系の断面図である。FIG. 6 is a cross-sectional view of a distance measuring lens system of Example 3.

【図7】実施例6の測距用レンズ系の断面図である。FIG. 7 is a cross-sectional view of a distance measuring lens system of Example 6.

【図8】実施例7の測距用レンズ系の断面図である。8 is a cross-sectional view of a distance measuring lens system of Example 7. FIG.

【図9】実施例8の測距用レンズ系の断面図である。9 is a sectional view of a distance measuring lens system of Example 8. FIG.

【図10】実施例9の測距用レンズ系の断面図である。FIG. 10 is a sectional view of a distance measuring lens system of Example 9;

【図11】実施例10の測距用レンズ系の断面図であ
る。
FIG. 11 is a sectional view of a distance measuring lens system of Example 10;

【図12】実施例11の測距用レンズ系の断面図であ
る。
FIG. 12 is a sectional view of a distance measuring lens system of Example 11;

【図13】実施例13の測距用レンズ系の断面図であ
る。
FIG. 13 is a sectional view of a distance measuring lens system of Example 13;

【図14】実施例1の収差図である。FIG. 14 is an aberration diagram of the first embodiment.

【図15】実施例6の収差図である。FIG. 15 is an aberration diagram for Example 6.

【図16】実施例8の収差図である。FIG. 16 is an aberration diagram for Example 8.

【図17】実施例10の収差図である。FIG. 17 is an aberration diagram for Example 10.

【符号の説明】[Explanation of symbols]

11…赤外発光ダイオード(IRED) 11a…制御部 12…投光レンズ系 13…被写体 14…受光レンズ系 15…位置検出装置(PSD) 16…距離算出手段 17…制御手段 18…駆動ドライバー 19…駆動モーター rF …プレートレンズの被写体側の面 rR …プレートレンズの被写体側の反対側の面 r1 、r2 、・・…レンズ面 d1 、d2 、・・…レンズ面間間隔11 ... Infrared light emitting diode (IRED) 11a ... Control part 12 ... Projecting lens system 13 ... Subject 14 ... Light receiving lens system 15 ... Position detecting device (PSD) 16 ... Distance calculating means 17 ... Control means 18 ... Drive driver 19 ... Drive motor r F ... object side surface of plate lens r R ... surface opposite to object side of plate lens r 1 , r 2 , ... lens surface d 1 , d 2 , ... lens surface spacing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光手段と、該発光手段から発する光を
被写体に向けて投射する投光レンズ系と、前記被写体に
よる反射光を集光する受光レンズ系と、その光を検知す
る検出手段とを有する測距離装置において、 前記投光レンズ系あるいは受光レンズ系は、両面が平面
にて構成され、その中少なくとも1面が回折面にて構成
された回折型光学素子を有することを特徴とする測距装
置。
1. A light emitting means, a light projecting lens system for projecting light emitted from the light emitting means toward an object, a light receiving lens system for condensing light reflected by the object, and a detecting means for detecting the light. In the distance measuring device having the above, the light projecting lens system or the light receiving lens system has a diffractive optical element in which both surfaces are flat surfaces and at least one surface is a diffractive surface. Ranging device.
【請求項2】 発光手段と、該発光手段から発する光を
被写体に向けて投射する投光レンズ系と、前記被写体に
よる反射光を集光する受光レンズ系と、その光を検知す
る検出手段とを有する測距離装置において、 前記投光レンズ系あるいは受光レンズ系は、少なくとも
被写体側の面が非球面からなり、反対側の面が回折面か
らなる回折型光学素子を有することを特徴とする測距装
置。
2. A light emitting means, a light projecting lens system for projecting light emitted from the light emitting means toward a subject, a light receiving lens system for condensing light reflected by the subject, and a detecting means for detecting the light. In the distance measuring apparatus having the above, the light projecting lens system or the light receiving lens system has a diffractive optical element in which at least a surface on the subject side is an aspherical surface and a surface on the opposite side is a diffractive surface. Distance device.
【請求項3】 請求項1において、前記回折型光学素子
は被写体側の面にて正の球面収差を発生し、反対側の面
にて負の球面収差を発生することを特徴とする測距装
置。
3. The distance measuring device according to claim 1, wherein the diffractive optical element generates positive spherical aberration on a surface on a subject side and negative spherical aberration on a surface on the opposite side. apparatus.
JP12465696A 1996-05-20 1996-05-20 Ranging device Expired - Fee Related JP3655697B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12465696A JP3655697B2 (en) 1996-05-20 1996-05-20 Ranging device
US08/859,780 US5877850A (en) 1996-05-20 1997-05-19 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12465696A JP3655697B2 (en) 1996-05-20 1996-05-20 Ranging device

Publications (2)

Publication Number Publication Date
JPH09304689A true JPH09304689A (en) 1997-11-28
JP3655697B2 JP3655697B2 (en) 2005-06-02

Family

ID=14890811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12465696A Expired - Fee Related JP3655697B2 (en) 1996-05-20 1996-05-20 Ranging device

Country Status (1)

Country Link
JP (1) JP3655697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267768A (en) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd Photographing device and light projecting module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267768A (en) * 2005-03-25 2006-10-05 Fuji Photo Film Co Ltd Photographing device and light projecting module

Also Published As

Publication number Publication date
JP3655697B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US7612941B2 (en) Diffractive optical element and optical system including the same
US6829093B1 (en) Diffraction optical element
US6330110B2 (en) Diffractive optical element and optical system having the same
JP3618464B2 (en) Diffractive optical element and optical apparatus using the same
US5978159A (en) Hybrid photographic objective
US6873463B2 (en) Diffractive optical element and optical system having the same
JP4630393B2 (en) Diffraction lens and imaging apparatus using the same
US5877850A (en) Distance measuring apparatus
US20040263982A1 (en) Diffractive optical element
JPH1090596A (en) Optical system with grating element and image pickup device formed by using the same
JP3476897B2 (en) Focus detection optical system
WO2011105067A1 (en) Diffraction lens and photographic device using the same
JP2000098118A (en) Diffraction optical element and optical system having the element
US6937397B2 (en) Diffractive optical element and optical system having the same
JP3860261B2 (en) Diffractive optical element having diffractive surfaces on both sides
JPH09304689A (en) Range finder
US5764343A (en) Optical element
JPWO2019208407A1 (en) How to manufacture camera modules, optical instruments, and camera modules
JP4088283B2 (en) Diffractive optical element, optical system including the same, and optical apparatus
JPH09325025A (en) Distance-measuring apparatus
JPH11352397A (en) Optical system provided with grating element and image pickup device using the same
JPH10170711A (en) Element with diffractive surface and optical system using it
US7016114B1 (en) Diffraction optical device and optical system including same
US20020044357A1 (en) Imaging element and image reading apparatus
JPH1039200A (en) Range-finding device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050203

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050223

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100311

LAPS Cancellation because of no payment of annual fees