JPH0929401A - Method for controlling temperature of molten steel in tundish for continuous casting - Google Patents

Method for controlling temperature of molten steel in tundish for continuous casting

Info

Publication number
JPH0929401A
JPH0929401A JP19076095A JP19076095A JPH0929401A JP H0929401 A JPH0929401 A JP H0929401A JP 19076095 A JP19076095 A JP 19076095A JP 19076095 A JP19076095 A JP 19076095A JP H0929401 A JPH0929401 A JP H0929401A
Authority
JP
Japan
Prior art keywords
molten steel
temperature
tundish
casting
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19076095A
Other languages
Japanese (ja)
Inventor
Masahiko Kimura
政彦 木村
Tomonori Kamiyama
朋典 神山
Yoshiharu Sakurai
美弦 櫻井
Nozomi Tamura
望 田村
Hidemi Aoki
秀未 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19076095A priority Critical patent/JPH0929401A/en
Publication of JPH0929401A publication Critical patent/JPH0929401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably hold molten steel temp. till coming to the end stage of casting by predicting temp. lowering rate of the molten steel and the molten steel temp. at the end stage of the casting in every one heat from this value and temp. measured data and impressing a plasma onto the molten steel in a tundish according to this value. SOLUTION: At the time of casting a cast slab by using a continuous caster provided with the tundish, heat elleviation quantities of the molten steel in a ladle and the tundish are estimated based on operational data of this heat and the temp. lowering rates of the molten steel are predicted. On the other hand, the temp. data during casting at least in one point is obtd. The molten steel temp. at the end stage of casting in every one heat is predicted from these temp. lowering rates and the temp. measuring data. In the case this value is less than a target temp., the plasma is impressed by setting a heating start timing, heating time, output of a heater to control the molten steel temp. in the tundish. By this method, stable continuous casting can be performed with a simple work.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、タンディッシュ
内の溶鋼の温度を連続鋳造の末期に至るまで適正範囲内
に保持し安定した連続鋳造を実現しようとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to realize stable continuous casting by keeping the temperature of molten steel in a tundish within an appropriate range until the end of continuous casting.

【0002】[0002]

【従来の技術】鋼の連続鋳造においては鋳造時間の経過
に伴いタンディッシュ内溶鋼の温度低下は避けられず、
溶鋼温度が低過ぎるとノズル詰まりなどの操業上のトラ
ブルを招くことになる。そこで、このようなトラブルを
回避するための温度補償手段としてプラズマヒータが使
用されていた。
2. Description of the Related Art In continuous casting of steel, the temperature drop of molten steel in the tundish is inevitable with the passage of casting time.
If the temperature of the molten steel is too low, problems such as nozzle clogging may occur during operation. Therefore, a plasma heater has been used as a temperature compensating means for avoiding such trouble.

【0003】このプラズマヒータは、例えば、連続鋳造
の鋳造末期にタンディッシュ内の溶鋼に対してその上部
からプラズマを印加することによって加熱するものであ
って、これによれば比較的短時間で大量の熱を溶鋼に付
与できるため、とくに溶鋼を連続鋳造用鋳型に供給して
いる状態でタンディッシュ内の溶鋼を所定の温度に保持
するのに適した加熱手段といえた。
This plasma heater heats molten steel in a tundish by applying a plasma from the upper part to the molten steel in the final stage of continuous casting. Since the above heat can be applied to the molten steel, it can be said that the heating means is suitable for keeping the molten steel in the tundish at a predetermined temperature particularly while the molten steel is being supplied to the continuous casting mold.

【0004】しかし、従来の連続鋳造操業においては、
プラズマヒータによる加熱を施すとしても、鋳造開始後
どの時期でプラズマ印加すればよいのか、どの程度継続
して加熱すればよいのか、あるいはどの程度の出力にし
て加熱すればよいのかなどといった予測が困難であっ
て、鋳造の末期に至るまでの間に溶鋼の温度が目標温度
を下回る場合もあり、安定した鋳造が実施できずその解
決が望まれていた。
However, in the conventional continuous casting operation,
Even if the heating is performed by the plasma heater, it is difficult to predict when the plasma should be applied after the start of casting, how long it should be heated, or how much output should be applied. However, the temperature of the molten steel may fall below the target temperature until the end of casting, and stable casting cannot be carried out, and a solution to this has been desired.

【0005】ところで、プラズマヒータの印加開始時間
やその出力調整に関しては、例えば特開平1−1783
53号公報のようにタンディッシュ内の溶鋼の温度を常
時測定して制御する技術が提案されており、また、特開
平3−281044号公報に開示されているように、溶
鋼流量と貯鋼重量を検出値としてPID制御を行う技術
も既に知られている。
By the way, regarding the application start time of the plasma heater and its output adjustment, for example, Japanese Patent Laid-Open No. 1783/1989
A technique for constantly measuring and controlling the temperature of molten steel in a tundish has been proposed, as disclosed in Japanese Patent No. 53, and as disclosed in Japanese Patent Laid-Open No. 281044/1990, the molten steel flow rate and the stored steel weight. There is already known a technique of performing PID control by using as a detection value.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、タンデ
ィッシュ内の溶鋼温度を連続的に測定して温度制御を行
う特開平1-178353号公報に開示の方法やPID制御を行
う特開平3-281044号公報に開示の方法では、測温機器の
耐久性、プラズマ出力変化後の応答性すなわち設備メン
テナンス、温度制御に問題があった。
However, the method disclosed in JP-A-1-178353, which continuously measures the temperature of molten steel in the tundish to control the temperature, and JP-A-3-281044, which performs PID control, are disclosed. The method disclosed in the publication has problems in durability of the temperature measuring device, responsiveness after plasma output change, that is, equipment maintenance and temperature control.

【0007】この発明の目的は、鋼の連続鋳造におい
て、タンディッシュ内の溶鋼を鋳造の末期に至るまで適
正温度範囲に保持できる新規な温度制御方法を提案する
ところにある。
An object of the present invention is to propose a novel temperature control method capable of maintaining the molten steel in the tundish in an appropriate temperature range in the continuous casting of steel until the end of casting.

【0008】[0008]

【課題を解決するための手段】連続鋳造においてタンデ
ィッシュ内の溶鋼の温度推移は各チャージ毎に異なるの
で、この発明では各チャージ毎にタンディッシュの溶鋼
のバッチ測温を少なくとも1回行い、該当チャージの操
業データを基にある時点以降の溶鋼温度を予測し、これ
に従ってプラズマヒータによる加熱開始時期、加熱時
間、出力を決定し、とくに鋳造末期の溶鋼温度を目標温
度範囲内に加熱して安定鋳造を図ろうとするものであ
る。
In continuous casting, the temperature change of the molten steel in the tundish is different for each charge. Therefore, in the present invention, batch temperature measurement of the molten steel of the tundish is performed at least once for each charge. Predict the molten steel temperature after a certain time based on the charge operation data, and determine the heating start time, heating time, and output by the plasma heater according to it, and especially stabilize the molten steel temperature at the end of casting by heating it within the target temperature range. It is intended to cast.

【0009】すなわち、この発明は、タンディッシュ内
の溶鋼にプラズマを印加することによって加熱、昇温
し、該溶鋼の温度を目標とする範囲に保持しつつ連続鋳
造を行うに当たり、該当チャージの操業データを基にし
て取鍋およびタンディッシュにおける溶鋼の抜熱量を推
定して溶鋼の温度降下率を推算し、この温度降下率と少
なくとも1点の鋳造時の測温データとから、1ヒート毎
の鋳造末期の溶鋼温度を予測し、その値が、目標温度を
下回る場合には、溶鋼の温度が目標とする温度の範囲内
に収まるように加熱開始時期、加熱時間、ヒータの出力
を設定してプラズマを印加することを特徴とする連続鋳
造におけるタンディッシュ内溶鋼の温度制御法であり、
該当チャージの操業データは、少なくとも、ヒートサイ
ズ(出鋼時取鍋溶鋼重量)、二次精錬(VOD)終了時
の溶鋼の温度、二次精錬時間、溶鋼のスループット、取
鍋内の溶鋼が空になってから次の溶鋼が注入されるまで
の時間(空鍋時間)を使用することができるが、この他
に、取鍋およびタンディッシュの予熱Cガス量、出鋼か
らの経過時間、取鍋およびタンデッシュの使用回数(施
工からの回数)、タンディッシュ内の溶鋼重量等を加え
ることもできる。また、上記した少なくとも1回の鋳造
時の測温タイミングは、鋳造の中間点またはそれより前
のいわゆる鋳造初期において行うものとする。
That is, according to the present invention, when plasma is applied to the molten steel in the tundish to heat and raise the temperature, and continuous casting is performed while maintaining the temperature of the molten steel within a target range, the operation of the corresponding charge is performed. Based on the data, the heat removal amount of the molten steel in the ladle and tundish is estimated to estimate the temperature drop rate of the molten steel, and from this temperature drop rate and at least one temperature measurement data during casting, Predict the molten steel temperature at the end of casting, and if the value is below the target temperature, set the heating start time, heating time, and heater output so that the molten steel temperature falls within the target temperature range. A method for controlling the temperature of molten steel in a tundish in continuous casting characterized by applying plasma,
The operation data of the charge is at least heat size (ladle weight of ladle at tapping), temperature of molten steel at the end of secondary refining (VOD), secondary refining time, throughput of molten steel, molten steel in ladle is empty. It is possible to use the time until the next molten steel is injected (empty ladle time) after that, but in addition to this, the amount of preheated C gas in the ladle and tundish, the elapsed time from tapping, It is also possible to add the number of times the pan and tundish are used (the number of times since construction), the weight of molten steel in the tundish, and the like. Further, the temperature measurement timing during at least one casting described above is performed at the midpoint of casting or before the so-called initial stage of casting.

【0010】[0010]

【発明の実施の形態】図1は、二次精錬終了時から鋳造
末期までの溶鋼の温度推移の一例を示したものである。
溶鋼の温度管理でとくに重要になるのは、温度降下率
(℃/min )が大きい鋳造後半から鋳造末期の間(図中
太線)であり、ここで溶鋼の温度補償が必要になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the temperature transition of molten steel from the end of secondary refining to the end of casting.
In the temperature control of molten steel, it is particularly important from the latter half of casting to the final casting (thick line in the figure) that the temperature drop rate (° C / min) is large, and the temperature compensation of molten steel is required here.

【0011】鋳造末期における温度降下率の分布状況は
図2に示す通りであって、溶鋼の温度は各チャージ毎に
大きく変化する。しかし、この発明では以下の要領に従
い該当チャージの操業データより取鍋とタンディッシュ
における溶鋼の抜熱量を推定し、その温度降下率から溶
鋼温度を予測し、これを基にプラズマヒータによる加熱
を実施するようにしたので、溶鋼の温度低下による支障
なしに安定した連続鋳造が行えることになる。
The distribution of the temperature drop rate in the final stage of casting is as shown in FIG. 2, and the temperature of the molten steel changes greatly with each charge. However, in this invention, the heat removal amount of molten steel in the ladle and tundish is estimated from the operation data of the corresponding charge according to the following procedure, the molten steel temperature is predicted from the temperature drop rate, and heating by the plasma heater is performed based on this. As a result, stable continuous casting can be performed without any problems due to the temperature drop of the molten steel.

【0012】プラズマヒータによる加熱を実施するにあ
たり必要になる溶鋼温度の推定は次の考えに従って行
う。まず、モデル範囲として二次精錬 (VOD処理) 終
了から連続鋳造終了に至るまでの過程における溶鋼の熱
収支をもとに組み立てた物理をモデルを導入する。この
モデルを、二次精錬終了から溶鋼をタンディッシュに注
入する前までの過程 (過程1) と溶鋼の注入中の過程
(過程2) の二つに分け、過程1では取鍋要因を、ま
た、過程2では取鍋要因とタンディッシュ要因を考慮す
る。
The molten steel temperature required to carry out heating by the plasma heater is estimated according to the following idea. First, as a model range, we introduce a model of physics assembled based on the heat balance of molten steel in the process from the end of secondary refining (VOD treatment) to the end of continuous casting. This model is the process from the end of secondary refining to the point of injecting molten steel into the tundish (step 1) and the step during injecting molten steel.
It is divided into two (process 2). In process 1, ladle factors are considered, and in process 2, ladle factors and tundish factors are considered.

【0013】さて、tccS :鋳造開始時間 tVDE ccS :VOD終了から鋳造開始までの時間 CP :比熱 Tl0:VOD終了時の溶鋼温度 Ml :取鍋溶鋼重量 W:スループット Qt :取鍋の放熱量 Tl :取鍋溶鋼温度 Qt ′:タンディッシュ放熱量 T:タンディッシュの溶鋼温度 M:タンディッシュの溶鋼重量 とすると[0013] Now, t ccS: casting start time t VDE ~ ccS: time C P from the VOD end to the start of casting: specific heat T l0: VOD at the end of the molten steel temperature M l: a ladle of molten steel weight W: throughput Q t: Heat dissipation of ladle T l : Molten steel temperature of ladle Q t ′: Heat dissipation of tundish T: Molten steel temperature of tundish M: Weight of molten steel of tundish

【0014】取鍋の熱収支 (VOD処理終了時をt=0
とする) は、 ・0<t<tccS の時 Ml P ( dTl /dt) =−Qt ′ ---(1) ・tccS <tの時 {Ml −W (t−tVDE ccS ) }CP ( dTl /dt) =−Qt --- (2) また、タンディッシュの熱収支は、 MCP ( dT/dt) =WCP ( Tl −T) −Qt ′ ---(3)
Heat balance of ladle (t = 0 at the end of VOD processing)
To) is, · 0 <M l C P (dT l / dt when t <t ccS) = -Q t '--- (1) When · t ccS <t {M l -W (t- t VDEccS )} C P (dT l / dt) = -Q t --- (2) In addition, the heat balance of the tundish is MC P (dT / dt) = WC P (T l -T)- Q t ′ --- (3)

【0015】で表すことができ、これをある仮定(例え
ば取鍋およびタンディッシュの放熱を定常とする。)を
用いて解くことによって下記(4) 式の溶鋼温度推定式を
導出する。 T=Tl0+f(x)+g(y) ---(4) ここで、f(x):取鍋要因項 g(y):タンディッシュ要因項 である。
## EQU1 ## By solving this using a certain assumption (for example, the heat radiation of the ladle and the tundish is stationary), the molten steel temperature estimation formula of the following formula (4) is derived. T = T l0 + f (x) + g (y) --- (4) where f (x) is a ladle factor term and g (y) is a tundish factor term.

【0016】そして、上記(4) の係数を重回帰分析より
求めてタンディッシュ内の溶鋼温度Tを推定し、この温
度が鋳造の末期において目標温度になるようにプラズマ
ヒータの出力、これによる加熱時間を決定する。
Then, the coefficient of the above (4) is obtained by multiple regression analysis to estimate the molten steel temperature T in the tundish, and the output of the plasma heater is used so that this temperature becomes the target temperature at the final stage of casting, and heating by this is performed. Determine the time.

【0017】なお、溶鋼温度に影響する操業条件として
は空鍋時間 (前チャージ鋳造終了〜次チャージ出鋼) 、
ヒートサイズ、鍋連続使用回数、VOD処理時間、スル
ープット、タンディッシュ溶鋼重量、タンディッシュ予
熱Cガス量、タンディッシュ連々数など挙げられ、空鍋
時間にいては鍋内に溶鋼が存在しない時間などである。
これらの操業条件は、上記の各要因鋼f(x) 、g
(y) に含まれる。各操業条件と溶鋼温度との定性的な
関係は表1に示すとおりである。すなわち、空鍋時間が
長いほど溶鋼の温度降下は大きく、また、ヒートサイズ
に関してはそれが大きいほど温度降下は小さい。鍋の使
用回数に関してはその回数が多いほど温度降下は小さ
く、VOD処理時間についてはその時間が長いほど温度
降下は小さい。さらに、スループットやタンディッシュ
内の溶鋼重量、予熱Cガス量、連々数については大きく
なればなるほど温度降下は小さくなる。
The operating conditions that affect the molten steel temperature are: ladle time (pre-charge casting end to next charge tapping),
Heat size, number of continuous use of pot, VOD treatment time, throughput, weight of tundish molten steel, amount of tundish preheated C gas, number of tundish in sequence, etc. is there.
These operating conditions are based on the above factor steels f (x), g
Included in (y). The qualitative relationship between each operating condition and molten steel temperature is shown in Table 1. That is, the longer the pan time, the greater the temperature drop of the molten steel, and the larger the heat size, the smaller the temperature drop. With respect to the number of times the pan is used, the greater the number of times, the smaller the temperature drop, and the longer the VOD treatment time, the smaller the temperature drop. Further, the larger the throughput, the weight of molten steel in the tundish, the amount of preheated C gas, and the number of consecutive pieces, the smaller the temperature drop.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【実施例】溶鋼(鋼種:SUS304)を28t収容で
きるタンディッシュを備えた連続鋳造機を用いて、厚さ
200mm,幅1200mmになる鋳造鋳片するに当たり、
下記の要領でタンディッシュ内の温度制御を行い、タン
ディッシュ内における溶鋼の温度の変動状況を調査し
た。なお、この実施例では通常の要領でプラズマヒータ
により加熱した場合と、プラズマヒータを使用しないで
加熱した場合における溶鋼のタンディッシュ内における
温度の変動状況も併せて調査した。
EXAMPLE A continuous casting machine equipped with a tundish capable of accommodating molten steel (steel type: SUS304) for 28 tons was used to cast a cast slab having a thickness of 200 mm and a width of 1200 mm.
The temperature control in the tundish was performed according to the following procedure, and the fluctuation state of the temperature of the molten steel in the tundish was investigated. In addition, in this example, the variation of the temperature of the molten steel in the tundish when heated by the plasma heater in the usual manner and when heated without using the plasma heater was also investigated.

【0020】操業データとしては、二次精錬時間:70
(min )、スループット:2(t/min )、出鋼時取鍋
溶鋼重量(ヒートサイズ):100t、鋳造中のタンデ
ィッシュ内溶鋼温度:1530(℃)、二次精錬終了時
温度:1600(℃)を用い、これらのデータを基に鋳
造末期の温度降下の実績より重回帰分析を行い推定式を
式(4)の如く導出し、この式より温度降下率を推算し
た。
As operation data, secondary refining time: 70
(Min), Throughput: 2 (t / min), Ladle molten steel weight (heat size) at tapping: 100 t, Molten steel temperature in the tundish during casting: 1530 (° C), Secondary refining end temperature: 1600 ( Based on these data, multiple regression analysis was performed from the actual results of the temperature drop in the final stage of casting, and the estimation formula was derived as in formula (4), and the temperature drop rate was estimated from this formula.

【0021】図3は、この発明により計算した鋳造末期
におけるタンディッシュ内の溶鋼の温度降下率と鋳造末
期における溶鋼の温度降下率の実績値とを比較した結果
であり、両者はよく一致している。なお、従来の操業デ
ータからチャージが定まれば、鋳造末期における溶鋼の
温度降下率はほぼ一定であることが知られている。した
がって、この発明に従い推算した温度降下率から、それ
以降の溶鋼温度を算出してプラズマヒータの印加開始時
間、加熱時間、ヒータの出力を(溶鋼温度)−(目標温
度)>0の条件に従い決定して温度制御を行うことによ
り、図4に示す如く溶鋼の温度を鋳造末期に至るまで目
標温度に保持できることが確認できた。
FIG. 3 shows the result of comparison between the temperature drop rate of molten steel in the tundish at the end of casting calculated according to the present invention and the actual value of the temperature drop rate of molten steel at the end of casting. There is. It is known that if the charge is determined from conventional operation data, the temperature drop rate of molten steel at the end of casting is almost constant. Therefore, the molten steel temperature thereafter is calculated from the temperature drop rate estimated according to the present invention, and the application start time of the plasma heater, the heating time, and the heater output are determined according to the condition of (molten steel temperature)-(target temperature)> 0. It was confirmed that the temperature of the molten steel can be kept at the target temperature until the end of casting as shown in FIG. 4 by performing the temperature control.

【0022】[0022]

【発明の効果】この発明によれば、タンディッシュ内の
溶鋼を鋳造末期に至るまで所定の温度に保持できるので
安定した連続鋳造を実施できる。また、鋳造初期におい
ても温度推移の予測が可能であるため、それ以降の測温
が不要であって、作業の簡略化を図ることができる。
According to the present invention, the molten steel in the tundish can be kept at a predetermined temperature until the end of casting, so that stable continuous casting can be carried out. Further, since it is possible to predict the temperature transition even in the initial stage of casting, it is not necessary to measure the temperature thereafter, and the work can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶鋼温度の変動状況を示した図である。FIG. 1 is a diagram showing changes in molten steel temperature.

【図2】鋳造末期における溶鋼温度の降下状況を示した
図である。
FIG. 2 is a diagram showing how the molten steel temperature drops at the final stage of casting.

【図3】温度降下率を計算値と実績値について比較して
示したグラフである。
FIG. 3 is a graph showing a temperature drop rate in comparison with a calculated value and an actual value.

【図4】溶鋼温度の変動状況を比較して示した図であ
る。
FIG. 4 is a diagram showing a comparison of changes in molten steel temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 美弦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 田村 望 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 青木 秀未 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshinori Sakurai 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (72) Inventor Nozomi Tamura 1- Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Hidemi Aoki 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュ内の溶鋼にプラズマを印
加することによって加熱、昇温し、該溶鋼の温度を目標
とする範囲に保持しつつ連続鋳造を行うに当たり、 該当チャージの操業データを基にして取鍋およびタンデ
ィッシュにおける溶鋼の抜熱量を推定して溶鋼の温度降
下率を推算し、この温度降下率と少なくとも1点の鋳造
時の測温データとから、1ヒート毎の鋳造末期の溶鋼温
度を予測し、その値が、目標温度を下回る場合には、プ
ラズマを印加して溶鋼の温度が目標温度の範囲内に収ま
るように保持することを特徴とする連続鋳造におけるタ
ンディッシュ内溶鋼の温度制御法。
1. A molten steel in a tundish is heated and heated by applying a plasma, and continuous casting is performed while maintaining the temperature of the molten steel within a target range. The temperature drop rate of the molten steel is estimated by estimating the heat removal amount of the molten steel in the ladle and tundish, and from this temperature drop rate and the temperature measurement data of at least one point, the molten steel at the end of casting for each heat If the temperature is predicted and the value is below the target temperature, plasma is applied to maintain the temperature of the molten steel within the range of the target temperature. Temperature control method.
【請求項2】 該当チャージの操業データは、少なくと
も、ヒートサイズ、二次精錬終了時の溶鋼の温度、二次
精錬時間、溶鋼のスループット、取鍋内の溶鋼が空にな
ってから次の溶鋼が注入されるまでの時間である、請求
項1記載の方法。
2. The operation data of the relevant charge is at least heat size, temperature of molten steel at the end of secondary refining, secondary refining time, throughput of molten steel, molten steel in the ladle after the emptying, and the next molten steel. The method of claim 1, wherein is the time until is injected.
JP19076095A 1995-07-26 1995-07-26 Method for controlling temperature of molten steel in tundish for continuous casting Pending JPH0929401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19076095A JPH0929401A (en) 1995-07-26 1995-07-26 Method for controlling temperature of molten steel in tundish for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19076095A JPH0929401A (en) 1995-07-26 1995-07-26 Method for controlling temperature of molten steel in tundish for continuous casting

Publications (1)

Publication Number Publication Date
JPH0929401A true JPH0929401A (en) 1997-02-04

Family

ID=16263279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19076095A Pending JPH0929401A (en) 1995-07-26 1995-07-26 Method for controlling temperature of molten steel in tundish for continuous casting

Country Status (1)

Country Link
JP (1) JPH0929401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186762A (en) * 2006-01-13 2007-07-26 Kobe Steel Ltd Operating method in producing process for steel and operating apparatus therefor
JP2009248094A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Heat insulation method of molten steel
KR101400034B1 (en) * 2012-01-31 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish
KR101400040B1 (en) * 2012-04-26 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish
JP2015093293A (en) * 2013-11-11 2015-05-18 株式会社神戸製鋼所 Improving method of ladle natural opening rate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186762A (en) * 2006-01-13 2007-07-26 Kobe Steel Ltd Operating method in producing process for steel and operating apparatus therefor
JP2009248094A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Heat insulation method of molten steel
KR101400034B1 (en) * 2012-01-31 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish
KR101400040B1 (en) * 2012-04-26 2014-05-27 현대제철 주식회사 Control method for molten steel in tundish
JP2015093293A (en) * 2013-11-11 2015-05-18 株式会社神戸製鋼所 Improving method of ladle natural opening rate

Similar Documents

Publication Publication Date Title
CN104023875B (en) Casting method, especially continuous cast method
Gupta et al. Temperature prediction model for controlling casting superheat temperature
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JP2006518669A (en) Method for adjusting the temperature of a metal strip, especially in the cooling zone
JP4100179B2 (en) Molten steel temperature control method and apparatus
JPH0929401A (en) Method for controlling temperature of molten steel in tundish for continuous casting
US4370719A (en) Control of centrifugal pipe casting operation
CN109116880A (en) A kind of temperature control equipment and control method of refining furnace
UA77725C2 (en) Method for continuous casting of thin metal strip in two-cylinder method
JPH06264B2 (en) Level control method in continuous casting
JP3562116B2 (en) Control method of molten steel temperature in tundish
JP2021514851A (en) Methods and equipment for monitoring the continuous steel casting process
JP2809925B2 (en) Sheet temperature control method for continuous annealing furnace
JP3140799B2 (en) Control method of tapping temperature
JPH0797611A (en) Method for controlling molten steel temperature in steelmaking process
JPH03174961A (en) Method and apparatus for controlling molten metal surface in continuous casting
JPH08197234A (en) Method for controlling temperature of molten metal
KR100992372B1 (en) Apparatus and method for calculating temperature for Rolling Process using Bar Cooler
RU2783688C1 (en) Method for controlling the cooling device in the rolling mill line
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
JP7031350B2 (en) How to estimate the casting time in the steelmaking process
JP3078561B2 (en) How to control molten steel temperature
JP2001219250A (en) Device and method for controlling temperature of molten steel in tundish, and computer-readable storage medium
JP3928314B2 (en) Method for predicting and determining heating furnace extraction time and heating furnace control method