JPH09294490A - Rice cropping farm field and cultivation method of paddy rice species - Google Patents

Rice cropping farm field and cultivation method of paddy rice species

Info

Publication number
JPH09294490A
JPH09294490A JP8109635A JP10963596A JPH09294490A JP H09294490 A JPH09294490 A JP H09294490A JP 8109635 A JP8109635 A JP 8109635A JP 10963596 A JP10963596 A JP 10963596A JP H09294490 A JPH09294490 A JP H09294490A
Authority
JP
Japan
Prior art keywords
rice
water
soil
porous tube
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8109635A
Other languages
Japanese (ja)
Inventor
Akio Tomimoto
昭雄 富本
Jun Yokoyama
順 横山
Mikako Fujiike
美加子 藤池
Hiroaki Fukuda
裕章 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP8109635A priority Critical patent/JPH09294490A/en
Publication of JPH09294490A publication Critical patent/JPH09294490A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rice cropping farm field enabling the laborsaving, saving water and improving the farm working environment and capable of having good harvests and a stable cultivation in a well-drained paddy field by laying underground a porous pipe as the irrigation pipe. SOLUTION: The porous pipe 1 molded from plastics such as polyvinyl chloride, polyethylene, etc., or rubber or their composite material, having 1×10<-8> to 1.5×10<-5> cm/s of coefficient of permeability is laid underground as the irrigation pipe. The paddy rice species are cultured preferably by supplying water, air, fertilizer, etc., to the soil from the porous pipe 1 laid underground in the paddy field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、稲作圃場、特に水
稲種の稲の栽培における省力化と節水を図った稲作圃場
と該圃場を使用した水稲種の稲の栽培法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rice farming field, particularly to a rice farming field for labor saving and water saving in the cultivation of paddy rice seeds, and a method for cultivating paddy rice seeds using the fields.

【0002】[0002]

【従来の技術】従来、水田等の稲作圃場においては、冠
水により水を供給して稲を栽培するのが一般的であり、
日本では年一回の作付けを行い、亜熱帯及び熱帯地域で
は年数回の作付けを行っているのが実状である。しかる
に、稲作のための冠水量は水田990m2(一反歩)当
たり1ヶ月に数百以上の膨大な量を要するという問題が
あった。しかも、農業用水のコストは公共費用で賄われ
ているので、該用水の価格は極めて安価に見掛け上抑え
られてはいるが、実際の価格は算出しえない程度に高い
というのが実状である。一方、これらの用水の水がめの
役割を果たしている森林が激減して、ちよっとした雨不
足で稲作は多大の打撃を被り、用水の安定した確保が難
しくなって来ている。また、この冠水方法では、水田に
対する多量の化成肥料の投入或いは農薬散布のため、河
川・湖沼の汚染を惹起するとともに、これによりメタン
が発生し、地球の温暖化の一因となり地球環境問題とも
なっている。更に、稲作は重労働であり、農業人口の減
少化とともに省力化対策が急務である。
2. Description of the Related Art Conventionally, in rice field such as paddy field, it is common to cultivate rice by supplying water by flooding.
In Japan, it is planted once a year, and in subtropical and tropical regions, it is planted several times a year. However, there was a problem that the flooding amount for rice cultivation required a huge amount of several hundreds or more per month for 990 m 2 (one step) of paddy field. Moreover, since the cost of agricultural water is covered by public expenses, the price of the water is apparently kept low, but the actual price is too high to be calculated. . On the other hand, the forests that play the role of irrigation water for these irrigation waters have been drastically reduced, and the lack of rain has severely damaged rice cultivation, making it difficult to secure a stable water supply. In addition, this flooding method causes pollution of rivers and lakes due to the input of large amounts of chemical fertilizers or spraying of pesticides to paddy fields, which also produces methane, which contributes to global warming and is a global environmental problem. ing. Furthermore, rice farming is a heavy labor, and there is an urgent need for labor saving measures as the agricultural population decreases.

【0003】[0003]

【発明が解決しようとする課題】上記した現状より、多
量の用水を必要とする水稲種稲の用水量を低減し、安定
した用水の供給を常に可能とし、かつ河川・湖沼の汚染
を防ぎ、農作業環境を改善し、省力化を可能とする稲作
圃場の提供と、水稲種の稲の栽培法を提供することを課
題としたものである。
From the above-mentioned current situation, the amount of water for paddy rice, which requires a large amount of water, is reduced, stable supply of water is always possible, and pollution of rivers and lakes is prevented. It is an object to provide a rice cultivation field that improves the agricultural work environment and enables labor saving, and to provide a rice cultivation method for paddy rice species.

【0004】[0004]

【課題を解決するための手段】本発明の稲作圃場は、多
孔質管が土壌灌注用パイプとして埋設されてなることを
特徴とする。
The rice cultivation field of the present invention is characterized in that a porous pipe is buried as a soil irrigation pipe.

【0005】本発明の水稲種の稲栽培法は、圃場に埋設
した多孔質管により水、空気、肥料等を土壌中に供給し
て水稲種の稲を栽培することを特徴とする。
The method for cultivating paddy rice of the present invention is characterized by cultivating paddy rice by supplying water, air, fertilizer and the like into the soil through a porous tube buried in the field.

【0006】[0006]

【発明の実施の形態】本発明の稲作圃場は、多孔質管が
土壌灌注用パイプとして埋設されてなるものである。図
1は本発明の稲作圃場の一実施形態例を示す断面図であ
って、1は土壌12中に土壌灌注用パイプとして埋設さ
れた多孔質管であり、10は稲である。土壌灌注用パイ
プとは、土壌中に埋設されて、水、空気、肥料、農薬等
の稲の栽培に必要なものを含む液体、気体などを土壌中
に、直接供給するためのパイプである。そして、本発明
の稲作圃場においては、土壌灌注用パイプとして多孔質
管が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the rice cultivation field of the present invention, a porous pipe is buried as a soil irrigation pipe. FIG. 1 is a cross-sectional view showing an example of an embodiment of a rice cultivation field of the present invention, in which 1 is a porous tube embedded in a soil 12 as a soil irrigation pipe, and 10 is rice. The soil irrigation pipe is a pipe that is buried in the soil and directly supplies water, air, fertilizer, pesticides, and other liquids, gases, and the like necessary for rice cultivation into the soil. In the rice field of the present invention, a porous tube is used as the soil irrigation pipe.

【0007】ここで、多孔質管とは、10cm〜100
cmの間隔で管壁に貫通穴を設けた管、及び孔径が数十
〜数百μm程度の微細な連続孔(以下、微細連続通孔と
いう)が管壁に形成されて透水性を有する管である。
Here, the porous tube means 10 cm to 100 cm.
A tube having through holes formed in the tube wall at intervals of cm, and a tube having water permeability by forming fine continuous holes (hereinafter referred to as fine continuous through holes) having a hole diameter of about several tens to several hundreds of μm on the tube wall. Is.

【0008】微細連続通孔は発泡成形或いは熱溶融しな
い粉体を用いる粉体成形により管壁に形成できる。微細
連続通孔を有する多孔質管の管壁は、数十〜数百μm程
度の孔で構成され、しかも空隙率が約15〜約40%で
あることが好ましい。平均孔径が数十μm未満では、透
水係数が過小となり灌注効率を低下させるとともに、供
給流体中の浮遊物などによる目詰まりを起こしやすく、
一方、数百μmを越えると透水係数が過大となり、水な
どの流体供給源近傍から大量の流体が流出し、多孔質管
の全長にわたって均一な供給ができなくなる。また、空
隙率が、約15%未満では透過抵抗が大となるため余分
な加圧を必要とし、約40%を越えると管体の強度が弱
くなったり、また流体の透過量が過大となり実用的でな
くなる。
The fine continuous through holes can be formed in the tube wall by foam molding or powder molding using powder that does not melt by heat. It is preferable that the tube wall of the porous tube having fine continuous holes is composed of holes of about several tens to several hundreds of μm, and the porosity is about 15 to about 40%. If the average pore size is less than several tens of μm, the water permeability will be too small and the irrigation efficiency will be reduced, and clogging due to suspended matter in the supply fluid will easily occur.
On the other hand, if it exceeds several hundred μm, the water permeability becomes excessively large, a large amount of fluid flows out from the vicinity of the fluid supply source such as water, and uniform supply cannot be achieved over the entire length of the porous tube. Further, if the porosity is less than about 15%, the permeation resistance becomes large, so extra pressurization is required, and if it exceeds about 40%, the strength of the pipe body becomes weak and the permeation amount of the fluid becomes too large. It becomes untargetable.

【0009】多孔質管は、ポリ塩化ビニル、ポリエチレ
ン等のプラスチック或いはゴム又はこれらの複合材料等
を成形した管であることが好ましい。なかでも、多孔質
管が柔軟性を有する材料から構成されることがより望ま
しい。多孔質管が柔軟であると、多孔質管を稲作圃場に
埋設し易い。また、多孔質管がプラスチック或いはゴム
から構成されていると、土壌中において常に水或いは土
壌中のイオン成分と接触しても、腐食することがない。
The porous tube is preferably a tube formed by molding plastic such as polyvinyl chloride or polyethylene, rubber, or a composite material thereof. Above all, it is more preferable that the porous tube is made of a flexible material. If the porous tube is flexible, it is easy to embed the porous tube in a rice field. Further, if the porous tube is made of plastic or rubber, it will not corrode even if it constantly comes into contact with water or ionic components in the soil in the soil.

【0010】ゴム粉体をポリエチレンなどを結合材とし
た多孔質管は、可撓性と透水性に優れているので用いる
に好ましい。前記ゴム粉体として、タイヤから得られた
ゴム粉体(以下、タイヤゴム粉体という)を用いること
ができる。タイヤゴム粉体を含み、微細連続通孔を有す
る多孔質管は、自動車等のタイヤのゴム部分を粉砕して
タイヤゴム粉体を得た後、該タイヤゴム粉体と熱可塑性
樹脂との混合物を押出成形し、押出成形時に微細連続通
孔が形成されるように押出成形することにより製造でき
る。
A porous tube in which rubber powder is made of polyethylene or the like is preferable because it is excellent in flexibility and water permeability. As the rubber powder, rubber powder obtained from a tire (hereinafter referred to as tire rubber powder) can be used. A porous tube containing tire rubber powder and having fine continuous pores is obtained by crushing a rubber portion of a tire of an automobile or the like to obtain a tire rubber powder, and then extruding a mixture of the tire rubber powder and a thermoplastic resin. However, it can be manufactured by extrusion molding so that fine continuous holes are formed during extrusion molding.

【0011】タイヤのゴムは加硫されているので、成形
時に熱溶融しにくい。従って、その粉体形状が維持され
て、該粒子1a間の空隙の一部が熱可塑性樹脂により充
填されて連続孔が管壁中に形成される。連続孔を有する
ので、該多孔質管は多孔性であり且つ透水性である。自
動車の中古タイヤは多量に安価に入手できるうえに、中
古タイヤから得られるタイヤゴム粉体を多孔質管の原料
として用いれば、中古タイヤの多量なリサイクル利用が
可能となる。
Since the tire rubber is vulcanized, it is unlikely to be melted by heat during molding. Therefore, the powder shape is maintained, a part of the voids between the particles 1a is filled with the thermoplastic resin, and continuous holes are formed in the tube wall. Having open pores, the porous tube is porous and water permeable. A large amount of used tires for automobiles can be obtained at low cost, and if tire rubber powder obtained from used tires is used as a raw material for porous tubes, a large amount of used tires can be recycled.

【0012】多孔質管は1×10-8〜1.5×10-5
m/sの範囲の透水係数を有することが好ましい。ここ
で、透水係数とは、下記の数式(I)によって実験的に
求められる数値である。 (I) K=QL/AH 式中、Kは多孔質管の透水係数(cm/s)であり、Q
は給水速度、すなわちこの多孔質管1m当り管壁から毎
秒滲み出る水の量(cm3/s・m)であり、Lは多孔
質管の肉厚(cm)であり、Aは多孔質管1m当りの表
面積(cm2/m)であり、Hは、多孔質管の管内の圧
力水頭(cm)である。
The porous tube is 1 × 10 -8 to 1.5 × 10 -5 c
It is preferable to have a water permeability coefficient in the range of m / s. Here, the hydraulic conductivity is a numerical value experimentally obtained by the following equation (I). (I) K = QL / AH In the formula, K is the permeability coefficient (cm / s) of the porous tube, and Q is
Is the water supply rate, that is, the amount of water exuding from the tube wall per 1 m of this porous tube per second (cm 3 / s · m), L is the wall thickness (cm) of the porous tube, and A is the porous tube. It is the surface area per cm (cm 2 / m), and H is the pressure head (cm) inside the porous tube.

【0013】ところで、土壌中における水の移動は、重
力によるものと毛管力によるものとが支配的である。す
なわち、水は、土壌中の間隙を通って重力によって深部
に移動するもの(これを以下「重力水」と称する)と、
土壌粒塊の接触界面における毛管力によって上下および
水平方向に移動するもの(これを以下「毛管水」と称す
る)とに分かれる。土壌中の灌水は、土壌深部に流失す
る重力水を極力減少し、毛管水をできるだけ均一かつ広
範囲に土壌中に移動させることによって達成される。一
方、毛管水の土壌中における移動距離や速度は、土壌粒
塊の接触界面における毛管的状況と、その土壌の含水量
とに依存する。従って、一時に大量の水を供給しても毛
管力による移動速度は加速されず、過剰に供給された水
は重力水となって流失するか、もしくは地表に溢れ出て
流失する。また、水の供給速度が過小であれば、重力水
は減少するが灌水量が不足する。従って、多孔質管から
の水の滲出速度、すなわち給水速度と、土壌中における
毛管水の移動速度とがほぼ均衡するとき、最も経済的に
かつ効率的に地中灌水が達成される。
By the way, the movement of water in the soil is dominated by gravity and by capillary force. That is, water moves to a deep part by gravity through a gap in soil (hereinafter referred to as "gravity water"),
It is divided into those that move vertically and horizontally by the capillary force at the contact interface of soil agglomerates (hereinafter referred to as "capillary water"). Water irrigation in soil is achieved by reducing gravity water drained to the depth of soil as much as possible and moving capillary water into soil as uniformly and widely as possible. On the other hand, the migration distance and velocity of the capillary water in the soil depend on the capillary condition at the contact interface of the soil agglomerates and the water content of the soil. Therefore, even if a large amount of water is supplied at one time, the moving speed due to the capillary force is not accelerated, and the excessively supplied water becomes gravity water and is washed away, or overflows to the ground surface and is washed away. Also, if the water supply rate is too low, gravity water will decrease, but irrigation volume will be insufficient. Therefore, underground irrigation is most economically and efficiently achieved when the water seepage rate from the porous tube, that is, the water supply rate and the moving rate of the capillary water in the soil are almost in equilibrium.

【0014】また、多孔質管からの水の給水速度は、数
式(I)におけるQに対応して、数式(II)によって
表される。 (II) Q=K(AH/L) すなわち、多孔質管からの給水速度Qは、多孔質管の表
面積A、肉厚L、および圧力水頭Hが一定であれば、多
孔質管の透水係数Kに依存して変化する。この透水係数
Kが1×10-8〜1.5×10-5cm/sであるとき、
上記の多孔質管からの給水速度と、土壌中における毛管
水の移動速度との好適な均衡関係が達成される。
The water supply rate from the porous tube is represented by the formula (II) corresponding to the Q in the formula (I). (II) Q = K (AH / L) That is, the water supply rate Q from the porous tube is such that if the surface area A, the wall thickness L, and the pressure head H of the porous tube are constant, the water permeability of the porous tube is constant. It changes depending on K. When the water permeability coefficient K is 1 × 10 −8 to 1.5 × 10 −5 cm / s,
A suitable equilibrium relationship between the water supply rate from the porous tube and the migration rate of the capillary water in the soil is achieved.

【0015】多孔質管の内径は0.5cm〜10cmで
あることが好ましい。0.5cm未満では、数式(I
I)における多孔質管の1m当りの表面積Aが過小とな
り、長手方向の距離による水等の滲出量の均一性が失わ
れ、稲作圃場での実用に不十分である。また、10cm
を越えると、流体の供給量の観点では問題ないものの、
運送、移動、埋設などの取り扱い面で不便であり、また
設備規模や原材料が全体的に過大となり、設備費や経費
が嵩む。この多孔質管の管壁の肉厚は0.2cm〜2c
mであることが好ましい。0.2cm未満では、管内圧
や外部からの衝撃や外圧に対する耐性が乏しくなり、2
cmを越えると、数式(II)の肉厚Lが過大となるた
め、供給速度Qが低下し、また多孔質管の製造費も嵩
む。
The inner diameter of the porous tube is preferably 0.5 cm to 10 cm. Below 0.5 cm, the formula (I
The surface area A per 1 m of the porous tube in I) becomes too small and the uniformity of the exudation amount of water and the like depending on the distance in the longitudinal direction is lost, which is not sufficient for practical use in a rice field. Also, 10 cm
If it exceeds, there is no problem in terms of the amount of fluid supply,
It is inconvenient in terms of handling such as transportation, movement, and burial, and the equipment scale and raw materials are generally too large, resulting in increased equipment costs and expenses. The wall thickness of this porous tube is 0.2 cm to 2 c.
m is preferable. If it is less than 0.2 cm, the resistance to the internal pressure of the pipe, the external impact and the external pressure becomes poor, and 2
When it exceeds cm, the wall thickness L of the formula (II) becomes excessive, so that the supply rate Q decreases and the manufacturing cost of the porous tube also increases.

【0016】この多孔質管は、埋設時や埋設後に相当粗
雑に取り扱われる虞があるので、一定の強度が必要であ
る。例えば、約15kg/cm2以上の引張強度(JI
SK6301)を有していることが好ましい。
This porous tube needs to have a certain level of strength because it may be handled roughly during and after burial. For example, about 15 kg / cm 2 or more tensile strength (JI
It is preferable to have SK6301).

【0017】多孔質管は稲作圃場の土壌中に、土壌灌水
用パイプとして埋設される。埋設深さHは20cm〜6
0cmであることが好ましい。20cm未満であると耕
起、代掻き等の時、多孔質管を損傷する虞があり、60
cmを越えると深すぎて灌漑水が稲に効果的に供給され
にくく、また埋設作業に労力を要する。
The porous pipe is buried in the soil of a rice field as a soil watering pipe. Buried depth H is 20 cm to 6
It is preferably 0 cm. If it is less than 20 cm, the porous tube may be damaged when plowing or scraping, etc.
If it exceeds cm, it is too deep to supply the irrigation water effectively to the rice, and the burial work requires labor.

【0018】また、この多孔質管の管壁に、例えば孔径
が数百μmを越える孔が露出していると、稲或いは雑草
の根が孔に侵入し障害をもたらす可能性がある。従っ
て、多孔質管としては、微細連続通孔を有する管が好ま
しい。
Further, if pores having a pore diameter exceeding several hundred μm are exposed on the wall of the porous tube, the roots of rice or weeds may invade the pores and cause damage. Therefore, a tube having fine continuous holes is preferable as the porous tube.

【0019】多孔質管は普通、稲作圃場現場で、その稲
作圃場の広さ・形状に応じて、これらの管体の各端部を
接続して、好適な長さ・形状のものに組み立てることに
なる。組み立てられた多孔質管は、接続部で屈曲してい
てもよいし、また枝別れしていてもよい。稲作圃場の形
態や経済的な理由から、多孔質管の中間に通常の配管を
介在させ、全体としての灌注の均一性を調節してもよ
い。また例えば、数本の一端部を封じた多孔質管を一定
間隔で並列させ、それぞれの他の端部を、1本の給水管
に櫛状に接続した組立物としてもよい。
The porous tube is usually assembled at a field of a rice farm to have a suitable length and shape by connecting each end of these pipes according to the size and shape of the field. become. The assembled porous tube may be bent or branched at the connection. Due to the morphology of rice fields and economical reasons, a regular pipe may be interposed between the porous pipes to control the uniformity of irrigation as a whole. Further, for example, an assembly may be formed by arranging a plurality of porous pipes having one end sealed therein in parallel at regular intervals and connecting the other ends to one water supply pipe in a comb shape.

【0020】図2は、稲作圃場における、多孔質管の一
配置例を示す平面図である。図2に示すように、多孔質
管の1両端部2および3に給水管5を配して、多孔質管
1の両端部2、3から、水などを稲に給液することがで
きる。
FIG. 2 is a plan view showing an arrangement example of porous tubes in a rice farm. As shown in FIG. 2, water supply pipes 5 can be arranged at both ends 2 and 3 of the porous tube so that water or the like can be supplied to rice from both ends 2 and 3 of the porous tube 1.

【0021】この流体供給用給水管5は、他方の端部を
流体供給源6に接続して、稲作圃場内に一定の深さに掘
った溝に配置し、土をかぶせることによって埋設でき
る。数本の並列した多孔質管を用いる場合、その間隔X
は管の透水係数Kと土壌の毛管力に応じて変化させるこ
とができるが、普通は30〜150cmの範囲で設定す
ることが好ましい。その土壌としてはできるだけ保水性
の良い土壌が好ましく、陸稲用の土壌又は水田を乾田さ
せた土壌でもよい。
The water supply pipe 5 for fluid supply is connected to the fluid supply source 6 at the other end thereof, placed in a groove dug to a certain depth in a rice cultivation field, and can be buried by covering it with soil. When using several parallel porous tubes, the distance X
Can be changed according to the water permeability coefficient K of the tube and the capillary force of the soil, but normally it is preferably set in the range of 30 to 150 cm. The soil is preferably as good as water retention, and may be soil for upland rice or soil obtained by drying paddy fields.

【0022】稲作圃場の土壌中に接続して埋設された多
孔質管の長さYは、その一端部から流体を供給する場合
に100m程度まで延長することができる。地上にあっ
ては、水平に置かれた100mを越える管長では、流体
供給源6に近い細孔からの滲出が多くなって長さ方向に
滲出量が不均一となる。しかし、土壌中にあっては、土
壌が乾燥しているときには土壌粒塊の毛管力による負圧
(吸引圧)を生じて流体を吸引し、また土壌が濡れる
と、その程度に応じて負圧が減少し、土壌中に水が飽和
すれば負圧はなくなる。このように、多孔質管の流体供
給源6に近い部分から端末に向かって漸次滲出量が自動
的に制御される結果、100mを越える全長にわたって
均一な供給を行うことができるようになる。
The length Y of the porous tube connected and buried in the soil of the rice field can be extended to about 100 m when the fluid is supplied from one end of the porous tube. On the ground, with a pipe length of more than 100 m placed horizontally, the amount of exudation from the pores near the fluid supply source 6 increases and the amount of exudation becomes uneven in the length direction. However, in the soil, when the soil is dry, a negative pressure (suction pressure) is generated by the capillary force of the soil agglomerates to suck the fluid, and when the soil gets wet, the negative pressure is increased according to the degree. The negative pressure disappears when water is saturated in the soil. In this way, the leaching amount is automatically controlled gradually from the portion of the porous tube close to the fluid supply source 6 toward the terminal, and as a result, uniform supply can be performed over the entire length exceeding 100 m.

【0023】上記のように、埋設された多孔質管の一端
部または両端部から流体を供給することによって、土壌
中の地表に比較的近い層を均一かつ広範囲に灌漑するこ
とができる。多孔質管を土壌灌注用パイプとして使用す
る際、該多孔質管に供給することができる流体は、液
体、気体いずれでもよい。液体の例としては水、液体肥
料、土壌消毒剤や土壌殺線虫剤などの液体農薬を挙げる
ことができる。この液体は水、水溶液、乳液、分散液の
いずれでもよいが、多孔質管の細孔を閉塞するような固
体浮遊物は予め除去しておくことが好ましい。固体浮遊
物が細孔を閉塞すると、透水係数Kは次第に低下する。
しかしこの場合でも、多孔質管が可撓性であれば、内圧
を高めることによって透水係数Kをある程度回復できる
場合もある。
As described above, by supplying the fluid from one end or both ends of the buried porous tube, it is possible to irrigate a layer relatively close to the ground surface in the soil uniformly and widely. When the porous tube is used as a soil irrigation pipe, the fluid that can be supplied to the porous tube may be either liquid or gas. Examples of liquids include water, liquid fertilizers, liquid pesticides such as soil disinfectants and soil nematicides. This liquid may be water, an aqueous solution, an emulsion, or a dispersion liquid, but it is preferable to remove in advance solid suspended matter that blocks the pores of the porous tube. When the solid suspended material closes the pores, the hydraulic conductivity K gradually decreases.
However, even in this case, if the porous tube is flexible, the water permeability K may be recovered to some extent by increasing the internal pressure.

【0024】また、供給流体は液体ばかりでなく、空気
などの気体であってもよい。特に、稲作圃場を十分に灌
水すると、土壌中の酸素が排出されて酸素不足の状態に
なる。このとき灌水した後で供給源6を空気源に切り替
えれば、土壌中に十分な水と酸素とを引き続いて供給す
ることができて、過湿による根腐れなどの病害を防止
し、稲の生育に好適な土壌環境を形成することができ
る。
The supply fluid may be not only liquid but also gas such as air. In particular, if the rice fields are sufficiently watered, oxygen in the soil will be exhausted, resulting in a lack of oxygen. At this time, if the supply source 6 is switched to an air source after irrigation, sufficient water and oxygen can be continuously supplied to the soil to prevent diseases such as root rot due to overhumidity and to grow rice. The soil environment suitable for can be formed.

【0025】多孔質管の管壁を通して気体を透過させる
場合、その透気係数は透水係数の数十倍に達する。従っ
て、地上であれば気体は供給源6近傍から直ちに漏出し
て、パイプの末端まで均一に移動されない。しかし、土
壌中、特に濡れた土壌中にあっては、土壌粒塊や水膜が
透気抵抗となるため、パイプ末端にまで均一な拡散が可
能となる。従って気体を供給する場合は、予め多孔質管
に通水し、管壁の微細連続通孔を濡らし、かつ土壌中に
水分を多く含ませておくことが好ましい。
When allowing gas to permeate through the wall of the porous tube, the air permeability thereof reaches several tens of times the water permeability coefficient. Therefore, on the ground, the gas leaks immediately from the vicinity of the supply source 6 and is not evenly moved to the end of the pipe. However, in the soil, particularly in the wet soil, the soil agglomerates and the water film have an air permeation resistance, so that even diffusion to the pipe end is possible. Therefore, when gas is supplied, it is preferable to pass water through the porous tube in advance to wet the fine continuous holes in the tube wall and to allow the soil to contain a large amount of water.

【0026】なお、水稲種の稲とは、水田のように湿地
性の圃場で栽培することが好ましい稲である。水稲種の
稲の具体例は、「コシヒカリ」、「ササニシキ」等の銘
柄の稲である。
The rice of paddy rice type is a rice which is preferably cultivated in a wetland field such as a paddy field. Specific examples of paddy rice are brands of rice such as "Koshihikari" and "Sasanishi".

【0027】[0027]

【実施例】以下に実施例を示す。ゴム粉体80重量部と
ポリエチレン20重量部とを混合した後、押出成形し、
押出成形により管壁に微細連続通孔を形成せしめること
により、外径14mm、内径9mmのゴム粉体を含んで
なる微細連続通孔を有する多孔質管を得た。該多孔質管
の透水係数K(初期値)を測定したところ、4.8×1
ー7cm/sであった。
Examples are shown below. After mixing 80 parts by weight of rubber powder and 20 parts by weight of polyethylene, extrusion molding is performed,
By forming fine continuous through holes in the tube wall by extrusion molding, a porous tube having fine continuous through holes containing rubber powder having an outer diameter of 14 mm and an inner diameter of 9 mm was obtained. The water permeability K (initial value) of the porous tube was measured to be 4.8 × 1.
It was 0-7 cm / s.

【0028】前記多孔質管を土壌中に20cmの深さに
埋設した後、多孔質管の灌水試験を行った。水源6とし
て水道水を用いた。この水圧は2kgf/cm2、すな
わち水頭20mであった。この多孔質管1を図2の如
く、その端部2、3はポリ塩化ビニル製給水管5に接続
し、このポリ塩化ビニル製給水管5は、流量調整弁4を
介して水源6に接続した。水流量は流量調整弁4により
調節して0.167cm3/s・mに設定した。
After burying the porous tube in soil at a depth of 20 cm, the porous tube was subjected to a watering test. Tap water was used as the water source 6. The water pressure was 2 kgf / cm 2 , that is, the water head was 20 m. As shown in FIG. 2, the ends 2 and 3 of the porous pipe 1 are connected to a water supply pipe 5 made of polyvinyl chloride, and the water supply pipe 5 made of polyvinyl chloride is connected to a water source 6 via a flow rate adjusting valve 4. did. The water flow rate was adjusted by the flow rate adjusting valve 4 and set to 0.167 cm 3 / s · m.

【0029】測定は運転開始1週間後に行い、流量調整
弁4との接続点を始点(0m)として、局部滲出量(c
3/s・m)qと局部内圧(水頭cm)hとを測定し
た。局部滲出量は0.15〜0.18cm3/s・mであ
り、局部内圧(水頭cm)は190〜230cmの範囲
にあった。則ち、透水係数Kが4.8×10ー7cm/s
である多孔質管は、これを土壌中に埋設するときは、始
点からの距離に係わらず局部滲出量および局部内圧の低
下は長さ方向に対して僅かであった。これは土壌中の多
孔質管1が、始点から末端に至るまで、均一な量の水を
土壌中に拡散供給したことを示している。
The measurement is performed one week after the start of operation, and the local exudation amount (c
m 3 / s · m) q and the local internal pressure (water head cm) h were measured. The local exudation amount was 0.15 to 0.18 cm 3 / s · m, and the local internal pressure (water head cm) was in the range of 190 to 230 cm. In other words, the water permeability coefficient K is 4.8 × 10-7 cm / s.
When the porous pipe was embedded in soil, the local exudation amount and the local internal pressure were slightly decreased in the length direction regardless of the distance from the starting point. This indicates that the porous tube 1 in the soil diffused and supplied a uniform amount of water into the soil from the starting point to the end.

【0030】ー試験例ー 上記多孔質管1を土壌灌水パイプとして、横約8m、縦
約4mの稲作圃場(I)に、図2に示す如く、間隔Xを
0.4m、長さYを8m、埋設深さ20cmとし、多孔
質管11本を20cmの深さに埋設した。この試験例の
稲作圃場(I)に、6月20日にコシヒカリの稲苗を植
えた。栽培期間の6月20日〜10月5日(1995
年)の間、前記多孔質管1により、稲に地中灌水を適宜
行った。また、稲に灌水が特に必要な出穂期間に日照り
が続いたが、多孔質管1により稲に水を常に与えること
がでたので、この間に水切れがなかった。約4ヶ月の稲
栽培期間の地中灌水量は、一反歩換算、1ヶ月当たり、
平均約60トンであった。そして、10月5日に稲を刈
り取り収穫を行ったが、その時の分けつ数、穂部の重量
等を表1に示す。
-Test Example-In the rice field (I) having a width of about 8 m and a length of about 4 m using the porous tube 1 as a soil irrigation pipe, as shown in FIG. The depth was 8 m and the burial depth was 20 cm, and 11 porous tubes were buried at a depth of 20 cm. Koshihikari rice seedlings were planted on June 20 in the rice field (I) of this test example. Cultivation period June 20 to October 5 (1995
For 1 year), the rice was appropriately submerged by the porous tube 1. In addition, the sunshine continued during the heading period when irrigation was especially required for the rice, but since it was possible to constantly supply water to the rice by the porous tube 1, there was no drainage during this time. Underwater irrigation amount during rice cultivation period of about 4 months is calculated as one step, per month,
The average was about 60 tons. The rice was cut and harvested on October 5, and Table 1 shows the number of splits, the weight of the spikes, and the like at that time.

【0031】なお、本試験例において、窒素、リン、カ
リ等を含む化成肥料を溶解した水を、多孔質管1により
地中に供給して稲に適宜施した。また、8月末は日照り
であったが、多孔質管1により地中に施肥できたので、
稲への施肥効果がすぐに現れた。
In this test example, water in which a chemical fertilizer containing nitrogen, phosphorus, potash, etc. was dissolved was supplied to the ground through the porous tube 1 to appropriately apply to rice. Also, although the sun was shining at the end of August, it was possible to fertilize the ground with the porous tube 1, so
The fertilizing effect on rice was immediately apparent.

【0032】ー比較例ー 一方、従来の水田に、前記と同様にコシヒカリの稲苗を
植えた。そして、5月5日〜9月7日(1995年)の
稲栽培期間の間、従来方法である冠水により稲栽培を行
った。灌水量は、圃場一反歩換算、1ヶ月当たり平均約
1000トンであった。9月7日に刈り取り収穫を行っ
た。その時の稲の分けつ数、穂部の重量等を表1に示
す。
Comparative Example On the other hand, a Koshihikari rice seedling was planted in a conventional paddy field in the same manner as described above. Then, during the rice cultivation period from May 5th to September 7th (1995), rice cultivation was performed by flooding, which is a conventional method. The irrigation amount was an average of about 1000 tons per month, calculated in the field one step. Mowing harvest was carried out on September 7. Table 1 shows the number of split rice and the weight of ears at that time.

【0033】[0033]

【表1】 [Table 1]

【0034】表1において、穂等の重量は刈り取り後、
80゜Cで2日間乾燥を行った後の重量である。表1に
示すように、稲の穂重量は、比較例の水田(II)での
栽培稲の方が試験例の稲よりも僅かに上回っていた。し
かし、茎・葉重量、根重量は本発明の試験例の稲作圃場
(I)での栽培稲の方が、比較例の水田(II)のもの
より大であり、根張りは良好であった。図3は、栽培し
た稲の根部を示す図であって、(a)は試験例の稲作圃
場(I)で栽培した稲の根部、(b)は比較例の水田
(II)での育成稲の根部(水根)を示す。図3(a)
に示すように、試験例の圃場(I)の育成の稲の根部
は、分けつ良好で根毛が多く、いわゆる水田の水根
(b)から畑根(a)に変化していた。則ち、その根は
丈夫で、干ばつに耐性のあることが分かった。また、試
験例の圃場(I)で収穫した水稲種の「コシヒカリ」の
米の食味は、水田栽培ではないにもかかわらず、陸稲種
の稲と比較して、はるかに良好であった。
In Table 1, the weight of the ears, etc., after cutting,
It is the weight after drying at 80 ° C for 2 days. As shown in Table 1, the weight of the ear of the rice was slightly higher in the rice cultivated in the paddy field (II) of the comparative example than in the rice of the test example. However, the stalk / leaf weight and the root weight were higher in the rice grown in the rice field (I) of the test example of the present invention than in the paddy field (II) of the comparative example, and the rooting was good. . FIG. 3 is a diagram showing roots of cultivated rice, (a) roots of rice cultivated in a rice field (I) of a test example, and (b) grown rice in a paddy field (II) of a comparative example. Shows the root part (water root) of. FIG. 3 (a)
As shown in (1), the root part of the rice grown in the field (I) of the test example was well divided and had many root hairs, and so-called paddy field roots (b) changed to field roots (a). That is, the roots were found to be tough and drought tolerant. Further, the rice taste of the paddy rice seed “Koshihikari” harvested in the field (I) of the test example was far better than that of the upland rice seed, although the rice was not cultivated in the paddy field.

【0035】なお、本発明に使用する多孔質管として、
微細連続通孔を管壁に形成した多孔質管を用いることが
できることは勿論のこと、管壁に10cm〜100cm
間隔で貫通孔を穿孔した多孔質管もまた同様な作用効果
を奏する。この場合、穿孔による貫通孔の孔径は、1/
1000mm〜1/10mm(0.001mm〜0.1
mm)であることが好ましい。また、貫通孔を穿孔した
多孔質管は、その貫通孔に定流量弁を設けたいわゆるド
リップ式灌水管でも構わない。
As the porous tube used in the present invention,
It is needless to say that a porous tube having fine continuous holes formed in the tube wall can be used, and the tube wall has 10 cm to 100 cm.
A porous tube in which through holes are formed at intervals also has the same effect. In this case, the hole diameter of the through hole is 1 /
1000 mm to 1/10 mm (0.001 mm to 0.1
mm) is preferable. Further, the porous pipe having the through hole may be a so-called drip type irrigation pipe in which a constant flow valve is provided in the through hole.

【0036】[0036]

【発明の効果】本発明の稲作圃場は、土中に埋設された
多孔質管により水を地中灌水でき、しかも全長にわたっ
て均一、広範囲に、かつ経済的、効率的に土壌中に流体
を浸透拡散させて稲を栽培できるものであり次の効果を
奏する。 (1)圃場全体に均一に、且つ長期にわたり安定して稲
に灌水できる稲作圃場であるので、水稲種の稲の栽培を
乾田でも多収穫且つ安定して栽培できる。 (2)管理灌水を行うこともできて、圃場990m
2(一反歩)当たりの灌水量を1ヶ月に数十トンにまで
低減できる圃場である。従って、高価な水を大幅に節減
できる上に、灌水コストの極端な低減を達成できる。 (3)地中灌水を行うことにより、降雨量が少なくて水
稲種の稲栽培法に適さない地域を、水稲種の稲作地帯に
転換することを可能とする稲作圃場である。 (4)水稲種の稲栽培において、水稲種の稲の根毛量が
増加し、稲の根は水及び肥料の強い吸収力を持つことに
より、活着力と分けつ数が増加する。
INDUSTRIAL APPLICABILITY In the rice cultivation field of the present invention, water can be underground-irrigated by a porous pipe buried in the soil, and moreover, the fluid can be uniformly and widely spread over the entire length, economically and efficiently into the soil. It can be spread to grow rice and has the following effects. (1) Since it is a rice farming field that can be uniformly and stably irrigated over the entire field for a long period of time, it is possible to stably cultivate rice of a variety of paddy rice in a dry field. (2) Management irrigation can be performed, and the field is 990m.
2 This is a field where the amount of irrigation water per one step can be reduced to several tens of tons per month. Therefore, it is possible to significantly reduce the cost of expensive water and to achieve an extreme reduction in the irrigation cost. (3) It is a rice farming field that enables the conversion of areas that are not suitable for the rice cultivation method of paddy rice seeds to the rice paddy areas of paddy rice seedlings by performing underground irrigation. (4) In the rice cultivation of paddy rice species, the root hair amount of the paddy rice species increases, and the roots of the rice have a strong absorption capacity for water and fertilizer, thereby increasing vigor and division number.

【0037】(5)土中に埋設された多孔質管により施
肥できるので、施肥量を適切に調整し得るとともに、肥
料を節減できる。則ち、合理的な施肥管理ができる稲作
圃場である。 (6)灌水中の溶存ガスを適宜制御することにより、根
毛量の増大、根腐れの防止などの根の呼吸管理を一元的
に行うことが可能となる。 (7)自動車タイヤから得られるゴム粉体を含む多孔質
管は安価に製造できる上に、自動車タイヤの多量なリサ
イクルを可能とし省資源につながる。
(5) Since the fertilizer can be applied by the porous tube buried in the soil, the amount of fertilizer can be adjusted appropriately and the fertilizer can be saved. In other words, it is a rice farming field that allows rational fertilization management. (6) By appropriately controlling the dissolved gas in the irrigation water, it becomes possible to centrally manage the respiration of the root such as increasing the amount of root hair and preventing root rot. (7) A porous tube containing rubber powder obtained from an automobile tire can be manufactured at low cost, and a large amount of automobile tires can be recycled, leading to resource saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の稲作圃場の一実施形態例を示す断面
図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a rice cultivation field of the present invention.

【図2】 本発明の稲作圃場の多孔質管の配置例を示す
平面図である。
FIG. 2 is a plan view showing an arrangement example of porous tubes in a rice field according to the present invention.

【図3】 栽培した稲の根部を示す図であって、(a)
は試験例の圃場で栽培した稲の根部、(b)は水田育成
の稲の根部を示す。
FIG. 3 is a view showing a root portion of cultivated rice, which is (a)
Indicates the root of rice cultivated in the field of the test example, and (b) indicates the root of rice grown in paddy fields.

【符号の説明】[Explanation of symbols]

1・・多孔質管、1a・・粒子、2、3・・端部、4・
・流量調整弁、5・・流体供給用管、6・・流体供給
源、10・・稲、12・・土壌
1 ... Porous tube, 1a ... Particles, 2, 3 ... End portion, 4 ...
・ Flow control valve, 5 ・ ・ Fluid supply pipe, 6 ・ ・ Fluid supply source, 10 ・ ・ Rice, 12 ・ ・ Soil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 裕章 茨城県つくば市大久保10 日本酸素株式会 社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Fukuda 10 Okubo, Tsukuba City, Ibaraki Japan Oxygen Stock Company In-house

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質管が土壌灌注用パイプとして埋設
されてなる稲作圃場。
1. A rice cultivation field in which a porous pipe is buried as a pipe for soil irrigation.
【請求項2】 圃場に埋設した多孔質管により水、空
気、肥料等を土壌中に供給して水稲種の稲を栽培するこ
とを特徴とする水稲種の稲栽培法。
2. A method of cultivating rice of a rice seed type, which comprises cultivating a rice of a rice seed type by supplying water, air, fertilizer and the like into the soil through a porous tube buried in a field.
JP8109635A 1996-04-30 1996-04-30 Rice cropping farm field and cultivation method of paddy rice species Withdrawn JPH09294490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8109635A JPH09294490A (en) 1996-04-30 1996-04-30 Rice cropping farm field and cultivation method of paddy rice species

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8109635A JPH09294490A (en) 1996-04-30 1996-04-30 Rice cropping farm field and cultivation method of paddy rice species

Publications (1)

Publication Number Publication Date
JPH09294490A true JPH09294490A (en) 1997-11-18

Family

ID=14515287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8109635A Withdrawn JPH09294490A (en) 1996-04-30 1996-04-30 Rice cropping farm field and cultivation method of paddy rice species

Country Status (1)

Country Link
JP (1) JPH09294490A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947507A (en) * 2014-04-28 2014-07-30 苏州创维晟自动化科技有限公司 Novel water-saving irrigation equipment for water, fertilizer and air
CN104285700A (en) * 2014-09-28 2015-01-21 湖南农业大学 Chemical oxygen increasing irrigation method for super rice
CN110915631A (en) * 2019-11-19 2020-03-27 湖南杂交水稻研究中心 Rice planting device
CN110915630A (en) * 2019-11-19 2020-03-27 湖南杂交水稻研究中心 Supplementary fertilizing mechanism of rice planting
CN115316170A (en) * 2022-08-15 2022-11-11 六盘水师范学院 Prevention and control method for rice root retting disease
CN115486350A (en) * 2022-09-19 2022-12-20 中国科学院遗传与发育生物学研究所农业资源研究中心 Water-saving irrigation method based on embedded water absorption unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947507A (en) * 2014-04-28 2014-07-30 苏州创维晟自动化科技有限公司 Novel water-saving irrigation equipment for water, fertilizer and air
CN104285700A (en) * 2014-09-28 2015-01-21 湖南农业大学 Chemical oxygen increasing irrigation method for super rice
CN110915631A (en) * 2019-11-19 2020-03-27 湖南杂交水稻研究中心 Rice planting device
CN110915630A (en) * 2019-11-19 2020-03-27 湖南杂交水稻研究中心 Supplementary fertilizing mechanism of rice planting
CN110915630B (en) * 2019-11-19 2021-03-23 湖南杂交水稻研究中心 Supplementary fertilizing mechanism of rice planting
CN110915631B (en) * 2019-11-19 2021-03-23 湖南杂交水稻研究中心 Rice planting device
CN115316170A (en) * 2022-08-15 2022-11-11 六盘水师范学院 Prevention and control method for rice root retting disease
CN115486350A (en) * 2022-09-19 2022-12-20 中国科学院遗传与发育生物学研究所农业资源研究中心 Water-saving irrigation method based on embedded water absorption unit
CN115486350B (en) * 2022-09-19 2024-02-20 中国科学院遗传与发育生物学研究所农业资源研究中心 Water-saving irrigation method based on embedded water absorption unit

Similar Documents

Publication Publication Date Title
US4235561A (en) Subterranean irrigation means and system
US20100219265A1 (en) Water irrigation system including drip irrigation emitters
US20110219684A1 (en) Irrigation Device and Method of Promoting Deep Root Growth of a Plant
JPH10504192A (en) Hairy root area irrigation system
JP2006320296A (en) Method for raising tea seedling
JP2003506051A (en) Irrigation equipment
CN101331845A (en) Anti-blocking automatic filtration irrigation method
JPH09294490A (en) Rice cropping farm field and cultivation method of paddy rice species
US4928427A (en) Irrigation system
CN207284480U (en) A kind of multi-functional mulch
EP2164319A1 (en) Device for soilless culture of plants and mushrooms
KR0162538B1 (en) Soil irrigation pipe, soil irrigation method using the same pipe and method of supplying gas into soil
JP2022103286A (en) Second sheet used for fruit tree cultivation
US11818989B2 (en) Irrigation device for promoting deep root growth of a plant
Selvaperumal et al. Evaluation of uniformity coefficient and soil moisture distribution under drip irrigation system
CN1061510C (en) Method of flat film irrigation
CN210987495U (en) Irrigation system for large arbor planting
EP0206708A2 (en) Automatic water feeding device
CN214046979U (en) Buried anti-blocking drip irrigation pipe
CN211406947U (en) Oxygen supply pipe for ornamental trees and shrubs
CN218483246U (en) Planting frame drip irrigation device and passion fruit frame drip irrigation device
Bhople et al. Sub-Surface Method of Irrigation-Clay Pipe Irrigation System
CN1282506A (en) Cultivating method with ground film, irrigation by film canal and germinating by itself
CN107691187A (en) A kind of hybrid ecological irrigation device
CN212573529U (en) Light watering and fertilizing infiltrating irrigation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701