JPH09296994A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH09296994A
JPH09296994A JP13260096A JP13260096A JPH09296994A JP H09296994 A JPH09296994 A JP H09296994A JP 13260096 A JP13260096 A JP 13260096A JP 13260096 A JP13260096 A JP 13260096A JP H09296994 A JPH09296994 A JP H09296994A
Authority
JP
Japan
Prior art keywords
heat exchanger
circular pipe
pipe
diameter
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13260096A
Other languages
Japanese (ja)
Inventor
Tomonari Morita
知成 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP13260096A priority Critical patent/JPH09296994A/en
Priority to EP97302896A priority patent/EP0805331A3/en
Publication of JPH09296994A publication Critical patent/JPH09296994A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an increased pressure loss in a shell and tube heat exchanger using small diameter tubes to exhibit a good heat exchanging performance, by forming an enlarged diameter portion on ends of a small diameter tube, which portion can latch on or engage with a wall on a small diameter tube connection side of a tank, to which the small diameter tube is connected. SOLUTION: A refrigerant introduced into a heat exchanger from an inlet pipe is made to flow through a circular pipe 3 to conduct heat exchange with an air flowing through a portion of the circular pipe 3. Also, the refrigerant having circulated in the heat exchanger flows out of a outlet pipe. Further, an annular expanded portion 6 is formed on an outer peripheral surface of an end of the circular pipe 3 to serve as an enlarged diameter portion engageable with walls 4, 5 on a circular pipe connection side of tanks 1, 2. Accordingly, the circular pipe 3 is free of any small diameter portion, so that it is possible to effectively prevent an increased pressure loss in areas where pipe ends are inserted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば車両用空
調装置に用いられる多管式の熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-tube heat exchanger used in, for example, a vehicle air conditioner.

【0002】[0002]

【従来の技術】従来から、多管式熱交換器としては、た
とえば図8ないし図10に示すようなものが知られてい
る。図において、31は上タンクを示しており、上タン
ク31と下タンク32とは細径管からなる複数の円管3
3によって連通されている。円管33とタンク31、3
2との接続部構造は、図9、図10に示すように、たと
えば円管33の先端に絞り加工が施され、テーパ部41
と縮径部42が形成されている。そして、縮径部42を
上下タンク31、32の円管接続側の壁34、35に穿
設された穴39、40に挿通させ、該穴34、35の内
縁と円管33の縮径部42の外周面とをろう付けするこ
とにより、上下タンク31、32間が円管33を介して
連通されるようになっている。
2. Description of the Related Art Conventionally, as a multitubular heat exchanger, for example, those shown in FIGS. 8 to 10 have been known. In the drawing, 31 indicates an upper tank, and the upper tank 31 and the lower tank 32 are a plurality of circular pipes 3 each having a small diameter pipe.
3 are in communication. Round pipe 33 and tanks 31, 3
As shown in FIGS. 9 and 10, the structure of the connection portion with 2 is such that the tip end of the circular pipe 33 is drawn, and the tapered portion 41 is formed.
And a reduced diameter portion 42 are formed. Then, the reduced diameter portion 42 is inserted into the holes 39 and 40 formed in the walls 34 and 35 of the upper and lower tanks 31 and 32 on the circular pipe connection side, and the inner edges of the holes 34 and 35 and the reduced diameter portion of the circular pipe 33 are inserted. By brazing the outer peripheral surface of 42, the upper and lower tanks 31, 32 are communicated with each other through a circular pipe 33.

【0003】上記のような熱交換器においては、入口パ
イプ37から流入された熱媒(たとえば、冷媒)は、熱
交換器内を循環された後出口パイプ38から流出される
ようになっている。そして、円管33内を流れる冷媒と
複数の円管33を通過する空気との間で熱交換が行われ
るようになっている。
In the heat exchanger as described above, the heat medium (for example, a refrigerant) introduced from the inlet pipe 37 is circulated in the heat exchanger and then discharged from the outlet pipe 38. . Then, heat exchange is performed between the refrigerant flowing in the circular pipe 33 and the air passing through the plural circular pipes 33.

【0004】また、上記熱交換器においては、円管33
の先端に縮径部42を設けることにより、タンク31、
32の穴39、40への円管の挿通作業の容易化が図ら
れている。また、テーパ部41の外径は、縮径部42に
向かって徐々に小径になっているが、穴39、40の内
径よりも大きく形成されているので、円管33の上下タ
ンク31、32内への一定の挿入代が確保されるように
なっている。
Further, in the above heat exchanger, the circular pipe 33
By providing the reduced diameter portion 42 at the tip of the tank 31,
The work of inserting the circular pipe into the holes 39 and 40 of 32 is facilitated. Further, the outer diameter of the tapered portion 41 is gradually reduced toward the reduced diameter portion 42, but since it is formed larger than the inner diameters of the holes 39, 40, the upper and lower tanks 31, 32 of the circular pipe 33 are formed. A certain amount of insertion fee is secured inside.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような装置においては、円管33の先端には、テーパ部
41、縮径部42が形成されており、図10に示すよう
にその内径は他の部位に比べて小さくなっている。この
ため、円管33内を流入する熱媒(たとえば、冷媒)の
圧力損失がこの部分で増大する。
However, in the above-mentioned device, the circular tube 33 has the tapered portion 41 and the reduced diameter portion 42 formed at the tip thereof, and as shown in FIG. It is smaller than other parts. Therefore, the pressure loss of the heat medium (for example, refrigerant) flowing in the circular pipe 33 increases at this portion.

【0006】一般に、流路長l、相当直径(内径)dの
通路抵抗Pは、 P=λ(l/d)・(u2 /2g) ・・・(1) で表される。ここで、u:流速、g:重力加速度、λ:
係数である。また、冷媒循環量Gと流速uの関係は、 G=3600・A・u ・・・(2) で表される。ここで、A:流路断面積である。上記
(1)、(2)式より冷媒循環量Gを一定、また流路長
lをタンク内挿入代とし、任意の管径仕様(n:任意の
管径)ごとに挿入代を同一とした場合、管径dn 、通路
断面積An に対する通路抵抗Pn は、 Pn =λ(l/dn )・(1/2g)・(G/3600
n ) と表される。次に、An について説明する。まず本熱交
換器における管の配列を図12を用いて説明すると、管
の外径をD、空気流方向の配列ピッチをX、それと直交
する方向をYとする。ここで、管の外径が異なる場合に
も、配列ピッチX/D、及びY/Dが一定なる条件で、
円管接続側の壁の単位面積当たりに配列できる管本数N
n について考えてみる。この場合管外径が小さくなる
と、単位面積当たりに配列できる管本数Nn は増加す
る。ここで、通路断面積An は、An =(1/4)・π
・dn 2 ×Nn となる。なお、dn に関し、管の外径が
変わっても管の肉厚は一定としてdn の値を決定する。
(管肉厚は、所望の耐食性を得るため、管外径が変わっ
ても一定の値を選定できる。)そして、管径dn と通路
抵抗Pn の関係を内径2.5mmの場合との比で求める
と、通路抵抗比は、 Pn /P2.5 =d2.5 /dn (A2.5 /An 2 と表される。P2.5 =1とした場合のPn を図11に示
す。
Generally, a passage resistance P having a flow path length 1 and an equivalent diameter (inner diameter) d is expressed by P = λ (l / d) · (u 2 / 2g) (1) Here, u: flow velocity, g: gravitational acceleration, λ:
It is a coefficient. Further, the relationship between the refrigerant circulation amount G and the flow velocity u is expressed by G = 3600 · A · u (2). Here, A: flow path cross-sectional area. According to the above formulas (1) and (2), the refrigerant circulation amount G is constant, the flow path length 1 is used as the insertion allowance in the tank, and the insertion allowance is the same for each arbitrary pipe diameter specification (n: arbitrary pipe diameter). If, tube diameter d n, the flow resistance P n for passage cross sectional area A n, P n = λ ( l / d n) · (1 / 2g) · (G / 3600
A n ). Next, A n will be described. First, the arrangement of the tubes in the heat exchanger will be described with reference to FIG. 12, where the outer diameter of the tubes is D, the arrangement pitch in the air flow direction is X, and the direction orthogonal thereto is Y. Here, even when the outer diameters of the pipes are different, under the condition that the array pitches X / D and Y / D are constant,
Number of pipes that can be arranged per unit area of the wall on the side of circular pipe connection N
Think about n . In this case, when the outer diameter of the pipe becomes small, the number N n of pipes that can be arranged per unit area increases. Here, the passage cross-sectional area A n is A n = (1/4) · π
・ D n 2 × N n . Note relates d n, a thickness of the tube even if the outer diameter is changed in the tube to determine the value of d n is constant.
(For the wall thickness of the pipe, a constant value can be selected even if the outer diameter of the pipe changes in order to obtain desired corrosion resistance.) Then, the relationship between the pipe diameter d n and the passage resistance P n is the same as when the inner diameter is 2.5 mm. When determining the ratio, the passage resistance ratio is expressed as P n / P 2.5 = d 2.5 / d n (a 2.5 / a n) 2. FIG. 11 shows P n when P 2.5 = 1.

【0007】図11に示すように、円管33の内径が減
少していくと、挿入代部分の通路抵抗比が急激に増大す
る。したがって、管肉厚を一定とした場合に管外径の細
径化を行うと熱交換器に対して、上記のような縮径部4
2を形成した場合には、回路圧損が急激に増大するとと
もに性能低下を招くおそれがある。これはとくに、内径
2.0mm程度以下から顕著となる。
As shown in FIG. 11, as the inner diameter of the circular pipe 33 decreases, the passage resistance ratio at the insertion allowance portion rapidly increases. Therefore, if the outer diameter of the pipe is reduced when the pipe wall thickness is constant, the reduced diameter portion 4 as described above is provided to the heat exchanger.
When 2 is formed, the circuit pressure loss may rapidly increase and the performance may be deteriorated. This becomes remarkable especially when the inner diameter is about 2.0 mm or less.

【0008】本発明の課題は、細径管を用いた多管式熱
交換器において、圧損の増大を防止し、優れた熱交換性
能を発揮する熱交換器を提供することにある。
An object of the present invention is to provide a multi-tube heat exchanger using a small-diameter tube, which can prevent an increase in pressure loss and exhibit excellent heat exchange performance.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の熱交換器は、一対のタンクと、該一対のタ
ンク間に延設され該一対のタンク間を連通するように該
一対のタンクに接続された複数の細径管を備えた多管式
熱交換器であって、前記細径管の端部に、該細径管が接
続されるタンクの細径管接続側の壁に係止または係合可
能な拡径部を形成したことを特徴とするものからなる。
In order to solve the above-mentioned problems, the heat exchanger of the present invention comprises a pair of tanks, and a heat exchanger extending between the pair of tanks so as to communicate between the pair of tanks. A multi-tubular heat exchanger comprising a plurality of small diameter pipes connected to a pair of tanks, wherein an end of the small diameter pipe is connected to a small diameter pipe connection side of a tank to which the small diameter pipe is connected. It is characterized in that an expanded diameter portion that can be locked or engaged is formed on the wall.

【0010】上記拡径部は、細径管の端部外周面に形成
された環状膨出部から構成することができる。また、上
記拡径部は、細径管の先端に形成された拡開部として構
成することも可能である。
The expanded diameter portion may be composed of an annular bulge portion formed on the outer peripheral surface of the end portion of the small diameter tube. The expanded diameter portion can also be configured as an expanded portion formed at the tip of the small diameter tube.

【0011】なお、拡径部を、細径管の先端に形成され
た拡開部とした場合には、上記タンクの細径管接続側の
壁を、細径管の拡開部の内面に沿う形状に突出加工し
て、該突出加工部に拡開部を嵌合することが望ましい。
When the enlarged diameter portion is an enlarged portion formed at the tip of the small diameter pipe, the wall of the tank on the side of the small diameter pipe is attached to the inner surface of the enlarged portion of the small diameter pipe. It is desirable to perform a protruding process in a shape that conforms to the shape, and to fit the expanding portion into the protruding process part.

【0012】本発明は細径管の内径が2.0mm以下の
熱交換器に対して適用できる。
The present invention can be applied to a heat exchanger having an inner diameter of a thin tube of 2.0 mm or less.

【0013】上記熱交換器においては、細径管、すなわ
ち円管の端部に、該円管が接続されるタンクの円管接続
側の壁に係止または係合可能な拡径部が形成されてい
る。つまり、円管の端部には従来のような縮径部は形成
されていないので、とくに細径の円管において、それ自
身の本来の内径以上に小さい内径部は形成されず、円管
接続部内における圧損の増大を防止することができる。
また、上記タンク壁に係止または係合可能な拡径部を形
成することにより、円管端部のタンク内への挿入代を目
標とする範囲内に精度よく納めること、あるいはタンク
内に円管を挿入しないような構造を採用することができ
るので、所望の熱交換器を寸法精度よく構成できるとと
もに、回路内における圧損を一層低減することが可能と
なる。したがって、優れた熱交換性能を有する熱交換器
を得ることができる。
In the above heat exchanger, a small-diameter pipe, that is, a circular pipe has an enlarged diameter portion formed at an end thereof which can be locked or engaged with a wall of the tank to which the circular pipe is connected, on the circular pipe connection side. Has been done. In other words, since there is no reduced diameter part formed at the end of the circular pipe as in the conventional case, an inner diameter part smaller than the original inner diameter of itself is not formed especially in a small diameter circular pipe, and the circular pipe connection It is possible to prevent an increase in pressure loss inside the section.
In addition, by forming an expanded diameter portion that can be locked or engaged with the tank wall, it is possible to accurately fit the insertion end of the circular pipe end into the tank within a target range, or to provide a circle inside the tank. Since it is possible to adopt a structure in which no pipe is inserted, it is possible to configure a desired heat exchanger with dimensional accuracy and further reduce pressure loss in the circuit. Therefore, a heat exchanger having excellent heat exchange performance can be obtained.

【0014】上記拡径部は、円管の外周面に形成された
環状膨出部とすることができる。つまり、円管の外周面
に環状膨出部を形成するのであるから、円管の内径は縮
径されず、圧損の増大を効果的に防止することができ
る。また、環状膨出部は、タンクの円管接続側の壁に係
止されるので、各円管のタンク内への挿入代を均一化す
ることができる。
The enlarged diameter portion may be an annular bulge portion formed on the outer peripheral surface of the circular pipe. That is, since the annular bulging portion is formed on the outer peripheral surface of the circular pipe, the inner diameter of the circular pipe is not reduced, and it is possible to effectively prevent an increase in pressure loss. Further, since the annular bulging portion is locked to the wall of the tank on the side where the circular pipe is connected, the insertion allowance of each circular pipe into the tank can be made uniform.

【0015】また、拡径部は、円管の先端に形成された
拡開部とすることができる。そして、タンクの円管接続
側の壁を拡開部の内面に沿う形状に突出加工し、該突出
加工部に拡開部を嵌合すれば、円管の先端をタンク内部
に突出させずに、また、管の内径を減少させずに両者を
接続することができるので、タンク内での圧損を抑える
とともにタンク内の流れを円滑化でき、熱交換器全体と
しての圧損を一層効果的に抑制することができる。
Further, the expanded diameter portion may be an expanded portion formed at the tip of the circular pipe. Then, by projecting the wall of the tank on the side of the circular pipe connection into a shape along the inner surface of the expanding portion, and fitting the expanding portion into the projecting portion, the tip of the circular pipe does not project into the tank. Also, since both can be connected without reducing the inner diameter of the pipe, pressure loss in the tank can be suppressed and flow in the tank can be smoothed, and pressure loss in the heat exchanger as a whole can be suppressed more effectively. can do.

【0016】[0016]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態について、図面を参照して説明する。図1ないし図
3は、本発明の一実施態様に係る熱交換器を示してい
る。図1において、1は上タンクを示しており、2は下
タンクを示している。一対の上下タンク1、2間には細
径管である複数の円管3が延設され、上下タンク1、2
は、後述するように、接続される円管3を介して互いに
連通されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a heat exchanger according to one embodiment of the present invention. In FIG. 1, 1 indicates an upper tank and 2 indicates a lower tank. A plurality of circular pipes 3 which are small-diameter pipes are extended between the pair of upper and lower tanks 1 and 2,
Are communicated with each other through the connected circular tubes 3, as will be described later.

【0017】図2、図3に示すように、円管3の端部に
は、円管3が接続されるタンク1、2の円管接続側の壁
4、5に係止可能な拡径部として環状膨出部6が形成さ
れている。環状膨出部6は、円管3の端部外周面に形成
されている。また、壁4、5には、円管3挿入用の穴
7、8が設けられている。円管3の端部は穴7、8を貫
通し、タンク1、2の内部へ突出されている。円管3の
端部外周面と穴7、8の内縁とはろう付けされている。
そして、環状膨出部6が壁4、5に係止され、円管3の
タンク1、2内への挿入代が所望の一定値に保たれるよ
うになっている。
As shown in FIGS. 2 and 3, the end portion of the circular pipe 3 is expanded in diameter so that it can be locked to the walls 4 and 5 on the circular pipe connection side of the tanks 1 and 2 to which the circular pipe 3 is connected. An annular bulging portion 6 is formed as a portion. The annular bulging portion 6 is formed on the outer peripheral surface of the end portion of the circular pipe 3. Further, the walls 4 and 5 are provided with holes 7 and 8 for inserting the circular tube 3. The end of the circular pipe 3 penetrates through the holes 7 and 8 and projects into the tanks 1 and 2. The outer peripheral surface of the end of the circular pipe 3 and the inner edges of the holes 7 and 8 are brazed.
The annular bulging portion 6 is locked to the walls 4 and 5 so that the insertion allowance of the circular pipe 3 into the tanks 1 and 2 is maintained at a desired constant value.

【0018】なお、円管3の端部外周面に環状膨出部6
を形成する方法はとくに限定されるものではないが、た
とえば図4に示すように、円管3を上型9と下型10と
で狭持した状態にて治具11で矢印方向に押圧すること
により形成することができる。
An annular bulge 6 is formed on the outer peripheral surface of the end of the circular pipe 3.
There is no particular limitation on the method for forming the circular tube 3, but as shown in FIG. 4, for example, the circular tube 3 is held by the upper die 9 and the lower die 10 and pressed by the jig 11 in the direction of the arrow. Can be formed.

【0019】本実施態様に係る熱交換器においては、入
口パイプ12から熱交換器内に導入された冷媒が円管3
内を流通し、該円管3部分を流れる空気との間で熱交換
が行われるようになっている。また、熱交換器内を循環
された冷媒は出口パイプ13から流出される。
In the heat exchanger according to this embodiment, the refrigerant introduced from the inlet pipe 12 into the heat exchanger is the circular pipe 3
Heat is exchanged with the air flowing through the inside and flowing through the circular pipe 3 portion. The refrigerant circulated in the heat exchanger is discharged from the outlet pipe 13.

【0020】また、本実施態様に係る熱交換器において
は、円管3の端部外周面にタンク1、2の円管接続側の
壁4、5に係止可能な拡径部として環状膨出部6が形成
されている。したがって、円管3には従来のような縮径
部が形成されていないので、管端部挿入部における圧損
の増大を効果的に防止できる。
Further, in the heat exchanger according to this embodiment, an annular expansion is formed on the outer peripheral surface of the end portion of the circular pipe 3 as an enlarged diameter portion which can be locked to the walls 4 and 5 on the circular pipe connection side of the tanks 1 and 2. The projecting portion 6 is formed. Therefore, since the circular tube 3 is not formed with a reduced diameter portion as in the conventional case, it is possible to effectively prevent an increase in pressure loss at the tube end portion insertion portion.

【0021】次に、本実施態様に係る熱交換器と従来の
熱交換器(図8〜図10)との回路圧損の比較を図5に
基づいて説明する。図5は図1ないし図3に基づく熱交
換器の回路圧損51と、図8ないし図10に基づく熱交
換の回路圧損52を示している。図1ないし図3の熱交
換器に使用した円管の挿入部内径は2.4mmである。
一方、図8ないし図10に基づく熱交換器の円管の挿入
部内径は1.8mmである。これらの熱交換器は、管挿
入部内径を除き同一の仕様であることは言うまでもな
い。図5より、本実施態様による熱交換器の回路圧損は
効果的に低減されていることが分かる。
Next, comparison of circuit pressure loss between the heat exchanger according to this embodiment and the conventional heat exchanger (FIGS. 8 to 10) will be described with reference to FIG. FIG. 5 shows the circuit pressure loss 51 of the heat exchanger according to FIGS. 1 to 3 and the circuit pressure loss 52 of the heat exchange according to FIGS. 8 to 10. The inner diameter of the insertion portion of the circular pipe used in the heat exchanger of FIGS. 1 to 3 is 2.4 mm.
On the other hand, the inner diameter of the insertion portion of the circular pipe of the heat exchanger according to FIGS. 8 to 10 is 1.8 mm. It goes without saying that these heat exchangers have the same specifications except for the inner diameter of the tube insertion portion. From FIG. 5, it can be seen that the circuit pressure loss of the heat exchanger according to this embodiment is effectively reduced.

【0022】また、環状膨出部6がタンク壁4、5に係
止することにより、円管3のタンク1、2内への挿入代
を一定範囲に精度よく納めることができるので、一層良
好に回路内の圧損増大を防止することができる。
Further, since the annular bulging portion 6 is locked to the tank walls 4 and 5, the insertion allowance of the circular pipe 3 into the tanks 1 and 2 can be accurately set within a certain range, which is even better. Moreover, it is possible to prevent an increase in pressure loss in the circuit.

【0023】図6、図7は、本発明の別の実施態様に係
る熱交換器を示している。本実施態様においては、円管
3の先端に拡径部として拡開部12が形成されている。
また、タンク1、2の円管接続側の壁4、5には拡開部
12の内面13に沿う形状に加工された突出加工部14
が設けられている。該突出加工部14には拡開部12が
嵌合されており、突出加工部14の外面15と拡開部1
2の内面13とはろう付けされている。つまり、本実施
態様においては、円管3の端部に形成された拡径部とし
ての拡開部12がタンク1、2の壁4、5に係合するよ
うになっている。
6 and 7 show a heat exchanger according to another embodiment of the present invention. In the present embodiment, an expanded portion 12 is formed at the tip of the circular pipe 3 as an expanded diameter portion.
Further, on the walls 4 and 5 of the tanks 1 and 2 on the side of the circular pipe connection, a protrusion processing portion 14 processed into a shape along the inner surface 13 of the expansion portion 12.
Is provided. The expanding portion 12 is fitted into the protruding portion 14, and the outer surface 15 of the protruding portion 14 and the expanding portion 1 are fitted together.
The inner surface 13 of 2 is brazed. That is, in this embodiment, the expanded portion 12 as the expanded diameter portion formed at the end of the circular pipe 3 engages with the walls 4 and 5 of the tanks 1 and 2.

【0024】本実施態様においても、円管3及び突出加
工部14には縮径部は形成されていないので、流通する
冷媒の圧損を効果的に小さく抑えることができる。ま
た、本実施態様においては、円管3の端部に形成された
拡開部12がタンク壁4、5に係合するようになってい
るので、タンク1、2内に円管3は挿通されていない。
したがって、回路内の圧損をより効果的に抑制すること
ができる。
In this embodiment as well, since the circular tube 3 and the protruding portion 14 are not formed with a reduced diameter portion, the pressure loss of the circulating refrigerant can be effectively suppressed. Further, in the present embodiment, since the expanding portion 12 formed at the end of the circular pipe 3 is adapted to engage with the tank walls 4 and 5, the circular pipe 3 is inserted into the tanks 1 and 2. It has not been.
Therefore, the pressure loss in the circuit can be suppressed more effectively.

【0025】[0025]

【発明の効果】以上説明したように、本発明によるとき
は、細径管を用いた多管式熱交換器、とくに内径2.0
mm以下の多管式熱交換器の圧損を効果的に小さく抑え
ることができるとともに、優れた熱交換性能を発揮させ
ることができる。
As described above, according to the present invention, a multi-tube heat exchanger using a small diameter tube, especially an inner diameter of 2.0
The pressure loss of the multi-tube heat exchanger having a diameter of mm or less can be effectively suppressed, and excellent heat exchange performance can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様に係る熱交換器の斜視図で
ある。
FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention.

【図2】図1の装置の円管とタンクの円管接続側の壁と
の接続状態を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a connection state between a circular pipe of the apparatus of FIG. 1 and a wall of the tank on the circular pipe connection side.

【図3】図1の装置の円管とタンクの円管接続側の壁と
の接続状態を示す拡大部分断面図である。
FIG. 3 is an enlarged partial cross-sectional view showing a connection state between the circular pipe of the apparatus of FIG. 1 and a wall of the tank on the side where the circular pipe is connected.

【図4】図1の装置の円管に拡径部を形成する上下型と
治具の側面図である。
FIG. 4 is a side view of an upper die and a jig for forming an enlarged diameter portion on a circular pipe of the apparatus of FIG.

【図5】図1の装置と図8の装置との冷媒循環重量と回
路圧損との関係図である。
5 is a relationship diagram between the refrigerant circulating weight and the circuit pressure loss between the device of FIG. 1 and the device of FIG.

【図6】本発明の別の実施態様に係る熱交換器の円管と
タンクの円管接続側の壁との接続状態を示す部分断面図
である。
FIG. 6 is a partial cross-sectional view showing a connection state between a circular pipe of a heat exchanger according to another embodiment of the present invention and a wall of the tank on the circular pipe connection side.

【図7】図6の装置の円管とタンクの円管接続側の壁と
の接続状態を示す拡大部分断面図である。
7 is an enlarged partial cross-sectional view showing a connection state between the circular pipe of the apparatus of FIG. 6 and a wall of the tank on the circular pipe connection side.

【図8】従来の熱交換器の正面図である。FIG. 8 is a front view of a conventional heat exchanger.

【図9】図8の熱交換器の円管とタンクの円管接続側の
壁との接続状態を示す部分断面図である。
9 is a partial cross-sectional view showing a connected state of the circular pipe of the heat exchanger of FIG. 8 and a wall of the tank on the circular pipe connection side.

【図10】図9の装置の円管の拡大部分断面図である。10 is an enlarged partial sectional view of a circular tube of the apparatus of FIG.

【図11】円管の内径と通路抵抗比との関係図である。FIG. 11 is a relationship diagram between an inner diameter of a circular pipe and a passage resistance ratio.

【図12】熱交換器の円管の配列を示す状態図である。FIG. 12 is a state diagram showing an arrangement of circular tubes of a heat exchanger.

【符号の説明】[Explanation of symbols]

1 上タンク 2 下タンク 3 円管 4 円管接続側の壁 5 円管接続側の壁 6 拡径部としての環状膨出部 7、8 穴 9 上型 10 下型 11 治具 12 拡径部としての拡開部 13 内面 14 突出加工部 15 外面 1 Upper tank 2 Lower tank 3 Circular pipe 4 Circular pipe connection side wall 5 Circular pipe connection side wall 6 Annular swelling part as expanded part 7, 8 holes 9 Upper mold 10 Lower mold 11 Jig 12 Expanded part Expansion part 13 as inner surface 14 Projection processing part 15 External surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対のタンクと、該一対のタンク間に延
設され該一対のタンク間を連通するように該一対のタン
クに接続された複数の細径管を備えた多管式熱交換器で
あって、前記細径管の端部に、該細径管が接続されるタ
ンクの細径管接続側の壁に係止または係合可能な拡径部
を形成したことを特徴とする熱交換器。
1. A multi-tubular heat exchange comprising a pair of tanks, and a plurality of small-diameter tubes extending between the pair of tanks and connected to the pair of tanks so as to communicate between the pair of tanks. And an enlarged diameter portion formed at an end portion of the small diameter pipe that can be locked or engaged with a wall of the tank to which the small diameter pipe is connected on the small diameter pipe connection side. Heat exchanger.
【請求項2】 前記拡径部が、細径管の端部外周面に形
成された環状膨出部からなる、請求項1の熱交換器。
2. The heat exchanger according to claim 1, wherein the enlarged diameter portion comprises an annular bulge portion formed on the outer peripheral surface of the end portion of the small diameter tube.
【請求項3】 前記拡径部が細径管の先端に形成された
拡開部からなる、請求項1の熱交換器。
3. The heat exchanger according to claim 1, wherein the enlarged diameter portion comprises an enlarged portion formed at the tip of the small diameter tube.
【請求項4】 前記タンクの細径管接続側の壁が、前記
細径管の拡開部の内面に沿う形状に突出加工され、該突
出加工部に前記拡開部が嵌合されている、請求項3の熱
交換器。
4. A wall of the tank on the side of the small-diameter pipe connection is projecting processed into a shape along the inner surface of the expanding part of the small-diameter pipe, and the expanding part is fitted to the projecting processed part. The heat exchanger according to claim 3.
【請求項5】 前記細径管の内径が2.0mm以下であ
る、請求項1ないし4のいずれかに記載の熱交換器。
5. The heat exchanger according to claim 1, wherein the inner diameter of the thin tube is 2.0 mm or less.
JP13260096A 1996-04-30 1996-04-30 Heat exchanger Pending JPH09296994A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13260096A JPH09296994A (en) 1996-04-30 1996-04-30 Heat exchanger
EP97302896A EP0805331A3 (en) 1996-04-30 1997-04-28 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13260096A JPH09296994A (en) 1996-04-30 1996-04-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH09296994A true JPH09296994A (en) 1997-11-18

Family

ID=15085133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13260096A Pending JPH09296994A (en) 1996-04-30 1996-04-30 Heat exchanger

Country Status (2)

Country Link
EP (1) EP0805331A3 (en)
JP (1) JPH09296994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423777A (en) * 2015-12-29 2016-03-23 张伟 Header body shell tube communication pressure-bearing heat exchanger
CN105627627A (en) * 2016-01-21 2016-06-01 徐明海 Self-locking fixing device and method for PE pipe and steel bars of pile foundation buried pipe heat exchanger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799826B1 (en) * 1999-09-28 2002-03-29 Valeo Thermique Moteur Sa HEAT EXCHANGER WITH COMPACT STRUCTURE, PARTICULARLY FOR A MOTOR VEHICLE
US6997248B2 (en) 2004-05-19 2006-02-14 Outokumpu Oyj High pressure high temperature charge air cooler
DE102006003317B4 (en) 2006-01-23 2008-10-02 Alstom Technology Ltd. Tube bundle heat exchanger
US8177932B2 (en) 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
US9557119B2 (en) 2009-05-08 2017-01-31 Arvos Inc. Heat transfer sheet for rotary regenerative heat exchanger
US9200853B2 (en) 2012-08-23 2015-12-01 Arvos Technology Limited Heat transfer assembly for rotary regenerative preheater
US10175006B2 (en) 2013-11-25 2019-01-08 Arvos Ljungstrom Llc Heat transfer elements for a closed channel rotary regenerative air preheater
US10094626B2 (en) 2015-10-07 2018-10-09 Arvos Ljungstrom Llc Alternating notch configuration for spacing heat transfer sheets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031668A5 (en) * 1969-02-03 1970-11-20 Chausson Usines Sa
FR2690515A1 (en) * 1992-04-24 1993-10-29 Valeo Thermique Moteur Sa Heat exchanger with oblong section tubes, in particular for motor vehicles.
DE4325427A1 (en) * 1993-07-29 1995-02-02 Behr Gmbh & Co Heat exchanger, in particular a motor vehicle radiator
ES2152111T3 (en) * 1994-07-22 2001-01-16 Mitsubishi Electric Corp HEAT EXCHANGER.
JPH09280781A (en) * 1996-04-17 1997-10-31 Sanden Corp Multitubular heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423777A (en) * 2015-12-29 2016-03-23 张伟 Header body shell tube communication pressure-bearing heat exchanger
CN105627627A (en) * 2016-01-21 2016-06-01 徐明海 Self-locking fixing device and method for PE pipe and steel bars of pile foundation buried pipe heat exchanger
CN105627627B (en) * 2016-01-21 2017-10-31 徐明海 Self-locking fixer and method between a kind of pile foundation buried tube heat exchanger PE pipes and reinforcing bar

Also Published As

Publication number Publication date
EP0805331A2 (en) 1997-11-05
EP0805331A3 (en) 1998-07-08

Similar Documents

Publication Publication Date Title
US5867899A (en) Method of manufacturing a header pipe for a heat exchanger
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
US5918667A (en) Heat exchanger
EP1521050B1 (en) Tube for heat exchanger
JPH0684188U (en) Heat exchanger
JPH09296994A (en) Heat exchanger
US20100000726A1 (en) Heat exchanger
US7174953B2 (en) Stacking-type, multi-flow, heat exchanger
JP3284904B2 (en) Heat exchanger
JP3627295B2 (en) Heat exchanger
JPH11325784A (en) Heat exchanger
JPH10176892A (en) Noded plate fin type heat exchanger
JPH07218172A (en) Heat exchanger and manufacture thereof
CN210165621U (en) Heat exchanger and air conditioning equipment
JPH10157447A (en) Heat exchanger
CN217979972U (en) Novel heat exchanger
JPH0620054Y2 (en) Heat exchanger
CN218511545U (en) Heat exchanger
JP2001056190A (en) Tube for heat exchanger
JP3318096B2 (en) Heat transfer tube manufacturing method
JP2005140352A (en) Small diameter multitubular heat transfer tube, and its manufacturing method
JPH0359395A (en) 2-system heat exchanger
CN117516245A (en) Novel heat exchanger
JP3130063B2 (en) Boiling heat transfer tube
JP2001330389A (en) Heat exchanger