JPH09300136A - Electrode wire for electrical discharge machining and manufacture of electrode wire - Google Patents

Electrode wire for electrical discharge machining and manufacture of electrode wire

Info

Publication number
JPH09300136A
JPH09300136A JP14087796A JP14087796A JPH09300136A JP H09300136 A JPH09300136 A JP H09300136A JP 14087796 A JP14087796 A JP 14087796A JP 14087796 A JP14087796 A JP 14087796A JP H09300136 A JPH09300136 A JP H09300136A
Authority
JP
Japan
Prior art keywords
electrode wire
phase
discharge machining
wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14087796A
Other languages
Japanese (ja)
Other versions
JP3405069B2 (en
Inventor
Masayoshi Aoyama
正義 青山
Koichi Tamura
幸一 田村
Takamitsu Kimura
孝光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14087796A priority Critical patent/JP3405069B2/en
Publication of JPH09300136A publication Critical patent/JPH09300136A/en
Application granted granted Critical
Publication of JP3405069B2 publication Critical patent/JP3405069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a high-speed machining speed to be attained, improve a machining accuracy, improve a surface roughness of a machined product and to prevent a crack from being generated even if a concentration of Zn in a surface layer is increased. SOLUTION: An electrical discharged machining electrode wire 1 is comprised of a core member 2 made of alloy of Cu-Zr and a surface alloy layer 3 applied to cover the surface of the core member 2. As the surface alloy layer 3, an alloy of Cu-Zn is applied and there is provided a structure of double-layer with a different concentration of Zn at each of an inner circumference and an outer circumference, wherein a concentration of Zn at the outer circumference is made lower than that of the inner circumference. With such an arrangement as above, the surface layer of the surface alloy layer 3 is formed with an α-phase and an inner side of it is formed with a β-phase assuring a machining speed, so that even if a cold machining is carried out, a crack caused by the β-phase or the like may not be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワイヤ放電加工に
用いられる放電加工用電極線、特に、高精度化及び高速
加工性を向上させるための放電加工用電極線及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining electrode wire used for wire electric discharge machining, and more particularly to an electric discharge machining electrode wire for improving precision and high-speed machinability and a method for manufacturing the same. .

【0002】[0002]

【従来の技術】ワイヤ放電加工は、電極線となる細い金
属ワイヤ(放電加工用電極線)を巻き取りつつ被加工物
に対して三次元の送りをかけ、金属ワイヤを電極にして
被加工物に放電を行いながら被加工物を溶断して糸鋸式
の加工を行うもので、特定形状の電極を使用しないで高
精度に三次元形状の製品を創成することができる。特
に、加工の困難な超硬合金等の加工が高精度に行えるた
め、近年、実用範囲が広がりつつある。
2. Description of the Related Art In wire electric discharge machining, three-dimensional feeding is performed on a workpiece while winding a thin metal wire (electrode wire for electric discharge machining) serving as an electrode wire. In this method, a workpiece is blown while performing electric discharge to perform a saw-tooth processing, and a three-dimensional product can be created with high accuracy without using an electrode having a specific shape. Particularly, since a hard metal or the like that is difficult to machine can be machined with high precision, the practical range has been expanding in recent years.

【0003】従来より用いられている放電加工用電極線
には、例えば、65重量%Cu−35重量%Zn黄銅電
極線がある。「伸銅技術研究会誌」26、(1987)
P181(発表者:折茂、石橋、奥野、尚)に記載のよ
うに、組成中のZn(亜鉛)濃度が高いほど、加工速度
を向上できることが知られている。しかし、Zn量が4
0〜45重量%を越えるとβ相が形成される。このβ相
は冷間伸線等の室温加工を行うと、金属間化合物である
ためにキズや割れが発生し、加工が行えなくなる。この
問題から、Znを含む放電加工用電極線においては、6
5重量%Cu−35重量%Zn黄銅線が標準品として通
用している。
Conventionally used electrode wires for electric discharge machining include, for example, 65 wt% Cu-35 wt% Zn brass electrode wires. "Journal of Copper and Copper Technology Research", 26, (1987)
As described in P181 (presenters: Orimo, Ishibashi, Okuno, Nao), it is known that the higher the Zn (zinc) concentration in the composition, the higher the processing speed. However, the Zn content is 4
If it exceeds 0 to 45% by weight, the β phase is formed. When this β phase is subjected to room temperature processing such as cold drawing, it is an intermetallic compound, so that scratches and cracks occur and processing cannot be performed. From this problem, in the electric discharge machining electrode wire containing Zn,
5 wt% Cu-35 wt% Zn brass wire is used as a standard product.

【0004】ところで、加工速度の向上は生産性の向上
につながることから、Znを芯材に含みながら加工速度
を高めるための提案が種々なされている。例えば、50
%以上のZnを含む合金を芯材に被覆した電極線(特公
昭57−5648号公報)、芯材に被覆するタイプに
は、銅合金にZn(又はZn合金)を浸漬焼鈍させて表
面にZn富化層を形成した電極線(特開昭62−218
026号公報)、銅被覆鋼線に通電性の良い金属を被覆
した複合電極線(特公昭57−57211号公報)、銅
合金線の表面に所定の厚みのCu−Zn合金層を設け、
更にCu−Zn合金層の表面に所定厚のZn層を設けた
電極線(特開昭61−117021号公報)、銅被覆鋼
線の表面に合金層を設け、そのZnの濃度が外表面に向
かって高くなるようにした電極線(特公平2−4984
9号公報)、Cu−Zn系合金芯材の表面にCu−Zn
相を有する線材(特開昭61−197126号公報)、
Zn等の低融点金属元素の濃度が金属線の外表面ほど高
くなっている線材(特公平4−35543号公報)、銅
被覆鋼線に導電性の良い金属を被覆した複合電極線(特
公昭57−5721号公報)、熱伝導性に優れたCu合
金、具体的にはCr、Zr、Fe、Be、Co及びTi
の中から選んだ1種或いは2種以上の元素を0.03〜
5.0重量%含有した合金(特開昭59−134624
号公報)、Cu合金をZn等の溶融浴に通して酸化を防
ぎつつ冷却する電極線製造方法(特開昭59−1237
52)等を上げることができる。
By the way, since the improvement of the processing speed leads to the improvement of the productivity, various proposals have been made for increasing the processing speed while including Zn in the core material. For example, 50
%, The electrode wire having a core material coated with an alloy containing Zn (Japanese Patent Publication No. 57-5648) and the type having a core material coated with Zn (or Zn alloy) in a copper alloy are annealed and annealed on the surface. Electrode wire formed with a Zn-enriched layer (Japanese Patent Laid-Open No. 62-218
No. 026), a composite electrode wire in which a copper-coated steel wire is coated with a metal having good electrical conductivity (Japanese Patent Publication No. 57-57121), and a Cu—Zn alloy layer having a predetermined thickness is provided on the surface of the copper alloy wire.
Further, an electrode wire having a Zn layer of a predetermined thickness provided on the surface of a Cu-Zn alloy layer (Japanese Patent Laid-Open No. 61-117021), an alloy layer provided on the surface of a copper-coated steel wire, and the concentration of Zn on the outer surface Electrode wire so that it becomes higher toward
No. 9), Cu-Zn is formed on the surface of the Cu-Zn alloy core material.
A wire having a phase (Japanese Patent Laid-Open No. 61-197126),
A wire material in which the concentration of a low melting point metal element such as Zn is higher on the outer surface of the metal wire (Japanese Patent Publication No. 4-35543), or a composite electrode wire in which a copper-coated steel wire is coated with a metal having good conductivity (Japanese Patent Publication No. 57-5721), a Cu alloy having excellent thermal conductivity, specifically Cr, Zr, Fe, Be, Co and Ti.
0.03 ~ 1 or 2 or more elements selected from
Alloy containing 5.0% by weight (Japanese Patent Laid-Open No. 59-134624)
Japanese Patent Laid-Open Publication No. 59-1237, in which a Cu alloy is passed through a molten bath of Zn or the like and cooled while preventing oxidation.
52) etc. can be raised.

【0005】以上、列挙した放電加工用電極線は、高速
加工のために、いずれもZn濃度が母材より高いCu−
Zn系合金層、或いはZn層を設けたものであり、基本
的には特公昭57−5648号公報に示すZnを含む金
属被覆層を設けた電極線の延長上に位置付けされるもの
である。また、放電加工の際には張力を付与して加工す
るため、張力を高めるために65%Cu−35%Zn黄
銅線にCr、Mg、Zr、Ti、Si、Mn、Al等の
元素を添加した電極線も提案されている。
All of the above-listed electrode lines for electric discharge machining are Cu-containing higher Zn concentration than the base metal for high-speed machining.
A Zn-based alloy layer or a Zn layer is provided, and is basically positioned on the extension of an electrode wire provided with a metal coating layer containing Zn shown in Japanese Patent Publication No. 57-5648. In addition, since a tension is applied during the electric discharge machining, the elements such as Cr, Mg, Zr, Ti, Si, Mn, and Al are added to the 65% Cu-35% Zn brass wire to increase the tension. Electrode lines have also been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の放電加
工用電極線によれば、Znを表面層に用いたことにより
加工速度の向上を図っているが、更なる加工速度の向
上、及び高速加工時の耐断線性の向上が望まれている。
また、被加工材の加工面の粗さを抑えた高精度加工を可
能にしうることも望まれている。
However, according to the conventional electrode wire for electric discharge machining, the machining speed is improved by using Zn for the surface layer. However, further improvement of the machining speed and high speed are achieved. It is desired to improve resistance to disconnection during processing.
Further, it is also desired to be able to perform high-precision processing while suppressing the roughness of the processed surface of the work material.

【0007】更に、金属芯材にCu−Zn合金層を被覆
した場合、Zn濃度が高いと金属間化合物相のβ相又は
γ、ε相等が形成され、ダイスで冷間伸線するとCu−
Zn層にクラックが入り、後の電極線の取扱時の信頼性
に問題が生じる。このため、表面層のZn濃度を高めて
も、冷間伸線時にクラックが入らず、加工が容易なCu
−Zn相形成技術が望まれている。
Further, when the Cu-Zn alloy layer is coated on the metal core material, if the Zn concentration is high, β phase or γ, ε phase of the intermetallic compound phase is formed, and when cold drawing is performed with the die, Cu-
A crack occurs in the Zn layer, which causes a problem in reliability when handling an electrode wire later. For this reason, even if the Zn concentration of the surface layer is increased, Cu does not crack during cold drawing and is easy to process.
A Zn phase forming technique is desired.

【0008】そこで本発明は、加工速度の高速化、加工
精度の向上、被加工物の表面粗さの改善等が図れ、表面
層のZn濃度を高めてもクラックの生じない放電加工用
電極線及びその製造方法を提供することを目的としてい
る。
Therefore, the present invention is intended to improve the machining speed, improve the machining accuracy, improve the surface roughness of the workpiece, and the like, so that even if the Zn concentration in the surface layer is increased, no crack occurs in the electrode wire for electric discharge machining. And its manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、導電率の高いCu−Zr合金による芯
材と、この芯材の表面に被覆され、外周部のZn濃度が
内周部よりも低いCu−Zn合金を用いた表面合金層と
を備えた構成にしている。この構成によれば、表面合金
層の内側(内周部)と外側(外周部)とでZn濃度が異
なるようにした結果、表面合金層の表面に近い部分に主
にα相が形成され、表面に近い部分にはβ相は極めて少
ない。したがって、冷間加工を行った際に、塑性変形は
β相よりもα相が変形することにより行われるため、β
相に起因して生じる割れは生ぜず、加工性は損なわれな
い。また、表面合金層の内側はZn濃度の高いβ相であ
るため、加工速度を確保することができる。
In order to achieve the above object, the present invention provides a core material made of a Cu-Zr alloy having a high conductivity, and a surface of the core material. The surface alloy layer is made of a Cu—Zn alloy which is lower than the inner peripheral portion. According to this structure, the Zn concentration is made different between the inner side (inner peripheral portion) and the outer side (outer peripheral portion) of the surface alloy layer, so that the α phase is mainly formed in the portion close to the surface of the surface alloy layer, There are very few β-phases near the surface. Therefore, when cold working, the plastic deformation is performed by deforming the α phase rather than the β phase.
The cracks caused by the phases do not occur and the workability is not impaired. Further, since the inside of the surface alloy layer is the β phase having a high Zn concentration, the processing speed can be secured.

【0010】前記表面合金層は、内周部のZn濃度が3
0〜55重量%、前記外周部のZn濃度が43%以下、
望ましくは30〜43重量%の構成にすることができ
る。この構成によれば、Zn濃度を低くした外周部には
β相は形成され難く、主にα相が形成される。また、Z
n濃度を大きくした内周部にはβ相が形成される。この
結果、表層部のα相を主体とする層は冷間伸線等の冷間
加工を行ってもキズや割れ等を生じることがなく加工が
容易に行えるようになる。さらに表面合金層の内側の層
もβ相をα相が囲む構成になっているため容易に加工が
行える。そして、内周部は十分なZn濃度を有するた
め、所望の加工速度を確保することができる。
The surface alloy layer has a Zn concentration of 3 in the inner peripheral portion.
0 to 55% by weight, Zn concentration in the outer peripheral portion is 43% or less,
Desirably, the composition can be 30 to 43% by weight. According to this structure, the β phase is hard to be formed in the outer peripheral portion where the Zn concentration is low, and the α phase is mainly formed. Also, Z
A β phase is formed in the inner peripheral portion where the n concentration is increased. As a result, the layer mainly composed of the α phase of the surface layer portion can be easily processed without causing scratches or cracks even when cold working such as cold drawing is performed. Further, the inner layer of the surface alloy layer also has a structure in which the β phase is surrounded by the α phase, so that it can be easily processed. Since the inner peripheral portion has a sufficient Zn concentration, a desired processing speed can be secured.

【0011】前記表面合金層は、β相と、このβ相を取
り巻くように形成されたα相とから成る構成にしてい
る。この構成によれば、β相の周囲を取り囲んだα相
は、β相を保護してβ相の割れを防止するように機能
し、冷間加工を行っても割れを発生しない。前記表面合
金層のα相は、最も表面に近い部位に形成している。
The surface alloy layer is composed of a β phase and an α phase formed so as to surround the β phase. According to this structure, the α phase surrounding the β phase functions to protect the β phase and prevent the β phase from cracking, and does not crack even when cold working. The α phase of the surface alloy layer is formed at the site closest to the surface.

【0012】この構成によれば、冷間加工の際、最も影
響を受ける表層部にはβ相が極めて少ないか、あるいは
ほとんど存在しないので、表面合金層にキズや割れを生
じない。前記表面合金層は、Zn粉、Cu−Zn粉、又
はZn粉とCu−Zn粉の混合物を加熱焼結させたもの
にすることができる。
According to this structure, during cold working, the surface layer portion most affected is very small in β phase or scarcely present, so that the surface alloy layer is not damaged or cracked. The surface alloy layer can be made of Zn powder, Cu-Zn powder, or a mixture of Zn powder and Cu-Zn powder that is heated and sintered.

【0013】この構成によれば、電極線の製造に際し、
Znを塗布する方法の採用が可能になり、生産性及び製
造コストの低減を図ることが可能になる。上記の目的
は、Cu−Zr合金線に冷間伸線を施して所定の径に加
工して芯材を形成し、加熱処理及び急冷処理を順次施
し、この芯材の表面にZn粉末を主体にした第1のスラ
リーを塗布し、この第1のスラリーを乾燥させ、この第
1のスラリー上にZn濃度が50%になるように調整し
たCu−Zn粉末主体の第2のスラリーを塗布し、この
第2のスラリーを乾燥させ、その後加熱し、冷間伸線す
る製造方法によっても達成される。
According to this structure, when manufacturing the electrode wire,
The method of applying Zn can be adopted, and the productivity and the manufacturing cost can be reduced. The above-mentioned object is to subject a Cu-Zr alloy wire to cold drawing to form a core material having a predetermined diameter, which is then subjected to a heating treatment and a quenching treatment in sequence, and a Zn powder is mainly formed on the surface of the core material. The first slurry is applied, the first slurry is dried, and the second slurry mainly composed of Cu—Zn powder adjusted to have a Zn concentration of 50% is applied onto the first slurry. It is also achieved by a manufacturing method in which the second slurry is dried, and then heated and cold drawn.

【0014】この方法によれば、芯材を所定の径にした
後、Zn濃度の異なるスラリを2段階に別けて塗布なら
びに乾燥する工程を経て加熱し表面合金層を形成するこ
とにより、簡単な設備及び製造工程により放電加工用電
極線を製造することができる。この結果、生産性及び製
造コストの低減を図ることが可能になる。芯材として高
導電率のCu−Cr合金、Cu−Zr合金、Cu−Zr
−Cr合金Cu−Nb複合材、Cu−Nb合金、銅被覆
鋼線、Cu−Be合金、Cu−Sn合金、Cu−Sn−
In合金、Cu−Sn−Mg合金、Cu−Mg−Zr合
金の線材及び無酸素銅とタフピッチ銅などの金属材料が
有効である。
According to this method, after the core material is made to have a predetermined diameter, slurries having different Zn concentrations are separately applied and dried in two steps, followed by heating to form the surface alloy layer. The electrode wire for electric discharge machining can be manufactured by the equipment and the manufacturing process. As a result, it is possible to reduce productivity and manufacturing cost. High conductivity Cu-Cr alloy, Cu-Zr alloy, Cu-Zr as core material
-Cr alloy Cu-Nb composite material, Cu-Nb alloy, copper-coated steel wire, Cu-Be alloy, Cu-Sn alloy, Cu-Sn-
Wire materials of In alloy, Cu-Sn-Mg alloy, Cu-Mg-Zr alloy, and metal materials such as oxygen-free copper and tough pitch copper are effective.

【0015】芯材として導電率の高くないものでも、C
u−Zn黄銅線、鉄線、鋼線、ピアノ線(芝折鋼)など
が有効である。
Even if the core material does not have a high conductivity, C
u-Zn brass wire, iron wire, steel wire, piano wire (shiba ori steel), etc. are effective.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明による放電加工用電極線を示
す断面図である。図1に示すように、本発明の放電加工
用電極線1は、芯材2と、この芯材2の表面に被覆され
た表面合金層3から成る。ここで、芯材2にはCu−
0.16重量%Zr(ジルコニウム)線を用いている。
この芯材2をN2 ガス雰囲気中に通しながら所定温度に
加熱して溶体化し、この後、冷却水槽に通して急冷し
た。こうして製作した芯材2に対し、第1のスラリーを
塗布した。この後、第1のスラリーを乾燥させ、更に第
2のスラリーを塗布し、これを乾燥させた。次に、加熱
雰囲気中を走行させながら水冷した後、表面にCu−Z
n合金による表面合金層3を5〜50μmの厚さに施し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a sectional view showing an electric discharge machining electrode wire according to the present invention. As shown in FIG. 1, an electric discharge machining electrode wire 1 of the present invention comprises a core material 2 and a surface alloy layer 3 coated on the surface of the core material 2. Here, the core material 2 is Cu-
A 0.16 wt% Zr (zirconium) wire is used.
This core material 2 was heated to a predetermined temperature while being passed through an N 2 gas atmosphere to be a solution, and then passed through a cooling water tank to be rapidly cooled. The first slurry was applied to the core material 2 thus manufactured. After that, the first slurry was dried, the second slurry was further applied, and this was dried. Next, after water cooling while running in a heating atmosphere, Cu-Z was formed on the surface.
The surface alloy layer 3 of n alloy was applied to a thickness of 5 to 50 μm.

【0017】本発明においては、Zn濃度が高くなるほ
ど加工速度を早くできることから、芯材2の表面にはC
u−Zn層による表面合金層3を設けている。しかし、
上記した様に、Zn濃度が高いと金属間化合物β,γ,
ε相等が形成され、冷間伸線時に割れ(クラック)が発
生し、後工程に問題を生じる。そこで本発明において
は、表面合金層3(Cu−Zn層)は加工の容易なα相
と加工の難しいβ相から成り、β相の周囲をα相が取り
巻く構成にした。
In the present invention, the higher the Zn concentration is, the faster the processing speed can be.
A surface alloy layer 3 made of a u-Zn layer is provided. But,
As described above, when the Zn concentration is high, the intermetallic compounds β, γ,
The ε phase and the like are formed, and cracks occur during cold drawing, which causes a problem in the subsequent process. Therefore, in the present invention, the surface alloy layer 3 (Cu-Zn layer) is composed of an easily-processed α phase and a difficultly processed β phase, and the α phase surrounds the β phase.

【0018】この構成により、冷間伸線の際、主にα相
が変形するようになり、β相にキズや割れは生じない。
この結果、冷間加工を施してもキズやクラックは発生せ
ず、信頼性に優れた電極線を得ることができた。また、
放電加工用電極線1の耐熱性を高めるため、芯材2のC
u−0.16%Zr線としては固溶(溶体化)させたも
のを用いた。
With this structure, during cold wire drawing, the α phase is mainly deformed, and the β phase is not scratched or cracked.
As a result, scratches and cracks did not occur even when cold working was performed, and an electrode wire with excellent reliability could be obtained. Also,
In order to increase the heat resistance of the electric discharge machining electrode wire 1, C of the core material 2 is used.
As the u-0.16% Zr ray, a solid solution (solution) was used.

【0019】[0019]

【実施例】次に、本発明の実施例について説明する。 (実施例1)まず、10mmφのCu−0.16重量%
Zr(ジルコニウム)線をスウエージング加工(材料の
軸に直角方向に圧縮する加工)して8mmφにした。こ
れをドローベンチで5.5mmφにし、更に冷間加工に
より0.9mmφにした。こうして加工された線材をN
2 (窒素)ガスの満たされた加熱電気炉内に1m/分の
速度で搬送しながら900℃に加熱して溶体化し、冷却
水の満たされた冷却水槽に通して冷却した。ついで、こ
の線材に第1のスラリーを塗布して乾燥させた。この
後、第2のスラリーを塗布して乾燥させた。更に、70
0〜900℃の範囲で1m/分の速度で加熱電気炉内を
走行させながら、表面に表面合金層3を形成した。この
後、冷間伸線し、0.2mmφの放電加工用電極線を作
製した。
Next, an embodiment of the present invention will be described. (Example 1) First, 10 mmφ Cu-0.16 wt%
The Zr (zirconium) wire was swaged (compressed in a direction perpendicular to the axis of the material) to 8 mmφ. This was made to have a diameter of 5.5 mm using a draw bench and further cold worked to have a size of 0.9 mm. The processed wire is N
While being conveyed at a rate of 1 m / min into a heating electric furnace filled with 2 (nitrogen) gas, it was heated to 900 ° C. to be a solution, and passed through a cooling water tank filled with cooling water to be cooled. Then, the first slurry was applied to this wire and dried. Then, the second slurry was applied and dried. Furthermore, 70
The surface alloy layer 3 was formed on the surface while traveling in the heating electric furnace at a speed of 1 m / min in the range of 0 to 900 ° C. After that, cold drawing was performed to prepare a 0.2 mmφ electrode wire for electric discharge machining.

【0020】ここで、第1のスラリーは、Zn粉末(6
9%)にアクリル系樹脂(7%)、沈降防止剤(1
%)、溶剤(トルエン+キシレン23%)を混ぜてスラ
リーにしたものである。また、第2のスラリーは、Cu
−20%Zn粉末とZn粉末とを加えて全Zn濃度が5
0%Znになるようにした混合粉末(69%)に対し、
アクリル系樹脂(7%)、沈降防止剤(1%)、溶剤
(トルエン+キシレン23%)を混ぜてスラリーにした
ものである。
Here, the first slurry is Zn powder (6
9%) with acrylic resin (7%), anti-settling agent (1
%) And a solvent (toluene + xylene 23%) are mixed to form a slurry. The second slurry is Cu
-20% Zn powder and Zn powder were added to give a total Zn concentration of 5
For the mixed powder (69%) that was made to be 0% Zn,
Acrylic resin (7%), anti-settling agent (1%) and solvent (toluene + xylene 23%) were mixed to form a slurry.

【0021】以上のようにして作製した放電加工用電極
線について、その構造調査と放電加工性の評価を行っ
た。被加工物として厚さ40mmのSKD−11(冷間
ダイス鋼)を用いて断線限界速度を測定した。また、被
加工物の表面粗さの評価も実施した。比較のための比較
材には、Cu−35%Zn黄銅線(0.02mmφ)を
用いた。
With respect to the electrode wire for electric discharge machining manufactured as described above, the structure of the electrode wire was evaluated and the electric discharge machinability was evaluated. The breaking speed was measured using SKD-11 (cold die steel) having a thickness of 40 mm as a work piece. The surface roughness of the work piece was also evaluated. A Cu-35% Zn brass wire (0.02 mmφ) was used as a comparative material for comparison.

【0022】図2は、Cu−0.16重量%Zrの表面
合金層3の横断面をエッチングし、この組織をSEM
(Scanning Electron Microscope:走査形電子顕微鏡)
で観察した結果を示す顕微鏡写真である。この線材の表
面の殆どはのα相であり、表面合金層3の内側には
のβ相が存在し、その周囲をα相が囲んだ構造になって
いる。更に内側には、Cu−0.16重量%Zr合金線
になっている。
In FIG. 2, a cross section of the surface alloy layer 3 of Cu-0.16 wt% Zr is etched, and this structure is SEM.
(Scanning Electron Microscope)
3 is a micrograph showing the result of observation in step 1. Most of the surface of this wire is α phase, β phase exists inside the surface alloy layer 3, and the α phase surrounds the β phase. Further inside is a Cu-0.16 wt% Zr alloy wire.

【0023】更に、以上の放電加工用電極線1を冷間伸
線して0.2mmφにした。この伸線では表面にキズや
割れ等がなく、ハンチングなどがなく放電が安定し、加
工性に優れていた。この線材表面のZn濃度を横断面に
ついて表面からの深さをパラメータにしてZn濃度をX
MAにより定量分析した。なお、このXMA分析値が化
学分析値と一致することを本発明者らは確認している。
Further, the above-mentioned electric discharge machining electrode wire 1 was cold drawn to have a diameter of 0.2 mm. With this wire drawing, there were no scratches or cracks on the surface, there was no hunting, discharge was stable, and workability was excellent. The Zn concentration on the surface of the wire was measured as X with the depth from the surface of the cross section as a parameter.
Quantitative analysis by MA. The present inventors have confirmed that this XMA analysis value matches the chemical analysis value.

【0024】図3は0.2mmφに伸線した放電加工用
電極線の断面を光学顕微鏡で観察した結果を示す顕微鏡
写真である。また、図4は0.2mmφに伸線した放電
加工用電極線の表面合金層3からの距離とZn濃度の関
係を示す特性図である。この放電加工用電極線における
Zn濃度は34〜44重量%Zrであり、図2に示した
ように表面合金層3にα相が存在することがわかる。更
に、より内側には、より高い濃度の部分、つまりβ相が
存在する。このように、冷間伸線加工性に優れた放電加
工用電極線を得られることが確認された。
FIG. 3 is a micrograph showing the result of observing the cross section of the electrode wire for electric discharge machining drawn to 0.2 mmφ with an optical microscope. FIG. 4 is a characteristic diagram showing the relationship between the distance from the surface alloy layer 3 of the electrode wire for electric discharge machining drawn to 0.2 mmφ and the Zn concentration. The Zn concentration in the electric discharge machining electrode wire is 34 to 44 wt% Zr, and it can be seen that the α phase exists in the surface alloy layer 3 as shown in FIG. Further, there is a higher concentration portion, ie, β phase, on the inner side. Thus, it was confirmed that an electrode wire for electric discharge machining excellent in cold wire drawing workability could be obtained.

【0025】次に、本発明による放電加工用電極線にお
ける放電加工性を評価した。図5は放電加工時のパルス
波形を示す波形図である。ここでは放電電流を36アン
ペアにし、オフ時間(電流休止時間)を一定(2.8μ
s)としながら、オン時間(電流印加時間)を変えて加
工可能な速度(ワイヤが切れない限界速度)を測定した
(なお、IPは電流の振幅)。被加工物として厚さ40
mmのSKD−11を用いて加工実験を行った。また、
比較のため従来技術により製作した0.2mmφの放電
加工用電極線も作製し、同様な加工実験を行った。
Next, the electric discharge machinability of the electric discharge machining electrode wire according to the present invention was evaluated. FIG. 5 is a waveform diagram showing a pulse waveform during electric discharge machining. Here, the discharge current was set to 36 amps and the off time (current rest time) was kept constant (2.8 μm).
s), the on-time (current application time) was changed and the workable speed (the limit speed at which the wire was not broken) was measured (IP is the current amplitude). Thickness of 40 as work piece
Processing experiments were performed using mm SKD-11. Also,
For comparison, a 0.2 mmφ electrode wire for electric discharge machining manufactured by a conventional technique was also manufactured, and the same machining experiment was conducted.

【0026】オン時間が0.8μSの場合、Cu−35
重量%Zn電極線(比較例)の加工速度が1.53mm
/分であったのに対し、本発明による電極線は1.92
mm/分であり、加工速度の向上が確かめられた。ま
た、電流印加時間を長くすると、加工速度が増加する。
この時、本発明の電極線は1.5μSで断線したのに対
し、比較例では1.2μSの電流印加時間で断線した。
このことから、本発明による電極線は耐断線性に優れて
いることが確かめられた。更に、比較例による被加工物
の表面粗さが1.35μmであったのに対し、本発明に
よる電極線の表面粗さは1.282μmであり、この点
からも本発明の電極線の優秀性が確かめられた。この加
工面精度も優れていた理由は表面のキズ割れなどが少な
かったためと推察される。 (実施例2)次に、本発明による放電加工用電極線の第
2の実施例について説明する。
When the on-time is 0.8 μS, Cu-35
Processing rate of wt% Zn electrode wire (comparative example) is 1.53 mm
/ Min, whereas the electrode wire according to the invention is 1.92.
It was mm / min, and it was confirmed that the processing speed was improved. Further, if the current application time is lengthened, the processing speed increases.
At this time, the electrode wire of the present invention was broken at 1.5 μS, whereas in the comparative example it was broken at a current application time of 1.2 μS.
From this, it was confirmed that the electrode wire according to the present invention has excellent resistance to disconnection. Further, the surface roughness of the work piece according to the comparative example was 1.35 μm, whereas the surface roughness of the electrode wire according to the present invention was 1.282 μm. The sex was confirmed. It is presumed that the reason why this machined surface precision was also excellent was that there were few scratches on the surface. (Embodiment 2) Next, a second embodiment of the electric discharge machining electrode wire according to the present invention will be described.

【0027】実施例1と同様に、0.9mmφのCu−
0.16重量%Zr合金による線材に対し、Cu−Zn
による表面合金層3を形成した。更に、これを冷間伸線
して0.25mmφの放電加工用電極線を作製した。こ
の電極線の導電率は65.6%と高い値を示した。この
放電加工用電極線に対し、実施例1と同様に厚さ30m
mのSKD−11を被加工物として放電加工実験を行っ
た。その結果、オン時間が0.8μsの場合、0.25
mmφのCu−35重量%Zn電極線(導電率23%)
(加工速度1.985mm/分)に比べ、加工速度は約
21%高い2.40mm/分が得られた。
As in Example 1, 0.9 mmφ Cu-
Cu-Zn for wire made of 0.16 wt% Zr alloy
To form the surface alloy layer 3. Further, this was cold drawn to prepare an electrode wire for electric discharge machining having a diameter of 0.25 mm. The conductivity of this electrode wire was as high as 65.6%. With respect to this electric discharge machining electrode wire, a thickness of 30 m as in the first embodiment.
An electric discharge machining experiment was conducted using the SKD-11 of m as a workpiece. As a result, when the on time is 0.8 μs, 0.25
mm-φ Cu-35 wt% Zn electrode wire (conductivity 23%)
The processing speed was 2.40 mm / min, which was about 21% higher than the (processing speed 1.985 mm / min).

【0028】また、被加工物の表面粗さについても調査
した。その結果、Cu−35重量%Zn電極線で切断し
た被加工物の表面粗さ(中心線平均粗さ)が1.81μ
mであるのに対し、本発明の電極線は1.730μmで
あり、最大面粗さについても本発明品は14.6μmで
ありCμ−35重量%Znの15.7μmより小さい値
であり、加工面精度に優れていることを確認した。
The surface roughness of the work piece was also investigated. As a result, the surface roughness (center line average roughness) of the work piece cut with the Cu-35 wt% Zn electrode wire was 1.81 μm.
m, the electrode wire of the present invention is 1.730 μm, and the maximum surface roughness of the present invention product is 14.6 μm, which is a value smaller than 15.7 μm of Cμ-35 wt% Zn. It was confirmed that the machined surface precision was excellent.

【0029】更に、断線限界は、本発明の電極線が1.
5μsで断線したのに対し、比較例のCu−35重量%
Zn電極線は1.35μsの電流印加時間で断線した。
このことから、本発明による電極線は耐断線性に優れて
いることが確かめられた。図6は実施例2における0.
9mmφのCu−Zn/Cu−0.16重量%Zr電極
線の観察結果(ミクロ組織)を示し、(a)は横断面の
SEMによる顕微鏡写真、(b)は(a)のライン分析
部のZnX線ライン分析結果を示す特性写真である。
(a)のX部は37.6mass%Znのα相、Y部は4
3.7mass%Znのβ相であり、β相をα相が囲んだ構
造を示している。
Further, the disconnection limit of the electrode wire of the present invention is 1.
Although the wire was broken at 5 μs, Cu-35% by weight of the comparative example
The Zn electrode wire was broken at a current application time of 1.35 μs.
From this, it was confirmed that the electrode wire according to the present invention has excellent resistance to disconnection. FIG.
The observation result (microstructure) of 9-mm (phi) Cu-Zn / Cu-0.16 weight% Zr electrode wire is shown, (a) is a micrograph by SEM of a cross section, (b) is a line analysis part of (a). It is a characteristic photograph which shows a Zn X-ray line analysis result.
The X part of (a) is the α phase of 37.6 mass% Zn, and the Y part is 4
It is a β phase of 3.7 mass% Zn and shows a structure in which the β phase is surrounded by the α phase.

【0030】図7は実施例2におけるCu−Zn/Cu
−0.16重量%Zr合金による0.9mmφの電極線
を0.25mmφに冷間伸線したときの観察結果(ミク
ロ組織)を示す写真である。図中、(a)は横断面のS
EMによる顕微鏡写真、(b)は(a)のライン分析部
のZnX線ライン分析結果を示す特性写真である。
(a)のX部は36.9mass%Znのα相、Y部は4
4.0mass%Znのβ相であり、加工が難しいβ相の回
りを加工の容易なα相が取り囲んだ構造を示している。
FIG. 7 shows Cu-Zn / Cu in Example 2.
6 is a photograph showing an observation result (microstructure) when a 0.9 mmφ electrode wire made of a −0.16 wt% Zr alloy was cold-drawn to 0.25 mmφ. In the figure, (a) is a cross section of S
The micrograph by EM, (b) is a characteristic photograph which shows the ZnX-ray line analysis result of the line analysis part of (a).
The X part of (a) is an α phase of 36.9 mass% Zn, and the Y part is 4
It is a β phase of 4.0 mass% Zn, and shows a structure in which an easily processed α phase surrounds a β phase that is difficult to process.

【0031】図8は比較例(Cu−44mass%Zn線材
にローラダイスによる冷間加工を施したもの)の断面の
顕微鏡写真であり、(a)は加工度19%(8mmφ→
7.mmφ)の場合であり、ミクロな亀裂が生じている
様子を示す顕微鏡写真、(b)は加工度27.3%(8
mmφ→6.8mmφ)の場合であり、明瞭な割れが発
生している様子を示す顕微鏡写真である。このように、
β単相の場合、割れが生じるために加工は難しい。ま
た、低加工度で加工できたとしてもキズは避けられず信
頼性に問題が残る。
FIG. 8 is a photomicrograph of a cross section of a comparative example (Cu-44 mass% Zn wire rod subjected to cold working with a roller die), and (a) shows a working ratio of 19% (8 mmφ → 8 mmφ →
7. mmφ), which is a micrograph showing the appearance of microcracks, and (b) shows a working ratio of 27.3% (8
mmφ → 6.8 mmφ), and is a micrograph showing clear cracks. in this way,
In the case of β single phase, it is difficult to process because of cracking. Even if it can be processed with a low degree of processing, scratches cannot be avoided and reliability remains a problem.

【0032】[0032]

【発明の効果】以上説明した通り、本発明は、耐熱性と
高導電性を有するCu−Zr合金による芯材を被覆する
Cu−Zn合金の表面合金層が、外周部のZn濃度を内
周部よりも低い値にしたので、表面合金層の表面に近い
部分にα相が形成され、β相は内側に形成され、かつβ
相をα相が囲む構造になっているので、冷間加工を行っ
てもβ相に起因して生じるキズや割れが生じないため、
加工性は損なわれず、しかも、加工速度は内周部のβ相
によって確保される。また、高導電性Cu−Zr合金に
よっても加工速度向上が確保される。
As described above, according to the present invention, the surface alloy layer of the Cu-Zn alloy that covers the core material made of the Cu-Zr alloy having heat resistance and high conductivity has the Zn concentration in the outer periphery of Since the value is lower than that of the part, the α phase is formed near the surface of the surface alloy layer, the β phase is formed inside, and the β phase is formed.
Since the α phase surrounds the phase, even if cold working is performed, no scratches or cracks caused by the β phase will occur,
The workability is not impaired, and the working speed is ensured by the β phase in the inner peripheral portion. Further, the high conductivity Cu-Zr alloy also ensures the improvement of the processing speed.

【0033】また、本発明方法によれば、表面合金層を
形成するに際し、芯材を所定の径にした後、Zn濃度の
異なるスラリを2段階に別けて塗布ならびに乾燥する工
程順序にしたため、簡単な設備及び製造工程により放電
加工用電極線を製造することができる。この結果、生産
性及び製造コストの低減を図ることが可能になる。
Further, according to the method of the present invention, when the surface alloy layer is formed, after the core material is made to have a predetermined diameter, slurries having different Zn concentrations are applied and dried separately in two steps. The electrode wire for electric discharge machining can be manufactured with simple equipment and manufacturing process. As a result, it is possible to reduce productivity and manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による放電加工用電極線を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing an electric discharge machining electrode wire according to the present invention.

【図2】Cu−0.16重量%Zrの表面合金層の横断
面をエッチングし、この組織をSEMで観察した結果を
示す顕微鏡写真である。
FIG. 2 is a micrograph showing the result of etching a cross section of a surface alloy layer of Cu-0.16 wt% Zr and observing the structure with an SEM.

【図3】0.2mmφに伸線した放電加工用電極線の断
面を光学顕微鏡で観察した結果を示す顕微鏡写真であ
る。
FIG. 3 is a micrograph showing a result of observing a cross section of an electrode wire for electric discharge machining drawn to 0.2 mmφ with an optical microscope.

【図4】0.2mmφに伸線した放電加工用電極線の表
面合金層からの距離とZn濃度の関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between the Zn concentration and the distance from the surface alloy layer of the electric discharge machining electrode wire drawn to 0.2 mmφ.

【図5】放電加工時のパルス波形を示す波形図である。FIG. 5 is a waveform diagram showing a pulse waveform during electric discharge machining.

【図6】実施例2における0.9mmφのCu−Zn/
Cu−0.16重量%Zr電極線の観察結果を示し、
(a)は横断面のSEMによる顕微鏡写真、(b)は
(a)のライン分析部のZnX線ライン分析結果を示す
特性写真である。
6 is a 0.9 mmφ Cu-Zn / in Example 2. FIG.
The observation result of Cu-0.16 wt% Zr electrode wire is shown,
(A) is a SEM micrograph of a cross section, and (b) is a characteristic photograph showing a Zn X-ray line analysis result of the line analysis part of (a).

【図7】実施例2におけるCu−Zn/Cu−0.16
重量%Zr合金による0.9mmφの電極線を0.25
mmφに冷間伸線したときの観察結果を示し、(a)は
横断面のSEMによる顕微鏡写真、(b)は(a)のラ
イン分析部のZnX線ライン分析結果を示す特性写真で
ある。
FIG. 7: Cu-Zn / Cu-0.16 in Example 2
0.25% 0.9mmφ electrode wire made of Zr alloy
The observation result when cold-drawn to mmφ is shown, (a) is a SEM micrograph of the cross section, and (b) is a characteristic photograph showing the Zn X-ray line analysis result of the line analysis part of (a).

【図8】Cu−44mass%Zn線材にローラダイスによ
る冷間加工を施した比較例の断面顕微鏡写真であり、
(a)は加工度19%の場合、(b)は加工度27.3
%の場合の各顕微鏡写真である。
FIG. 8 is a cross-sectional photomicrograph of a comparative example in which a Cu-44 mass% Zn wire is cold-worked with a roller die,
(A) is a processing rate of 19%, (b) is a processing rate of 27.3
It is each microscope picture in the case of%.

【符号の説明】[Explanation of symbols]

1 放電加工用電極線 2 芯材 3 表面合金層 1 Electrode machining electrode wire 2 Core material 3 Surface alloy layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cu−Zr合金による芯材と、 前記芯材の表面に被覆され、外周部のZn濃度が内周部
よりも低いCu−Zn合金を用いた表面合金層とを具備
することを特徴とする放電加工用電極線。
1. A core material made of a Cu—Zr alloy, and a surface alloy layer coated on the surface of the core material and using a Cu—Zn alloy having a lower Zn concentration in the outer peripheral portion than in the inner peripheral portion. Electrode wire for electrical discharge machining characterized by.
【請求項2】 前記表面合金層は、内周部のZn濃度が
35〜55重量%、前記外周部のZn濃度が30〜43
重量%であることを特徴とする請求項1の放電加工用電
極線。
2. The surface alloy layer has a Zn concentration of 35 to 55% by weight in an inner peripheral portion and a Zn concentration of 30 to 43 in an outer peripheral portion.
The electrode wire for electric discharge machining according to claim 1, wherein the electrode wire is in a weight percentage.
【請求項3】 前記表面合金層は、β相と、このβ相を
取り巻くように形成されたα相とから成ることを特徴と
する請求項1記載の放電加工用電極。
3. The electric discharge machining electrode according to claim 1, wherein the surface alloy layer comprises a β phase and an α phase formed so as to surround the β phase.
【請求項4】 前記表面合金層のα相は、最も表面に近
い部位に形成されることを特徴とする請求項3記載の放
電加工用電極線。
4. The electrode wire for electric discharge machining according to claim 3, wherein the α phase of the surface alloy layer is formed at a portion closest to the surface.
【請求項5】 前記表面合金層は、Zn粉、Cu−Zn
粉、又はZn粉とCu−Zn粉の混合物を加熱焼結させ
たものであることを特徴とする請求項1〜4のいずれか
に記載の放電加工用電極線。
5. The surface alloy layer comprises Zn powder, Cu—Zn
The electrode wire for electric discharge machining according to any one of claims 1 to 4, which is obtained by heating and sintering powder or a mixture of Zn powder and Cu-Zn powder.
【請求項6】 Cu−Zr合金線に冷間伸線を施して所
定の径に加工して芯材を形成し、 加熱処理及び急冷処理を順次施し、 前記芯材の表面にZn粉末を主体にした第1のスラリー
を塗布し、 前記第1のスラリーを乾燥させ、 前記第1のスラリー上にZn濃度が40〜55%になる
ように調整したCu−Zn粉末主体の第2のスラリーを
塗布し、 前記第2のスラリーを乾燥させ、その後加熱した後急冷
し冷間伸線することを特徴とする放電加工用電極線の製
造方法。
6. A Cu—Zr alloy wire is subjected to cold drawing and processed into a predetermined diameter to form a core material, which is then subjected to heat treatment and quenching treatment in sequence, and a Zn powder is mainly formed on the surface of the core material. The first slurry is applied, the first slurry is dried, and the second slurry mainly composed of Cu—Zn powder is adjusted to have a Zn concentration of 40 to 55% on the first slurry. A method for producing an electrode wire for electric discharge machining, which comprises applying, drying the second slurry, heating it, then quenching and cold drawing.
JP14087796A 1996-05-10 1996-05-10 Electrode wire for electric discharge machining Expired - Fee Related JP3405069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14087796A JP3405069B2 (en) 1996-05-10 1996-05-10 Electrode wire for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14087796A JP3405069B2 (en) 1996-05-10 1996-05-10 Electrode wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JPH09300136A true JPH09300136A (en) 1997-11-25
JP3405069B2 JP3405069B2 (en) 2003-05-12

Family

ID=15278847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14087796A Expired - Fee Related JP3405069B2 (en) 1996-05-10 1996-05-10 Electrode wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JP3405069B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018649A (en) * 1997-07-30 2002-01-22 Ki Chul Seong Structure for porous electrode wire for electric discharge machining
JP2007075951A (en) * 2005-09-14 2007-03-29 Nippon Steel Corp Outer shape machining method of single-crystal ingot
JP2007283411A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Outline machining method for conductive ingot
WO2011096242A1 (en) * 2010-02-02 2011-08-11 沖電線株式会社 Electrode wire for wire electrical discharge machining, method for manufacturing the same, and method for electrical discharge machining the same
CN104668679A (en) * 2015-01-29 2015-06-03 宁波博威麦特莱科技有限公司 Cutting line for low-boron-oxygen unidirectional wire winding and manufacturing method for cutting line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505900A (en) 2007-12-10 2009-08-12 冲电线株式会社 Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line thereof
CN107671379A (en) * 2017-09-26 2018-02-09 宁波康强微电子技术有限公司 The preparation method of texturing coating electrode silk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018649A (en) * 1997-07-30 2002-01-22 Ki Chul Seong Structure for porous electrode wire for electric discharge machining
JP2007075951A (en) * 2005-09-14 2007-03-29 Nippon Steel Corp Outer shape machining method of single-crystal ingot
JP2007283411A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Outline machining method for conductive ingot
WO2011096242A1 (en) * 2010-02-02 2011-08-11 沖電線株式会社 Electrode wire for wire electrical discharge machining, method for manufacturing the same, and method for electrical discharge machining the same
JP2011177882A (en) * 2010-02-02 2011-09-15 Oki Electric Cable Co Ltd Electrode wire for wire electric discharge machining, method of manufacturing the same, and method of electric discharge machining using the electrode wire
US8445807B2 (en) 2010-02-02 2013-05-21 Oki Electric Cable Co,. Ltd. Electrode wire for wire electrical discharge machining, method for manufacturing the same, and method for electrical discharge machining using the same
CN104668679A (en) * 2015-01-29 2015-06-03 宁波博威麦特莱科技有限公司 Cutting line for low-boron-oxygen unidirectional wire winding and manufacturing method for cutting line

Also Published As

Publication number Publication date
JP3405069B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US6306523B1 (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
US4935594A (en) Eroding electrode, in particular a wire electrode for the sparkerosive working
US5945010A (en) Electrode wire for use in electric discharge machining and process for preparing same
KR20030025813A (en) Wire electrode for spark erosion cutting
JP3917650B2 (en) Multilayer coating electrode wire for electric discharge machining and method for producing the same
US5808262A (en) Wire electrode for electro-discharge machining and method of manufacturing same
JP3405069B2 (en) Electrode wire for electric discharge machining
JP2008296298A (en) Electrode wire for wire electric discharge machining
US20060138091A1 (en) Method of manufacturing zinc-coated electrode wire for electric discharge processors using hot dip galvanizing process
US6291790B1 (en) Wire electrode for electro-discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
JPS62218026A (en) Electrode wire for wire cut spark discharge machining
JP2003291030A (en) Electrode wire for wire electrical discharge machining
EP0799665B1 (en) Method of manufacturing a wire electrode for electro-discharge machining
JP4020003B2 (en) Electrode wire for wire electric discharge machining and electric discharge machining method using the same
JP2022550014A (en) Electrode wire for electrical discharge machining
RU2255850C1 (en) Method for making piston rings of sheet steel
JP2001334415A (en) Electrode wire for wire cutting electric discharge machining
JPH09225746A (en) Manufacture of electric discharge machining electrode wire
JPH11347847A (en) Electrode wire for wire electric discharge machining
JPH0261076A (en) Production of electrode wire for electric discharge machining
JPS6257822A (en) Wire cut electric discharge machining electrode made of cu-alloy
JPH09225747A (en) Electrode wire for electrical discharge machining
JPS62162424A (en) Electric discharge electrode wire and manufacture thereof
JP2005028511A (en) Method for manufacturing wire electrode for wire electrical discharge machining

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees