JPH09297011A - Method and apparatus for detection of shape of object surface - Google Patents

Method and apparatus for detection of shape of object surface

Info

Publication number
JPH09297011A
JPH09297011A JP8113734A JP11373496A JPH09297011A JP H09297011 A JPH09297011 A JP H09297011A JP 8113734 A JP8113734 A JP 8113734A JP 11373496 A JP11373496 A JP 11373496A JP H09297011 A JPH09297011 A JP H09297011A
Authority
JP
Japan
Prior art keywords
illumination means
image
reflected light
shape
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113734A
Other languages
Japanese (ja)
Inventor
Yuji Takagi
裕治 高木
Mitsunobu Isobe
光庸 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8113734A priority Critical patent/JPH09297011A/en
Publication of JPH09297011A publication Critical patent/JPH09297011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the proper angle of inclination of even an object, to be detected, in which a mirror face and a diffusion face exist so as to be mixed by a method wherein the influence of diffusion components of images by illumination means other than two arbitrary illumination means is removed from mirror face components of images by the two arbitrary illumination means. SOLUTION: While a reflected-light image from the surface of an object 3 to be inspected changes over four stages of illumination means 4A to 4D at high speed in synchronization with an image frame, the respective illumination means 4A to 4D are turned on individually. Thereby, images which are fetched by a TV camera 5 and which are obtained by the illumination means 4A to 4D are written into image memories 7a to 7d separately. Then, out of the four obtained images, diffusion components of the images by the illumination means other than the two arbitrary illumination means are removed from mirror-face components of the images by the two arbitrary illumination means, and the angle of inclination of the surface of the object to be inspected is computed. Thereby, even in an object in which a mirror face and a diffusion face exist so as to be mixed in such a way that, e.g. a copper foil face is exposed in the soldered part of a printed-circuit board after a soldering operation, its angle of inclination can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物体表面の形状検
出方法および形状検出装置に係り、特に、はんだ付け外
観検査装置におけるはんだ表面形状の検出等に用いて好
適な、物体表面の形状検出方法および形状検出装置に関
し、さらに詳しくは、表面実装ICのリードはんだ付け
部のような表面状態の極端に変化する検出対象に用いて
好適な、傾斜角度の検出技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object surface shape detecting method and an object surface shape detecting method, and more particularly to an object surface shape detecting method suitable for detecting a solder surface shape in a soldering appearance inspection apparatus. More specifically, the present invention relates to a shape detection device, and more particularly, to a tilt angle detection technique suitable for a detection target such as a lead soldering portion of a surface-mounted IC whose surface state changes extremely.

【0002】[0002]

【従来の技術】従来のはんだ面形状の検出方法に関連す
る公知例としては、特開昭61−41906号公報(名
称;「はんだ面の状態認識方式」)、或いは、第3回
「外観検査の自動化」ワークショップ;1991年,講
演論文集第15頁〜20頁に記載の「段差照明によるS
MDはんだ付部外観検査技術の開発」等が挙げられる。
2. Description of the Related Art As a publicly known example relating to a conventional method for detecting the shape of a solder surface, Japanese Patent Laid-Open No. 61-41906 (name: "Solder surface state recognition method") or the third "appearance inspection" Automation "Workshop;1991," S by Step Illumination ", Lecture Papers, pages 15-20.
"Development of visual inspection technology for MD soldering parts" and the like.

【0003】最近のプリント回路基板においては、搭載
部品リードの狭ピッチ化に伴い、はんだ供給量の制限に
よるはんだブリッジ発生防止、はんだプリコート表面の
酸化により引き起こされるぬれ不良の防止、及びコスト
低減のために、はんだプリコートなしの銅パッドの使用
が主流となってきている。これに加えて、ランニングコ
ストの面からエアリフロー炉が使用されることにより、
拡散面に近い銅箔面が部品はんだ付後も露出し、はんだ
ぬれ不良が発生する場合がある。この場合、形状検出対
象領域には鏡面であるはんだ面と、場合によっては拡散
面となる銅箔面とが混在する。この銅箔面は、プリント
基板の製作からIC等のはんだ付けを経てはんだ付外観
検査が行われるまでの時間経過,管理状態により、比較
的鏡面性を有する状態から拡散性を有する状態へとその
表面状態は非常に変化に富む。しかしながら、従来の物
体表面の傾斜角度検出方法では対象を鏡面と仮定してい
るため、鏡面と拡散面の混在する対象に対しては適切な
傾斜角度の検出が困難であった。
In recent printed circuit boards, in order to prevent the solder bridge from being generated due to the limitation of the amount of solder to be supplied, the prevention of the wetting defect caused by the oxidation of the surface of the solder precoat, and the cost reduction as the pitch of the mounting component leads is narrowed. In addition, the use of copper pads without solder precoat is becoming mainstream. In addition to this, the use of an air reflow furnace in terms of running costs
The copper foil surface close to the diffusion surface may be exposed even after soldering the components, and solder wet failure may occur. In this case, in the shape detection target area, a solder surface that is a mirror surface and a copper foil surface that is a diffusion surface are mixed in some cases. This copper foil surface changes from a relatively specular state to a diffusive state depending on the time elapsed from the production of the printed circuit board to the soldering appearance inspection through the soldering of IC etc. and the management state. The surface condition is very variable. However, in the conventional method of detecting the inclination angle of the object surface, it is assumed that the object is a mirror surface, and thus it is difficult to detect an appropriate inclination angle for an object in which a mirror surface and a diffusion surface are mixed.

【0004】はんだ面の形状検出装置の構成例を、図2
に示す。図2において、1は基板、2は基板1上の搭載
部品、2aは搭載部品2のリード、3は検査対象(ここ
では、リードのはんだ付け部)、4A〜4Dは照明手段
(光源)、5はTVカメラ、6はTVカメラ5の出力す
る画像信号をディジタル信号化するディジタル化回路、
7はディジタル化回路6の出力するディジタル化された
画像信号を記憶する画像メモリ、8は画像メモリ7に格
納されたデータを取り込んで適宜に解析処理するコンピ
ュータである。
FIG. 2 shows an example of the structure of a solder surface shape detecting device.
Shown in In FIG. 2, 1 is a substrate, 2 is a mounted component on the substrate 1, 2a is a lead of the mounted component 2, 3 is an object to be inspected (here, a soldering portion of the lead), 4A to 4D are illumination means (light sources), 5 is a TV camera, 6 is a digitizing circuit for converting the image signal output from the TV camera 5 into a digital signal,
Reference numeral 7 is an image memory for storing the digitized image signal output from the digitizing circuit 6, and 8 is a computer for fetching the data stored in the image memory 7 and appropriately analyzing the data.

【0005】4段の環状照明の照明手段4A〜4DはL
EDを用いて構成しており、上段より順に、検査対象3
に対して入射角がそれぞれ異なる所定角度の照明光を照
射するように配置されている(上段の照明手段4A,中
上段の照明手段4B,中下段の照明手段4C,下段の照
明手段4Dとして配置されている)。そして、各照明手
段4A〜4Dによる検査対象3の表面からの反射光を観
測するために、照明手段群の頂上にTVカメラ5を配置
している。
Illuminating means 4A to 4D for four-stage annular illumination are L
It is configured using ED, and the inspection target 3
Are arranged so as to irradiate illumination lights of different incident angles with respect to each other (the upper illuminating means 4A, the middle upper illuminating means 4B, the middle lower illuminating means 4C, and the lower illuminating means 4D. Has been). Then, in order to observe the reflected light from the surface of the inspection target 3 by each of the illumination means 4A to 4D, the TV camera 5 is arranged on the top of the illumination means group.

【0006】検査対象3の表面からの反射光画像は、画
像フレームに同期して高速に4段照明の各照明手段4A
〜4Dを切り換えながら、各照明手段4A〜4Dを個別
に点灯することにより、TVカメラ5によって取り込ま
れる(撮像される)。各照明手段4A〜4Dにより得ら
れる画像は、別々に4つの画像メモリ(画像メモリ7
a,画像メモリ7b,画像メモリ7c,画像メモリ
7d)に書き込まれる。いま、各照明手段4A〜4D
を上段より順に、照明手段,,,と番号付け
し、各照明手段,,,4A〜4Dにより得られ
る画像を、画像,画像,画像,画像とする。そ
して、これらの4枚の画像,,,から、以下に
述べる傾斜角度の識別を行う。
The image of the light reflected from the surface of the object 3 to be inspected is synchronized with the image frame at high speed, and each illumination means 4A of four-stage illumination is used.
By switching on each of the illumination means 4A to 4D individually while switching between 4D to 4D, the images are captured (imaged) by the TV camera 5. The images obtained by the respective illumination means 4A to 4D are separately stored in four image memories (image memory 7).
a, image memory 7b, image memory 7c, image memory 7d). Now, each lighting means 4A-4D
Are sequentially numbered from the top, and the images obtained by the respective illumination means 4A to 4D are images, images, images, and images. Then, the inclination angle described below is identified from these four images.

【0007】照明と検出の方向を固定して得られる像の
正反射部は、検査対象3の表面の特定の傾斜角度部分に
対応する。4段の各照明手段4A〜4Dは、上段より順
に、垂直方向に対しそれぞれ約7度,23度,50度,
70度の角度で、検査対象3の表面に照明光を照射する
ように構成されている。これにより、TVカメラ5で検
出したときの各照明手段4A〜4Dに対応する正反射光
は、検査対象3の表面の法線角度が垂直方向に対してそ
れぞれほぼ3度,12度,23度,35度のときに、T
Vカメラ5で検出される。よって、各照明手段4A〜4
Dに対応する4枚の画像の同一位置から得られる4個の
画像濃淡値を、何らかの方法により評価することによ
り、画像に撮像された該当部分の傾斜角度が識別でき
る。
The specular reflection portion of the image obtained by fixing the illumination and detection directions corresponds to a specific inclination angle portion of the surface of the inspection object 3. The four-stage illumination means 4A to 4D are arranged in the order from the top to the vertical in the order of about 7 degrees, 23 degrees, 50 degrees,
It is configured to illuminate the surface of the inspection target 3 with illumination light at an angle of 70 degrees. As a result, the regular reflection light corresponding to each of the illumination means 4A to 4D when detected by the TV camera 5 has a normal line angle of the surface of the inspection object 3 of approximately 3 degrees, 12 degrees, and 23 degrees with respect to the vertical direction. , At 35 degrees, T
It is detected by the V camera 5. Therefore, each lighting means 4A-4
By evaluating the four image grayscale values obtained from the same position of the four images corresponding to D by some method, the inclination angle of the corresponding portion imaged in the image can be identified.

【0008】従来方式では、検出された4枚の画像に対
し各々個別のしきい値を持ち、各々の画像の同一位置に
おける輝度値を各画像に対応するしきい値と比較し、し
きい値以上の輝度値を持つ画像番号(画像,,,
)に対応する番号を、傾斜角度コード1,3,5,7
として割り付けていた。各画像に対応するしきい値は、
2つ以上の画像に対して上記の条件が満足されないよう
予め調整しておく。ある画素においてしきい値以上の輝
度値を有する画像がない場合は、各輝度値にある一定の
重み付けを施し、比例配分演算により傾斜角度コードを
確定していた(この場合、しきい値から傾斜角度コード
を割り付けるよりも、精度は劣る)。また、総べての輝
度値が非常に低い場合には(具体的には、総べての輝度
値が予め低い値に設定されたしきい値を下回る場合に
は)、傾斜角度が40度で正反射が検出できなかったと
見なして、傾斜角度コード8を割り付けていた。以上、
従来方法による検査対象の表面の傾斜角度コードと傾斜
角度との対応は、次に示す表1のとおりである。
In the conventional method, each of the four detected images has an individual threshold value, and the brightness value at the same position of each image is compared with the threshold value corresponding to each image, and the threshold value is compared. Image numbers (images, ...
), The number corresponding to the tilt angle code 1, 3, 5, 7
Was allocated as. The threshold corresponding to each image is
Adjustment is made in advance so that the above conditions are not satisfied for two or more images. If there is no image with a brightness value above a threshold value at a certain pixel, each brightness value is given a certain weighting, and the tilt angle code is determined by proportional distribution calculation (in this case, the tilt value from the threshold value is tilted). Less accurate than assigning an angle code). In addition, when all the brightness values are very low (specifically, when all the brightness values are below the threshold value set to a low value in advance), the inclination angle is 40 degrees. The tilt angle code 8 was assigned on the assumption that the regular reflection could not be detected at. that's all,
The correspondence between the tilt angle code and the tilt angle of the surface of the inspection target according to the conventional method is as shown in Table 1 below.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【発明が解決しようとする課題】従来方式の問題点を、
図3により具体的に説明する。図3中のグラフの横軸は
検査対象表面の傾斜角度θを、縦軸は画像の輝度値Iを
それぞれ表しており、また、グラフ中の,,,
で示す各曲線は、各画像(画像,,,)における
検査対象表面の傾斜角度変化に応じた輝度値の推移を、
それぞれ表している。
[Problems to be Solved by the Invention]
This will be described more specifically with reference to FIG. The horizontal axis of the graph in FIG. 3 represents the inclination angle θ of the surface to be inspected, and the vertical axis represents the brightness value I of the image. Also, in the graph,
Each curve shown by represents the transition of the luminance value according to the change in the inclination angle of the surface to be inspected in each image (image ,,,),
Each is represented.

【0011】図3の(a)は、検査対象表面が鏡面状態
の場合の、各画像の輝度値の推移を表している。検査対
象表面が傾斜角θ1 のとき、画像の(曲線の)輝度
値のみがしきい値を超え、他の画像,,の輝度値
はしきい値以下となり、傾斜角度コード1がこの画素に
設定される。図3の(a)に示すように、各しきい値
は、対応する各コードが安定に検出できると考えられる
レベルに設定する。4段の照明条件を同一に出来ればし
きい値は1つで良いが、実際にはそれぞれの画像に対し
て個別にしきい値を調整・設定することで、4段の照明
条件の違いを吸収している。
FIG. 3A shows the transition of the brightness value of each image when the surface to be inspected is a mirror surface. When the surface to be inspected has an inclination angle θ 1 , only the brightness value (of the curve) of the image exceeds the threshold value, and the brightness values of the other images, ... Are below the threshold value, and the inclination angle code 1 is assigned to this pixel. Is set. As shown in FIG. 3A, each threshold value is set to a level at which each corresponding code can be detected stably. One threshold value is enough if the same lighting conditions in four steps can be used, but in reality, by adjusting and setting the threshold values individually for each image, differences in lighting conditions in four steps are absorbed. are doing.

【0012】以上のように、従来の傾斜角度コード生成
手法では、検査対象表面がはんだ表面(鏡面)のみであ
れば問題は無いが、対象が拡散面の場合には、傾斜角度
コードを誤検出する場合が生じる。これを模式的に、図
3の(b)により説明する。
As described above, the conventional tilt angle code generation method has no problem if the surface to be inspected is only the solder surface (mirror surface), but if the target is a diffusion surface, the tilt angle code is erroneously detected. There is a case to do. This will be schematically described with reference to FIG.

【0013】図3の(b)に示した各しきい値は、図3
の(a)と同一レベルであり、検査対象表面の傾斜角度
も、図3の(a)と同じθ1 である。ただし、検査対象
表面は拡散面である。照明手段4Aによる入射光は、
検査対象表面が拡散面であるため広い角度にわたって反
射し、各画像における検査対象表面の傾斜角度変化に応
じた輝度値の推移を表す曲線は、図3の(a)に示した
検査対象表面が鏡面のときに比べて、非常に裾野が広く
なる。このため、検査対象の表面が傾斜角θ1のとき、
画像の(曲線の)輝度値はしきい値(図中実線)に
達していないにもかかわらず、例えば画像の(曲線
の)輝度値はしきい値(図中2点鎖線)を超え、傾斜角
度コード3がこの画素に誤設定されてしまうことにな
る。
The threshold values shown in FIG. 3B are as shown in FIG.
3 (a), the inclination angle of the surface to be inspected is the same θ 1 as in FIG. 3 (a). However, the surface to be inspected is a diffusion surface. The incident light from the illumination means 4A is
Since the surface to be inspected is a diffusion surface, it is reflected over a wide angle, and the curve representing the transition of the luminance value according to the change in the tilt angle of the surface to be inspected in each image is the surface to be inspected shown in FIG. Compared with the mirror surface, the base is much wider. Therefore, when the surface to be inspected has an inclination angle θ 1 ,
Although the luminance value of the image (curved line) does not reach the threshold value (solid line in the figure), the luminance value of the image (curved line) exceeds the threshold value (two-dot chain line in the figure) The angle code 3 is erroneously set in this pixel.

【0014】このように、従来の傾斜角度コード生成手
法では、検出対象が銅箔表面のように拡散面である場合
には、傾斜角度コードを誤検出する虞があるという問題
がある。
As described above, the conventional inclination angle code generation method has a problem that the inclination angle code may be erroneously detected when the detection target is a diffusion surface such as the copper foil surface.

【0015】したがって、本発明の解決すべき技術的課
題は上記した従来技術のもつ問題点を解消することにあ
り、その目的とするところは、例えば、はんだ付け後の
プリント回路基板のはんだ付け部に銅箔面が露出したよ
うな、鏡面と拡散面が混在する検査対象においても、適
切な傾斜角度の検出を行えるようにすることにある。
Therefore, the technical problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, and the purpose thereof is, for example, a soldered portion of a printed circuit board after soldering. The object is to make it possible to detect an appropriate tilt angle even for an inspection target in which a mirror surface and a diffusion surface are mixed, such as a case where the copper foil surface is exposed.

【0016】[0016]

【課題を解決するための手段】本発明は上記した目的を
達成するため、従来技術のように検査対象の表面は鏡面
であると仮定しないで、実際の検査対象の表面は鏡面成
分と拡散面成分とがある比率で混在することを前提とし
て、任意の2つの照明手段による画像の鏡面成分から、
それ以外の照明手段による画像の拡散面成分の影響を除
去することにより、検査対象の表面の傾斜角度を算定す
る。
In order to achieve the above-mentioned object, the present invention does not assume that the surface to be inspected is a mirror surface as in the prior art, but the actual surface to be inspected is a mirror surface component and a diffusion surface. Assuming that the components are mixed in a certain ratio, from the specular component of the image by any two illumination means,
The tilt angle of the surface to be inspected is calculated by removing the influence of the diffused surface component of the image due to the other illumination means.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。本発明の実施形態(以下、本例と称
す)による、物体表面(はんだ付け部の表面)の形状検
出装置の構成は先に述べた図2と同様である。ただし、
解析計算手段たるコンピュータ8による解析計算手法
が、従来とは異なる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The configuration of the shape detecting device for the object surface (surface of the soldering portion) according to the embodiment of the present invention (hereinafter referred to as this example) is the same as that of FIG. 2 described above. However,
The analysis calculation method by the computer 8 as the analysis calculation means is different from the conventional one.

【0018】すなわち、本例においても、検査対象3の
表面からの反射光画像が、画像フレームに同期して高速
に4段の各照明手段4A〜4Dを切り換えながら、各照
明手段4A〜4Dを個別に点灯することにより、TVカ
メラ5によって取り込まれる(撮像される)。各照明手
段4A〜4Dにより得られる画像は、別々に4つの画像
メモリ(画像メモリ7a,画像メモリ7b,画像メ
モリ7c,画像メモリ7d)に書き込まれる。各照
明手段4A〜4Dは上段より順に、照明手段,,
,と番号付けし、各照明手段,,,4A〜
4Dにより得られる画像を、画像,画像,画像,
画像とする。ここまでの動作は、従来方式と同じであ
るが、得られた4枚の画像,,,から、以下に
述べる傾斜角度の識別を行う点が異なる。
That is, also in the present example, the reflected light image from the surface of the inspection object 3 is switched among the four illumination means 4A-4D at high speed in synchronization with the image frame while the illumination means 4A-4D are switched over. When individually turned on, it is captured (imaged) by the TV camera 5. The images obtained by the respective illumination means 4A to 4D are separately written in four image memories (image memory 7a, image memory 7b, image memory 7c, image memory 7d). The illumination means 4A to 4D are arranged in order from the top, and the illumination means,
,, and each lighting means, 4A ~
Image obtained by 4D is
Make an image. The operation up to this point is the same as that of the conventional method, except that the tilt angle described below is identified from the obtained four images.

【0019】次に、本例による傾斜角度の検出手法につ
いて、図1をもとに詳述する。検出対象3の表面状態が
鏡面性あるいは拡散性の場合の反射特性は、各照明手段
(各光源),,,ごとに、図1の(a),
(b)のように示される。ここで、図1の(a)は拡散
性の強い面での反射モデルであり、図1の(b)は鏡面
性の強い面での反射モデルである。
Next, the method of detecting the tilt angle according to this embodiment will be described in detail with reference to FIG. The reflection characteristics when the surface state of the detection target 3 is specular or diffusive are shown in FIG. 1A for each illumination means (each light source).
It is shown as in (b). Here, (a) of FIG. 1 is a reflection model on a surface having strong diffusivity, and (b) of FIG. 1 is a reflection model on a surface having strong specularity.

【0020】理想的な場合、 拡散反射の場合 : Ii =CL・cos(ψi−θn) ……(1)式 鏡面性反射の場合: Ii =CS・δ(ψi−2・θn) ……(2)式 となる。ただし、δはクロネッカーのデルタである。ま
た、Ii は観測される輝度、CLは拡散係数(光源の強
さと対象表面の拡散性から決まる定数)、CSは鏡面係
数(光源の強さと対象表面の鏡面性から決まる定数)、
ψi は鉛直方向からの光源の角度、θn は鉛直方向と検
査対象表面の法線方向のなす角度(検査対象表面の傾斜
角度に等しく、図1ではθn =0°)である。
In the ideal case, in the case of diffuse reflection: I i = CL · cos (ψ i −θ n ) (1) In the case of specular reflection: I i = CS · δ (ψ i −2 · θ n ) ... Equation (2) is obtained. Here, δ is the Kronecker delta. Ii is the observed brightness, CL is the diffusion coefficient (a constant determined by the intensity of the light source and the diffusivity of the target surface), CS is the specular coefficient (a constant determined by the intensity of the light source and the specularity of the target surface),
ψ i is the angle of the light source from the vertical direction, and θ n is the angle between the vertical direction and the direction normal to the surface to be inspected (equal to the inclination angle of the surface to be inspected, θ n = 0 ° in FIG. 1).

【0021】上記の(1),(2)式では、理想的な鏡
面反射および拡散反射を定式化したが、実際の検査対象
3の表面はその混在形となっていて、次の(3)式で表
される。 Ii =CL・cos(ψi−θn) + CS・S(ψi−2・θn) ……(3)式 ただし、(3)式では、鏡面反射にはδの替わりにSを
用いている。S(ψ)はψ=0のとき最大値をとる一種
の余弦関数であり、ψ±αにおいてS(ψ)≧0を満た
す。これは、δは理想的な点光源のときのみ成立する条
件であり、実際の4段差照明では各段の照射角度が幅を
持っていること、および、検出レンズの開口角が一定値
を持っていることを考慮に入れたためである。
In the above equations (1) and (2), ideal specular reflection and diffuse reflection are formulated, but the actual surface of the inspection object 3 is a mixed type thereof, and the following (3) It is represented by a formula. I i = CL · cos (ψ i −θ n ) + CS · S (ψ i −2 · θ n ) ... (3) Equation (3) However, in the equation (3), S is used instead of δ for specular reflection. I am using. S (ψ) is a kind of cosine function that takes a maximum value when ψ = 0, and satisfies S (ψ) ≧ 0 in ψ ± α. This is a condition that δ is satisfied only in the case of an ideal point light source, and in an actual 4-step illumination, the irradiation angle of each step has a width, and the aperture angle of the detection lens has a constant value. This is because it takes into consideration that

【0022】本例による検出手法を、以下に述べる。4
段の照明手段,,,4A〜4Dから得られる画
像4枚(画像,,,)の同一座標の輝度を、I
1 ,I3 ,I5 ,I7 とする。I1 ,I3 が鏡面成分を
持ち、I5 ,I7 が非零であれば、図1の(a)からも
分かるように、それは拡散成分に依るものであるから、
5 ,I7 は、次の(4)式および(5)式で表され
る。 I5 = CL・cos(ψ5−θnl) ……(4)式 I7 = CL・cos(ψ7−θnl) ……(5)式 上記(4),(5)式から未知数CL,θnlが求まる。
これより、I1 ,I3の鏡面成分I1s,I3sは、 I1s=CS・S(ψ1−2・θns)=I1−CL・cos(ψ1−θnl) ……(6)式 I3s=CS・S(ψ3−2・θns)=I3−CL・cos(ψ3−θnl) ……(7)式 上記の(6),(7)式となる。
The detection method according to this example will be described below. Four
The luminance of four images (images, ...) Obtained from the stage illumination means, ...
Let 1 , I 3 , I 5 , and I 7 . If I 1 and I 3 have a specular component and I 5 and I 7 are non-zero, it is due to a diffusive component, as can be seen from (a) of FIG.
I 5 and I 7 are represented by the following equations (4) and (5). I 5 = CL · cos (ψ 5 −θ nl ) ... (4) formula I 7 = CL · cos (ψ 7 −θ nl ) ... (5) formula From the above formulas (4) and (5), the unknown number CL , Θ nl is obtained.
Than this, the specular component I 1s of I 1, I 3, I 3s is, I 1s = CS · S ( ψ 1 -2 · θ ns) = I 1 -CL · cos (ψ 1 -θ nl) ...... ( 6) Formula I 3s = CS · S (ψ 3 −2 · θ ns ) = I 3 −CL · cos (ψ 3 −θ nl ) ... (7) Formula The above formulas (6) and (7) are obtained. .

【0023】もしI1sあるいはI3sが負であれば、I
1 ,I3 に鏡面成分が含まれているという仮定に矛盾す
るので、計算を打ち切る。一方、I1 ,I3 が非負であ
れば、上記(6),(7)式よりCSおよびθnsを求め
る。この結果求められる表面傾斜角度θn は、理想的に
はθn =θnl=θnsであるはずであるが、実際には計算
した結果はθnl≠θnsとなるので、鏡面成分,拡散成分
の寄与率と考えられるCL,CSを使用して、次の
(8)式に示すように荷重平均をとる。 θn = (CL・θnl + CS・θns)/(CL + CS) ……(8)式 また、このθn の評価値として、 Error =(|CL・(θnl−θn)+CS・(θns−θn)|)/(CL+CS) ……(9)式 上記の(9)式を定義する。
If I 1s or I 3s is negative, then I
The calculation is discontinued because it contradicts the assumption that 1 and I 3 include a specular component. On the other hand, if I 1 and I 3 are non-negative, CS and θ ns are obtained from the above equations (6) and (7). The surface inclination angle θ n obtained as a result should ideally be θ n = θ nl = θ ns , but in reality the calculated result is θ nl ≠ θ ns , so the specular component, diffusion Using CL and CS, which are considered to be the contribution rates of the components, the weighted average is calculated as shown in the following equation (8). θ n = (CL · θ nl + CS · θ ns ) / (CL + CS) Equation (8) Further, as an evaluation value of this θ n , Error = (| CL · (θ nl −θ n ) + CS・ (Θ ns −θ n ) |) / (CL + CS) (9) Equation (9) above is defined.

【0024】以上の処理を、(I3 ,I5 )および(I
5 ,I7 )が、鏡面成分を持つ画像と仮定して繰り返
す。理想的には、θn =θnl=θnsのときError =0で
あることから、上記(9)式で与えられるError の最小
値を与えるθn を傾斜角度とし、前述した従来手法と同
じ傾斜角度コードと傾斜角度の対応に準じて、傾斜角度
コードを割り付ける。
The above processing is carried out by (I 3 , I 5 ) and (I
5 and I 7 ) are repeated assuming that the image has a specular component. Ideally, since Error = 0 when θ n = θ nl = θ ns , the inclination angle is θ n which gives the minimum value of Error given by the above equation (9), and is the same as the conventional method described above. Assign the tilt angle code according to the correspondence between the tilt angle code and the tilt angle.

【0025】以上これまでは、検出領域の各座標毎に、
4段の各照明手段から得られる画像4枚の同一座標の輝
度値から傾斜角度を逐次算定し、傾斜角度コードを割り
付ける手法について述べた。ところで、本例による検出
手法をはんだ付け外観検査装置等へ適用するためには、
傾斜角度の算定に要する時間は出来るだけ短いことが望
ましい。本例においては、予め照射角度の異なる総べて
の照明手段による画像の輝度値の組み合わせ総べてにつ
いてその傾斜角度を求めて、傾斜角度コードを割り付け
ておくことは容易である。そこで、これをルックアップ
テーブルとして記憶しておき、実際の形状検出時にこの
テーブルを参照することにより、傾斜角度あるいは傾斜
角度コードを高速に算出することが実現できる。
Up to now, for each coordinate of the detection area,
The method of sequentially calculating the tilt angle from the brightness values of the same coordinates of the four images obtained from the four-stage illumination means and assigning the tilt angle code has been described. By the way, in order to apply the detection method according to this example to a soldering appearance inspection device, etc.,
It is desirable that the time required to calculate the tilt angle be as short as possible. In this example, it is easy to obtain the inclination angles of all the combinations of the brightness values of the images by all the illumination means having different irradiation angles and to assign the inclination angle codes in advance. Therefore, by storing this as a lookup table and referring to this table at the time of actual shape detection, the tilt angle or the tilt angle code can be calculated at high speed.

【0026】[0026]

【発明の効果】以上のように本発明に依れば、はんだ付
け後のプリント回路基板のはんだ付け部に銅箔面が露出
したような、鏡面と拡散面が混在する検査対象に対して
も、その表面の傾斜角度を正確に検出できるので、検査
性能を大幅に向上させ得るという顕著な効果を奏する。
As described above, according to the present invention, even for an inspection object in which a mirror surface and a diffusion surface are mixed, such as a copper foil surface exposed at a soldered portion of a printed circuit board after soldering. Since the inclination angle of the surface can be accurately detected, there is a remarkable effect that the inspection performance can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による傾斜角度の検出手法を説明するた
めの模式的説明図である。
FIG. 1 is a schematic explanatory diagram for explaining a method of detecting an inclination angle according to the present invention.

【図2】物体表面(はんだ付け部の表面)の形状検出装
置の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a shape detection device for an object surface (surface of a soldering portion).

【図3】従来技術による傾斜角度の検出手法の問題点を
説明するための模式的説明図である。
FIG. 3 is a schematic explanatory diagram for explaining a problem of a detection method of an inclination angle according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板 2 搭載部品 2a リード 3 検査対象(はんだ付け部) 4A 照明手段(光源) 4B 照明手段(光源) 4C 照明手段(光源) 4D 照明手段(光源) 5 TVカメラ 6 ディジタル化回路 7 画像メモリ 7a 画像メモリ 7b 画像メモリ 7c 画像メモリ 7d 画像メモリ 8 コンピュータ(解析計算手段) DESCRIPTION OF SYMBOLS 1 board 2 mounted component 2a lead 3 inspection object (soldered part) 4A illumination means (light source) 4B illumination means (light source) 4C illumination means (light source) 4D illumination means (light source) 5 TV camera 6 digitization circuit 7 image memory 7a Image memory 7b Image memory 7c Image memory 7d Image memory 8 Computer (analysis calculation means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体表面の形状を検出する形状検出装置
において、 検出対象に対して照射角度の異なる複数の照明手段と、
上記検出対象の表面からの反射光を観測する反射光観測
手段と、該反射光観測手段が観測した信号をディジタル
化して記憶する画像記録手段と、該画像記録手段が記録
した画像の内容から表面形状を解析計算する解析計算手
段とを具備し、 任意の2つの上記照明手段以外の上記照明手段による記
録画像から、上記検出対象の表面の拡散反射光に関係す
る特徴量(拡散反射係数とこれから導出される傾斜角
度)を求め、 上記の任意の2つの照明手段による記録画像から、上記
特徴量から導出される拡散反射光量を差し引いた画像輝
度値に対して、鏡面反射を仮定して鏡面反射光に関係す
る特徴量(拡散反射係数とこれから導出される傾斜角
度)を求め、 この鏡面反射光に関係する特徴量から導出される傾斜角
度と上記拡散反射光に関係する特徴量から導出される傾
斜角度との差が、最も小さくなる傾斜角度を採用するこ
とを特徴とする物体表面の形状検出方法。
1. A shape detection device for detecting the shape of an object surface, comprising: a plurality of illumination means having different irradiation angles with respect to a detection target;
The reflected light observation means for observing the reflected light from the surface of the detection target, the image recording means for digitizing and storing the signal observed by the reflected light observation means, and the surface based on the contents of the image recorded by the image recording means. An analysis calculation means for analytically calculating the shape, and from a recorded image by the illumination means other than the arbitrary two illumination means, a feature amount related to diffuse reflection light on the surface of the detection target (diffusion reflection coefficient and The derived inclination angle) is obtained, and the specular reflection is assumed for the image luminance value obtained by subtracting the diffuse reflection light amount derived from the above feature amount from the recorded image by the above two arbitrary illumination means. A feature amount related to light (a diffuse reflection coefficient and a tilt angle derived therefrom) is obtained, and a tilt angle derived from the feature amount related to this specular reflected light and a feature related to the diffuse reflected light. The difference between the inclination angle derived from the amount, shape detection method of the object surface, characterized by employing the smallest angle of inclination.
【請求項2】 物体表面の形状を検出する形状検出装置
において、 検出対象に対して照射角度の異なる複数の照明手段と、 上記検出対象の表面からの反射光を観測する反射光観測
手段と、 該反射光観測手段が観測した信号をディジタル化して記
憶する画像記録手段と、 任意の2つの上記照明手段以外の上記照明手段による記
録画像から、上記検出対象の表面の拡散反射光に関係す
る特徴量(拡散反射係数とこれから導出される傾斜角
度)を求め、上記の任意の2つの照明手段による記録画
像から、上記特徴量から導出される拡散反射光量を差し
引いた画像輝度値に対して、鏡面反射を仮定して鏡面反
射光に関係する特徴量(拡散反射係数とこれから導出さ
れる傾斜角度)を求め、この鏡面反射光に関係する特徴
量から導出される傾斜角度と上記拡散反射光に関係する
特徴量から導出される傾斜角度との差が、最も小さくな
る傾斜角度を採用する解析計算手段と、を有することを
特徴とする物体表面の形状検出装置。
2. A shape detecting device for detecting the shape of an object surface, comprising: a plurality of illuminating means having different irradiation angles with respect to a detection target; and a reflected light observing means for observing reflected light from the surface of the detection target. Image recording means for digitizing and storing the signal observed by the reflected light observing means, and features related to diffuse reflected light on the surface of the detection target from the recorded images by the illuminating means other than the arbitrary two illuminating means The amount (diffuse reflection coefficient and inclination angle derived therefrom) is calculated, and the image brightness value obtained by subtracting the diffuse reflection light amount derived from the above feature amount from the recorded image by the above two arbitrary illumination means is a mirror surface. Assuming reflection, the feature quantity related to specular reflection light (diffuse reflection coefficient and inclination angle derived from it) is calculated, and the inclination angle derived from the feature quantity related to this specular reflection light is calculated. The difference between the inclination angle derived from the feature related to the serial diffuse reflected light, smallest and analyzing calculating means for employing the inclination angle, the shape detecting apparatus of the object surface, characterized in that it comprises a.
【請求項3】 請求項2記載において、 照射角度の異なる総べての前記照明手段による画像の明
るさの組み合わせ総べてについて、予めその傾斜角度を
求めてテーブル形式に記憶しておき、実際の形状検出時
に上記テーブルを参照することにより、高速に傾斜角度
を算出する手段を有することを特徴とする物体表面の形
状検出装置。
3. The method according to claim 2, wherein the inclination angles of all the combinations of the brightness of the images by all the illumination means having different irradiation angles are calculated in advance and stored in a table format. An object surface shape detecting apparatus having means for calculating a tilt angle at high speed by referring to the table when detecting the shape.
JP8113734A 1996-05-08 1996-05-08 Method and apparatus for detection of shape of object surface Pending JPH09297011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113734A JPH09297011A (en) 1996-05-08 1996-05-08 Method and apparatus for detection of shape of object surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113734A JPH09297011A (en) 1996-05-08 1996-05-08 Method and apparatus for detection of shape of object surface

Publications (1)

Publication Number Publication Date
JPH09297011A true JPH09297011A (en) 1997-11-18

Family

ID=14619791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113734A Pending JPH09297011A (en) 1996-05-08 1996-05-08 Method and apparatus for detection of shape of object surface

Country Status (1)

Country Link
JP (1) JPH09297011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256275A (en) * 2009-04-28 2010-11-11 Visco Technologies Corp Shape inspection apparatus and shape inspection program
JP2010266205A (en) * 2009-05-12 2010-11-25 Visco Technologies Corp Shape inspection device and shape inspection program
JP2011237369A (en) * 2010-05-13 2011-11-24 Nippon Telegr & Teleph Corp <Ntt> Surface condition classification device, surface condition classification method and surface condition classification program
JP2012154684A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Device for measuring three-dimensional shape and method for measuring three-dimensional shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256275A (en) * 2009-04-28 2010-11-11 Visco Technologies Corp Shape inspection apparatus and shape inspection program
JP2010266205A (en) * 2009-05-12 2010-11-25 Visco Technologies Corp Shape inspection device and shape inspection program
JP2011237369A (en) * 2010-05-13 2011-11-24 Nippon Telegr & Teleph Corp <Ntt> Surface condition classification device, surface condition classification method and surface condition classification program
JP2012154684A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Device for measuring three-dimensional shape and method for measuring three-dimensional shape

Similar Documents

Publication Publication Date Title
JP2711042B2 (en) Cream solder printing condition inspection device
JP3072998B2 (en) Soldering condition inspection method and apparatus
JPS61290311A (en) Apparatus and method for inspecting soldered zone
US7664311B2 (en) Component mounting board inspecting apparatus
KR20110088967A (en) Method for inspecting joint error of an element formed on a printed circuit board
JPH09297011A (en) Method and apparatus for detection of shape of object surface
JPH05231837A (en) Method and device for measuring shape
US20020005498A1 (en) Cream solder inspection method and apparatus therefor
JPH04329344A (en) Mounted board inspecting device
JPH08128963A (en) Soldered appearance inspection device
JP3038107B2 (en) Soldering inspection method
JPH1090191A (en) Soldering testing equipment
JPS63229311A (en) Detection of cross-sectional shape
JP2906454B2 (en) Object position detection method
JPH0618240A (en) Pattern edge line estimating system and pattern inspection equipment
KR970002350A (en) Method and apparatus for checking the state of component mounting on a printed circuit board
JP2003224354A (en) Soldering appearance inspection method and apparatus thereof
JPH06243235A (en) Checking device for mounted board
JP2006177723A (en) Method and apparatus of inspecting soldering
JPH06174444A (en) Soldered state inspection method for discrete type electronic component
JP2819696B2 (en) Soldering inspection equipment
KR100292343B1 (en) Inspection method of cream solder position appearance on the board
JPH09270577A (en) Method and apparatus for inspecting cream solder print
JPH02278105A (en) Inspecting apparatus for soldering
JPH02118439A (en) Inspection instrument for soldering state