JPH09293665A - Manufacture of x-ray mask and manufacturing device thereof - Google Patents

Manufacture of x-ray mask and manufacturing device thereof

Info

Publication number
JPH09293665A
JPH09293665A JP10698596A JP10698596A JPH09293665A JP H09293665 A JPH09293665 A JP H09293665A JP 10698596 A JP10698596 A JP 10698596A JP 10698596 A JP10698596 A JP 10698596A JP H09293665 A JPH09293665 A JP H09293665A
Authority
JP
Japan
Prior art keywords
film
ray
temperature
mask
window region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10698596A
Other languages
Japanese (ja)
Inventor
Shinji Sugihara
真児 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10698596A priority Critical patent/JPH09293665A/en
Publication of JPH09293665A publication Critical patent/JPH09293665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an X-ray mask, which reduces stress distribution in an X-ray absorber and lessens the strain of the position of a pattern in manufacturing the X-ray mask. SOLUTION: A method of manufacturing an X-ray mask is provided with a process of forming an X-ray transmissive film 3 on a mask supporting material, a process of forming a window region on the rear of the above mask supporting material by etching away a prescribed region on the rear and a process of forming an X-ray absorber film on the film 3. The process of forming this X-ray absorber film is executed while the temperature of this film 3 is corrected by a temperature correcting member 1, which is arranged separately from the window region formed on the rear of the film 3 and in close proximity to the window region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線露光用マスク
の製造方法、およびその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray exposure mask manufacturing method and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】半導体デバイスのパターンサイズは微細
化の一途を辿っており、このようなパターンの微細化に
伴って、回路パターンを露光基板上に転写するためのリ
ソグラフィー技術には、さらなる高精度化が要求されて
いる。
2. Description of the Related Art The pattern size of semiconductor devices is becoming finer, and with the miniaturization of such patterns, the lithography technique for transferring a circuit pattern onto an exposure substrate has a higher precision. Is required.

【0003】光リソグラフィー技術は、露光光源の短波
長化、レジストの解像力増加、位相シフトマスクや超解
像技術の導入により、0.15μmルールのデバイスへ
の適用の展望が開けた。しかしながら、光リソグラフィ
にはArFエキシマレーザー等の短波長光学系の確立、
レジストの開発、マスクの欠陥検査・修正技術の確立な
ど克服すべき課題は多い。このような光リソグラフィに
代わる微細加工技術としての電子ビーム(EB)直接描
画では、キャラクタ・プロジェクション法による高速化
が推進されているものの、描画精度とスループットとの
双方を満足することは容易ではない。
The photolithography technology has a prospect of application to devices of 0.15 μm rule by shortening the wavelength of the exposure light source, increasing the resolution of the resist, and introducing a phase shift mask and super-resolution technology. However, for optical lithography, the establishment of short-wavelength optical systems such as ArF excimer lasers,
There are many problems to be overcome such as resist development and mask defect inspection / correction technology. In electron beam (EB) direct writing as a microfabrication technique replacing such optical lithography, speeding up by a character projection method has been promoted, but it is not easy to satisfy both the writing precision and the throughput. .

【0004】そこで、光リソグラフィの次の世代を担う
技術としてX線リソグラフィが有望視されている。ここ
で用いられるX線は、従来の露光光に比して波長が遥か
に短いために回折の影響が極めて小さく、しかも、光源
として放射光を用いることにより、光リソグラフィの課
題であるフォーカスマージンを大きくすることができる
という利点を有している。しかしながら、X線は多くの
材料に対する屈折率がほぼ1であるため、屈折光学系を
使用することができず、現在は等倍転写が主流とされて
いる。したがって、X線露光用マスクの表面に設けられ
るX線吸収体パターンは、実デバイスと同サイズで形成
されていることが要求される。これらの経緯から、X線
リソグラフィが克服すべき問題の一つとして、X線吸収
体の微細加工技術およびその位置精度の向上が挙げられ
る。
Therefore, X-ray lithography is regarded as a promising technology for the next generation of optical lithography. The X-ray used here has a much shorter wavelength than that of the conventional exposure light, so that the influence of diffraction is extremely small. Moreover, by using radiated light as the light source, the focus margin, which is a problem of optical lithography, can be reduced. It has the advantage that it can be made larger. However, since the refractive index of X-rays for many materials is almost 1, it is not possible to use a refracting optical system, and at present, the same-magnification transfer is predominant. Therefore, the X-ray absorber pattern provided on the surface of the X-ray exposure mask is required to be formed in the same size as the actual device. From these circumstances, one of the problems to be overcome by X-ray lithography is the fine processing technology of the X-ray absorber and the improvement of its positional accuracy.

【0005】露光基板上では高いコントラストが必要と
されるため、X線吸収体は厚さ1ないし2μm程度のX
線透過膜上に、主としてX線阻止能力の高い重金属で形
成される。このようにX線吸収体は薄膜上に形成される
ため、形成されたパターンの位置歪みを抑えるには、X
線吸収体の高精度な応力制御と均一性の向上が要求され
ている。
Since a high contrast is required on the exposed substrate, the X-ray absorber has an X-ray thickness of 1 to 2 μm.
It is mainly formed of a heavy metal having a high X-ray blocking ability on the radiation transparent film. Since the X-ray absorber is formed on the thin film in this manner, X-ray absorber can be used to suppress positional distortion of the formed pattern.
There is a demand for highly accurate stress control and improved uniformity of the line absorber.

【0006】現行プロセスでは、X線透過膜はまずSi
基板上に成膜された後、ウェットエッチング法を用いて
裏面からSi基板の所定の領域を取り除くことによって
薄膜化してウインドウ領域を形成している。X線吸収体
をX線透過性薄膜上に形成した後にこの薄膜化工程を行
なう場合、X線透過膜の応力が開放され、膜の伸縮が生
じ、これに起因してX線吸収体膜に応力変化が生じる。
そのため、X線吸収体膜は、ウインドウ領域を形成した
後にX線透過膜上に形成することが望ましい。
In the current process, the X-ray transparent film is first made of Si.
After the film is formed on the substrate, a predetermined region of the Si substrate is removed from the back surface by a wet etching method to form a thin film to form a window region. When this thinning step is performed after forming the X-ray absorber on the X-ray transparent thin film, the stress of the X-ray transparent film is released and the film expands and contracts, which causes the X-ray absorber film to expand. Stress changes occur.
Therefore, it is desirable that the X-ray absorber film is formed on the X-ray transmissive film after forming the window region.

【0007】X線吸収体の成膜においては、主として応
力制御に適したスパッタリング法が用いられており、成
膜後のアニールやイオン注入等による応力調整法も確立
されている。しかしながらこれらの方法では、応力の面
内分布を補正することはできないため、パターン位置歪
みを解消するには、X線吸収体の成膜時における面内の
応力分布を低減しなければならない。しかし、薄膜化さ
れたX線透過膜上への成膜の場合には成膜中の温度制御
が困難であるため、均一性に優れた低応力のX線吸収体
の形成をより困難なものとしている。
In the film formation of the X-ray absorber, a sputtering method suitable for stress control is mainly used, and a stress adjusting method by annealing or ion implantation after the film formation is also established. However, these methods cannot correct the in-plane stress distribution, and therefore, in order to eliminate the pattern positional distortion, the in-plane stress distribution during film formation of the X-ray absorber must be reduced. However, in the case of forming a film on a thin X-ray transparent film, it is more difficult to form an X-ray absorber having low stress and excellent uniformity because it is difficult to control the temperature during the film formation. I am trying.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、X線
マスク製造の一工程であるX線吸収体の成膜において、
X線透過性薄膜上にX線吸収体を低応力、高い均一性で
成膜する方法を提供することにある。また、本発明の目
的は、均一性に優れたX線吸収体膜を、X線透過膜上に
形成し得るX線吸収体成膜装置を提供することにある。
An object of the present invention is to form an X-ray absorber, which is one step of manufacturing an X-ray mask,
An object of the present invention is to provide a method of forming an X-ray absorber on an X-ray transparent thin film with low stress and high uniformity. Another object of the present invention is to provide an X-ray absorber film forming apparatus capable of forming an X-ray absorber film having excellent uniformity on an X-ray transmitting film.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、マスク支持体上にX線透過膜を形成する
工程と、前記マスク支持体の裏面の所定の領域をエッチ
ング除去してウインドウ領域を形成する工程と、前記X
線透過膜上にX線吸収体膜を形成する工程とを具備し、
前記X線吸収体膜を形成する工程は、前記X線透過膜の
裏面に形成されたウインドウ領域に離間・近接して配置
された温度補正部材により、このX線透過膜の温度を補
正しつつ行なわれることを特徴とするX線マスクの製造
方法を提供する。
In order to solve the above problems, the present invention provides a step of forming an X-ray transparent film on a mask support, and etching and removing a predetermined region on the back surface of the mask support. Forming a window region with
Forming an X-ray absorber film on the X-ray transparent film,
In the step of forming the X-ray absorbing film, the temperature of the X-ray transmitting film is corrected by a temperature correction member that is arranged close to and in the window region formed on the back surface of the X-ray transmitting film. A method for manufacturing an X-ray mask, which is characterized by being performed.

【0010】前記温度補正部材には、前記X線透過膜の
温度分布を低減するような温度勾配を設定することが好
ましい。さらに、前記X線透過膜からの前記温度補正部
材の距離を、前記X透過膜の温度分布を低減するように
制御することが好ましい。
It is preferable that the temperature correction member has a temperature gradient that reduces the temperature distribution of the X-ray transparent film. Furthermore, it is preferable to control the distance of the temperature correction member from the X-ray transparent film so as to reduce the temperature distribution of the X-permeable film.

【0011】また、本発明は、マスク支持体により支持
され、その裏面の所定の領域にウインドウ領域が設けら
れたX線透過膜の表面にX線吸収体膜を形成する成膜装
置であり、前記X線透過膜の温度を制御するための温度
補正部材が、前記X線透過膜の裏面に形成されたウイン
ドウ領域に離間・近接して配置されていることを特徴と
するX線吸収体成膜装置を提供する。
Further, the present invention is a film forming apparatus for forming an X-ray absorber film on the surface of an X-ray transparent film, which is supported by a mask support and has a window region provided in a predetermined region on the back surface thereof. An X-ray absorber structure characterized in that a temperature correction member for controlling the temperature of the X-ray transparent film is arranged close to and spaced from a window region formed on the back surface of the X-ray transparent film. A membrane device is provided.

【0012】前記温度補正部材と前記X線透過膜との距
離が、前記ウインドウ領域の中央部と端部とで異なり、
ウインドウ領域の端部における距離が中央部における距
離より小さいことが好ましい。さらに、前記温度補正部
材は、前記X線マスクの裏面に形成されたウインドウ領
域の中央部に相当する領域に貫通穴が設けられているこ
とが好ましい。
The distance between the temperature correction member and the X-ray transparent film differs between the central portion and the end portion of the window region,
The distance at the edge of the window region is preferably smaller than the distance at the center. Further, it is preferable that the temperature correction member is provided with a through hole in a region corresponding to a central portion of a window region formed on the back surface of the X-ray mask.

【0013】[0013]

【発明の実施の形態】通常、薄膜化されたX線透過膜上
にスパッタリング法などによりX線吸収体膜を形成する
場合には、このX線透過膜が薄膜であるゆえに熱伝導が
抑えられて、薄膜の周辺部と中央部との間に温度差が生
じる。すなわち、X線透過膜上に大きな温度分布が発生
する。膜形成後の応力は成形時の温度に強く依存するた
め、X線透過膜に生じた温度分布により、この上に形成
されるX線吸収体膜の応力に分布が生じてしまう。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, when an X-ray absorber film is formed on a thinned X-ray transparent film by a sputtering method or the like, heat conduction is suppressed because the X-ray transparent film is a thin film. As a result, a temperature difference occurs between the peripheral portion and the central portion of the thin film. That is, a large temperature distribution is generated on the X-ray transparent film. Since the stress after the film formation strongly depends on the temperature at the time of molding, the stress distribution of the X-ray absorber film formed on the X-ray transmission film has a distribution due to the temperature distribution generated in the X-ray transmission film.

【0014】本発明者らは、このような膜形成時の温度
分布を抑えることを種々検討し、本発明を成すに至っ
た。図1に、本発明のX線マスクの製造方法の概念図を
示す。図1に示すように、本発明の方法においては、X
線透過膜3の表面にスパッタリング法によりX線吸収体
膜を形成するに当たって、X線透過膜3の裏面に近接し
て温度補正部材1を配置しているので、X線透過膜3の
温度分布を低減することができた。すなわち、温度補正
部材1からの輻射熱等によって支持体上の温度差が低減
され、結果としてX線透過膜上に形成されるX線吸収体
膜の応力分布が低減される。
The present inventors have made various studies to suppress such temperature distribution during film formation and have completed the present invention. FIG. 1 shows a conceptual diagram of an X-ray mask manufacturing method of the present invention. As shown in FIG. 1, in the method of the present invention, X
When the X-ray absorber film is formed on the surface of the X-ray transparent film 3 by the sputtering method, the temperature correction member 1 is arranged close to the back surface of the X-ray transparent film 3, so that the temperature distribution of the X-ray transparent film 3 is distributed. Could be reduced. That is, the radiant heat from the temperature correction member 1 reduces the temperature difference on the support, and consequently reduces the stress distribution of the X-ray absorber film formed on the X-ray transmissive film.

【0015】温度補正部材1のX線透過膜3からの距離
は、成膜条件(ガス圧力、印加電力)等に応じて適宜選
択することができるが、例えば、0.01〜0.5mm
程度とすることが好ましい。0.01mm未満では、制
御することが困難となり、一方0.5mmを越えると、
十分な温度補正効果を発揮できないおそれがある。
The distance of the temperature correction member 1 from the X-ray transparent film 3 can be appropriately selected according to the film forming conditions (gas pressure, applied power) and the like, but is, for example, 0.01 to 0.5 mm.
It is preferable to set the degree. If it is less than 0.01 mm, it becomes difficult to control, while if it exceeds 0.5 mm,
There is a risk that the temperature correction effect will not be sufficient.

【0016】また、温度補正部材1は、例えば、その断
面において一定の温度に設定して用いることができる。
この場合、設定温度は、成膜条件等に応じて適宜決定す
ることができるが、例えば、100〜500℃程度とす
ることができる。
The temperature correction member 1 can be used, for example, by setting a constant temperature in its cross section.
In this case, the set temperature can be appropriately determined according to the film forming conditions and the like, but can be set to about 100 to 500 ° C., for example.

【0017】なお、従来の方法によりX線透過膜上にX
線吸収体膜を成膜した際の成膜中のX線透過膜の温度分
布の一例を、図2のグラフに示す。X線透過膜として
は、薄膜化したSiC膜(厚さ1μm)を使用し、この
上にスパッタリング法によりX線吸収体としてのW−R
e膜を成膜した。図2に示されるように、X線透過膜の
中央部と端部とでは、±15%以上の温度分布が生じて
おり、これに起因して同程度のレベルの応力分布が発生
する。
It is to be noted that X is formed on the X-ray transparent film by a conventional method.
An example of the temperature distribution of the X-ray transparent film during film formation when the line absorber film is formed is shown in the graph of FIG. A thin SiC film (thickness 1 μm) is used as the X-ray transmission film, and a WR as an X-ray absorber is formed on the SiC film by a sputtering method.
An e film was formed. As shown in FIG. 2, a temperature distribution of ± 15% or more occurs in the central portion and the end portion of the X-ray transparent film, and due to this, a stress distribution of a similar level occurs.

【0018】図3には、本発明の方法により温度補正部
材をX線透過膜の裏面に設置してX線吸収体膜を形成し
た際の温度分布を示す。ここで、X線透過膜としては、
前述と同様の厚さ1μmのSiC膜を使用し、300℃
に設定された温度補正部材1を前記X線透過膜から0.
1mmの距離に配置して、図1に示すような構成で成膜
を行なった。図3のグラフに示されるように、X線透過
膜の中央部と端部との温度分布±10%以下に収まって
おり、応力分布もこれと同等のレベルまで低減できるこ
とが予測される。
FIG. 3 shows the temperature distribution when the temperature compensating member is installed on the back surface of the X-ray transmitting film by the method of the present invention to form the X-ray absorber film. Here, as the X-ray transparent film,
Using the same 1 μm thick SiC film as above, 300 ℃
The temperature correction member 1 set to 0.
The film was formed at a distance of 1 mm with the configuration shown in FIG. As shown in the graph of FIG. 3, the temperature distribution between the central portion and the end portion of the X-ray transparent film is within ± 10%, and it is expected that the stress distribution can be reduced to a level equivalent to this.

【0019】なお、本発明のX線吸収体成膜装置の概略
は、図4に示すとおりである。真空チャンバー8内に
は、マスク基板6の裏面側に近接するように温度補正部
材1が配置されており、この温度補正部材は温度制御系
7により制御される。かかる状態でスパッタリング法に
より成膜することによって、低応力、高い均一性のX線
吸収体膜が得られる。
An outline of the X-ray absorber film forming apparatus of the present invention is as shown in FIG. The temperature correction member 1 is arranged in the vacuum chamber 8 so as to be close to the back surface side of the mask substrate 6, and this temperature correction member is controlled by the temperature control system 7. By forming a film by the sputtering method in this state, an X-ray absorber film with low stress and high uniformity can be obtained.

【0020】また、本発明の方法においては、X線透過
膜の温度分布を相殺するような温度分布を温度補正部材
1に設けてもよい。図5のグラフには、温度補正部材の
温度分布の一例を示している。このように温度が調節さ
れた温度補正部材を、X線透過膜から0.1mmの間隔
で配置したところ、X線透過膜上の温度分布は、図5の
グラフに示されるように±5%以下に収まった。すなわ
ち、X線透過膜の温度分布を打ち消すような形の温度分
布を温度補正部材に設定することによって、X線透過膜
の温度の均一性が大幅に改善されることがわかる。
Further, in the method of the present invention, the temperature correction member 1 may be provided with a temperature distribution that cancels the temperature distribution of the X-ray transparent film. The graph of FIG. 5 shows an example of the temperature distribution of the temperature correction member. When the temperature correction members whose temperatures were adjusted as described above were arranged at an interval of 0.1 mm from the X-ray transparent film, the temperature distribution on the X-ray transparent film was ± 5% as shown in the graph of FIG. It fell below. That is, it is understood that the temperature uniformity of the X-ray transparent film is significantly improved by setting the temperature correction member with a temperature distribution that cancels the temperature distribution of the X-ray transparent film.

【0021】なお、温度補正部材1に設けられる温度分
布は、ここで示した例に限定されるものではなく、X線
透過膜の温度分布を低減するように、その温度勾配等を
適宜決定することができる。
The temperature distribution provided in the temperature correction member 1 is not limited to the example shown here, and its temperature gradient and the like are appropriately determined so as to reduce the temperature distribution of the X-ray transparent film. be able to.

【0022】あるいは、図6に示すように、X線透過膜
3に対向する面に凹凸が設けられた温度補正部材9を用
いることもできる。温度補正部材9は、X線透過膜3の
中央部では、X線透過膜3との距離が大きく、一方、X
線透過膜3の裏面に形成されたウインドウ領域の端部で
は、X線透過膜3との距離が小さくなるような断面形状
を有している。このような断面形状とすることで、X線
透過性薄膜上の輻射熱量に分布が生じるため、温度補正
部材に温度分布を与えた場合と同様の効果が得られ、X
線透過膜の面内温度の均一性は向上する。なお、この場
合、温度補正部材の断面形状は、図6に示した形状に限
定されるものではなく、X線透過膜の温度分布を低減す
るように、X線透過膜との距離がウインドウ領域の端部
において小さくし、一方、ウインドウ領域の中央部にお
いて大きくした任意の形状とすることができる。
Alternatively, as shown in FIG. 6, it is also possible to use a temperature correction member 9 in which irregularities are provided on the surface facing the X-ray transparent film 3. The temperature correction member 9 has a large distance from the X-ray transparent film 3 at the center of the X-ray transparent film 3, while
The end portion of the window region formed on the back surface of the X-ray transparent film 3 has a cross-sectional shape such that the distance from the X-ray transparent film 3 becomes small. With such a cross-sectional shape, the amount of radiant heat on the X-ray transparent thin film has a distribution, so that the same effect as when the temperature distribution is given to the temperature correction member can be obtained.
The uniformity of the in-plane temperature of the linear transmission film is improved. In this case, the cross-sectional shape of the temperature correction member is not limited to the shape shown in FIG. 6, and the distance from the X-ray transparent film is the window region so as to reduce the temperature distribution of the X-ray transparent film. Can have an arbitrary shape with a small size at the end of the window and a large size at the center of the window area.

【0023】さらに、場合によっては、図7に示すよう
に、ウインドウ領域の中央部に相当する領域に貫通穴を
有する温度補正部材10を用いることもできる。このよ
うなリング状の温度補正部材は、X線透過膜裏面の温度
を赤外線によりモニターする場合に特に有効であり、こ
の温度補正部材をX線透過膜から0.1mmの距離に配
置したところ、成膜中の薄膜の温度分布は、図8のグラ
フに示されるように±7%に低減された。
Further, in some cases, as shown in FIG. 7, a temperature correction member 10 having a through hole in a region corresponding to the center of the window region can be used. Such a ring-shaped temperature correction member is particularly effective when the temperature of the back surface of the X-ray transparent film is monitored by infrared rays. When the temperature correction member is arranged at a distance of 0.1 mm from the X-ray transparent film, The temperature distribution of the thin film during film formation was reduced to ± 7% as shown in the graph of FIG.

【0024】なお、温度補正部材の温度分布や輻射熱量
等を変化させる方法は、上述した方法に限定されるもの
ではなく、例えば、温度補正部材とX線透過膜との間隔
を制御する機構を設けることによって達成することもで
きる。このような機構を用いてX線透過膜からの温度補
正部材の距離を制御することによって、スパッタリング
ガス圧力、印加パワーやターゲットと基板との間の距離
など、異なる成膜条件においてもX線透過膜の温度を容
易に制御することができる。
The method of changing the temperature distribution, the amount of radiant heat, etc. of the temperature correction member is not limited to the above-mentioned method. For example, a mechanism for controlling the distance between the temperature correction member and the X-ray transmission film may be used. It can also be achieved by providing. By controlling the distance of the temperature correction member from the X-ray transparent film using such a mechanism, X-ray transmission is performed even under different film forming conditions such as sputtering gas pressure, applied power, and distance between target and substrate. The temperature of the membrane can be easily controlled.

【0025】以下、具体例を示して本発明をより詳細に
説明する。図9および10は、本発明の一実施形態に関
わるX線マスクの製造工程を表す断面図である。
Hereinafter, the present invention will be described in more detail with reference to specific examples. 9 and 10 are cross-sectional views showing the manufacturing process of the X-ray mask according to the embodiment of the present invention.

【0026】予め、次のようにしてSi基板に表面処理
を施しておく。まず、高周波加熱方式のLPCVD装置
を用いて、グラファイトにSiCをコーティングしたサ
セプタ上に、厚さ600μm、面方位(100)の両面
研磨した3インチSi基板を設置した。次いで、110
0℃でHClガスによりSi基板の気相エッチングを施
すことにより、Si基板上に依存する自然酸化膜および
重金属類等の汚染物を除去した。
Surface treatment is applied to the Si substrate in advance as follows. First, using a high-frequency heating LPCVD apparatus, a 3-inch Si substrate having a thickness of 600 μm and a surface orientation (100) polished on both sides was set on a susceptor in which graphite was coated with SiC. Then 110
By subjecting the Si substrate to gas phase etching with HCl gas at 0 ° C., contaminants such as a natural oxide film and heavy metals depending on the Si substrate were removed.

【0027】このように表面処理されたSi基板を用い
て、以下の工程でX線透過膜およびX線吸収体膜を形成
した。まず、成膜装置内に表面処理後のSi基板を配置
し、Si原料としてのシラン(SiH4 )、C原料とし
てのアセチレン(C22 )、および添加ガスとしての
塩化水素(HCl)を供給して、基板温度1100℃の
条件のもと、図9(a)に示すようにSi基板2上にS
iC膜(X線透過膜)3を1μmの膜厚で形成した。
Using the Si substrate thus surface-treated, an X-ray transmission film and an X-ray absorber film were formed in the following steps. First, a surface-treated Si substrate is placed in a film forming apparatus, and silane (SiH 4 ) as a Si raw material, acetylene (C 2 H 2 ) as a C raw material, and hydrogen chloride (HCl) as an additive gas are added. Then, under the condition that the substrate temperature is 1100 ° C., as shown in FIG.
The iC film (X-ray transparent film) 3 was formed to a film thickness of 1 μm.

【0028】次に、マスク支持体であるSi基板2を、
厚さ4mm、内径52mmの石英補強枠4と直接接合に
より接合した。この石英補強枠4をエッチングマスクと
して弗酸および硝酸の混合液によりSi基板2の中央部
を除去し、図9(b)に示すようにSi基板2の裏面の
52mmφの開口部(ウインドウ領域)を形成した。
Next, the Si substrate 2 which is the mask support is
The quartz reinforcing frame 4 having a thickness of 4 mm and an inner diameter of 52 mm was directly joined. The quartz reinforcing frame 4 is used as an etching mask to remove the central portion of the Si substrate 2 with a mixed solution of hydrofluoric acid and nitric acid, and a 52 mmφ opening (window region) on the back surface of the Si substrate 2 as shown in FIG. 9B. Was formed.

【0029】続いて、SiC膜3の上にAl23 膜1
1およびW−Re膜12をスパッタリング法により順次
形成した。なお、ここで形成されたW−Re膜12は、
X線吸収体としての重金属膜であり、300Wの印加R
F電力のもと、高い密度のW−Re膜を形成可能で、か
つ応力がほぼ0となる条件であるガス圧力(2.35P
a)で成膜した。このW−Re膜12を成膜する際に
は、図1に示したようにSiC膜3の裏面から0.1m
mの距離に、300℃に設定された温度補正部材を配置
して、応力の均一性制御を行なった。
Subsequently, the Al 2 O 3 film 1 is formed on the SiC film 3.
1 and the W-Re film 12 were sequentially formed by the sputtering method. The W-Re film 12 formed here is
It is a heavy metal film as an X-ray absorber and has an applied R of 300W.
A gas pressure (2.35 P) under which a high density W-Re film can be formed under F power and the stress is almost zero.
The film was formed in a). When the W-Re film 12 is formed, as shown in FIG.
A temperature correction member set at 300 ° C. was arranged at a distance of m to control stress uniformity.

【0030】さらに、W−Re膜12の応力の絶対値を
低減させるために、このW−Re膜12にエネルギー1
80keV、ドーズ量3×1015 atoms/cm2 でAr
イオン注入を行なった。その後、W−Re膜12上に、
スパッタリング法によりCr膜13を50nmの膜厚で
成膜して、図9(c)に示すような構造を得た。
Further, in order to reduce the absolute value of the stress of the W-Re film 12, the W-Re film 12 has an energy of 1
Ar at 80 keV and a dose of 3 × 10 15 atoms / cm 2 .
Ion implantation was performed. Then, on the W-Re film 12,
A Cr film 13 having a film thickness of 50 nm was formed by a sputtering method to obtain a structure as shown in FIG.

【0031】次いで、図9(d)に示すように、Cr膜
13上に電子ビーム描画用レジストを膜厚300nmで
塗布し、N2 雰囲気中で170℃に加熱してレジスト中
の溶媒を除去してレジスト膜を形成した。続いて、EB
描画装置によりドーズ量90μC/cm2 で描画を行な
った後、専用現像液を用いて現像処理を施して所望のレ
ジストパターン14を形成した。
Next, as shown in FIG. 9 (d), a resist for electron beam drawing having a film thickness of 300 nm is applied on the Cr film 13 and heated to 170 ° C. in an N 2 atmosphere to remove the solvent in the resist. Then, a resist film was formed. Then, EB
After drawing with a drawing apparatus at a dose amount of 90 μC / cm 2 , a desired resist pattern 14 was formed by performing a developing process using a dedicated developing solution.

【0032】その後、図10(a)に示すように、マグ
ネトロンRIE装置により、Cl2およびO2 混合ガス
を用いて、レジストパタ−ン14をマスクとしてCr膜
713をエッチングした。さらに、図10(b)に示す
ように、O2 プラズマ処理によりレジストパターン14
を除去し、マグネトロンRIE装置により、SF6 およ
びCHF3 混合ガスを用いて、Cr膜13をマスクとし
てW−Re膜12を選択エッチングした。
Then, as shown in FIG. 10A, the Cr film 713 was etched by a magnetron RIE apparatus using a mixed gas of Cl 2 and O 2 with the resist pattern 14 as a mask. Furthermore, as shown in FIG. 10B, a resist pattern 14 is formed by O 2 plasma treatment.
Was removed, and the W-Re film 12 was selectively etched by a magnetron RIE apparatus using a mixed gas of SF 6 and CHF 3 with the Cr film 13 as a mask.

【0033】最後に、図10(c)に示すように、Si
C膜3の裏面に反射防止膜としてAl23 膜15をス
パッタリング法により成膜した。以上の方法により成膜
したX線マスクのパターン位置歪みを、レーザーを用い
た位置検査装置を用いて測定したところ、従来の製造法
により製作したX線マスクより3σ値において0.03
μm向上することが確認された。
Finally, as shown in FIG. 10 (c), Si
An Al 2 O 3 film 15 was formed as an antireflection film on the back surface of the C film 3 by a sputtering method. The pattern positional distortion of the X-ray mask formed by the above method was measured by using a position inspection device using a laser. As a result, it was 0.03 at a 3σ value of the X-ray mask manufactured by the conventional manufacturing method.
It was confirmed that the value was improved by μm.

【0034】なお、本発明は上述した例に限定されるも
のではなく、適宜変更して実施することができる。例え
ば、X線透過性薄膜はSiCに限らず、SiN,BN,
ボロンドープしたSiまたはダイヤモンドを用いること
ができ、反射防止膜としては、酸化アルミニウム以外に
も、SiO2 ,SOG,またはITOなどを用いてもよ
い。また、X線吸収体はW−Reに限らず、Wあるいは
W−Ti,W−N,さらにはTa等のスパッタリング法
で成膜可能な金属を用いて形成することが可能である。
その他、本発明の要旨を逸脱しない範囲で、種々変形し
て実施することができる。
The present invention is not limited to the above-mentioned examples, and can be implemented with appropriate modifications. For example, the X-ray transparent thin film is not limited to SiC, but SiN, BN,
Boron-doped Si or diamond can be used, and as the antireflection film, SiO 2 , SOG, ITO or the like may be used in addition to aluminum oxide. Further, the X-ray absorber is not limited to W-Re, and can be formed using W or W-Ti, W-N, or a metal such as Ta that can be formed into a film by a sputtering method.
In addition, various modifications can be made without departing from the scope of the present invention.

【0035】[0035]

【発明の効果】以上、詳述したように本発明によれば、
低応力かつ面内均一性に優れたX線吸収体を形成するこ
とができる。本発明の方法により製造されたX線マスク
は、パターン位置精度が優れているので、かかるX線マ
スクを用いることによってX線リソグラフィの精度を著
しく向上させることができ、その工業的価値は絶大であ
る。
As described in detail above, according to the present invention,
An X-ray absorber having low stress and excellent in-plane uniformity can be formed. Since the X-ray mask manufactured by the method of the present invention has excellent pattern position accuracy, the accuracy of X-ray lithography can be significantly improved by using such an X-ray mask, and its industrial value is enormous. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いられる温度補正部材に関する概念
図。
FIG. 1 is a conceptual diagram of a temperature correction member used in the present invention.

【図2】従来方法の成膜時X線透過性薄膜の温度分布を
表すグラフ図。
FIG. 2 is a graph showing a temperature distribution of an X-ray transparent thin film during film formation by a conventional method.

【図3】本発明における成膜時X線透過性薄膜の温度分
布を表すグラフ図。
FIG. 3 is a graph showing the temperature distribution of an X-ray transparent thin film during film formation in the present invention.

【図4】本発明のX線吸収体成膜装置の一例を表す概略
図。
FIG. 4 is a schematic diagram showing an example of an X-ray absorber film forming apparatus of the present invention.

【図5】本発明における成膜時X線透過性薄膜の温度分
布を表すグラフ図。
FIG. 5 is a graph showing the temperature distribution of the X-ray transparent thin film during film formation in the present invention.

【図6】本発明の方法で用いられる温度補正部材に関す
る概念図。
FIG. 6 is a conceptual diagram relating to a temperature correction member used in the method of the present invention.

【図7】本発明の方法で用いられる温度補正部材に関す
る概念図。
FIG. 7 is a conceptual diagram relating to a temperature correction member used in the method of the present invention.

【図8】本発明における成膜時X線透過性薄膜の温度分
布を表すグラフ図。
FIG. 8 is a graph showing the temperature distribution of the X-ray transparent thin film during film formation in the present invention.

【図9】本発明の一実施形態に関わるX線マスクの製造
工程を示す断面図。
FIG. 9 is a cross-sectional view showing the manufacturing process of the X-ray mask according to the embodiment of the present invention.

【図10】本発明の一実施形態に関わるX線マスクの製
造工程を示す断面図。
FIG. 10 is a cross-sectional view showing the manufacturing process of the X-ray mask according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,9,10…温度補正部材 2…Si基板 3…SiC(X線透過膜) 4…石英補強枠 5…スパッタターゲット 6…マスク基板 7…温度制御系 8…真空チャンバー 11…Al23 膜 12…W−Re膜(X線吸収体膜) 13…Cr膜 14…電子ビームレジストパターン 15…Al231, 9 and 10 ... Temperature correction member 2 ... Si substrate 3 ... SiC (X-ray transparent film) 4 ... Quartz reinforcement frame 5 ... Sputter target 6 ... Mask substrate 7 ... Temperature control system 8 ... Vacuum chamber 11 ... Al 2 O 3 Film 12 ... W-Re film (X-ray absorber film) 13 ... Cr film 14 ... Electron beam resist pattern 15 ... Al 2 O 3 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 マスク支持体上にX線透過膜を形成する
工程と、 前記マスク支持体の裏面の所定の領域をエッチング除去
してウインドウ領域を形成する工程と、 前記X線透過膜上にX線吸収体膜を形成する工程とを具
備し、 前記X線吸収体膜を形成する工程は、前記X線透過膜の
裏面に形成されたウインドウ領域に離間・近接して配置
された温度補正部材により、このX線透過膜の温度を補
正しつつ行なわれることを特徴とするX線マスクの製造
方法。
1. A step of forming an X-ray transparent film on a mask support, a step of forming a window region by etching away a predetermined region on the back surface of the mask support, and a step of forming a window region on the X-ray transparent film. And a step of forming the X-ray absorber film, wherein the step of forming the X-ray absorber film includes temperature correction in which the window region formed on the back surface of the X-ray transmissive film is spaced and close to the window region. A method for manufacturing an X-ray mask, which is performed while correcting the temperature of the X-ray transparent film by a member.
【請求項2】 前記温度補正部材に、前記X線透過膜の
温度分布を低減するような温度勾配を設定する請求項1
に記載のX線マスクの製造方法。
2. The temperature correction member is provided with a temperature gradient that reduces the temperature distribution of the X-ray transparent film.
The method for manufacturing an X-ray mask as described in 1.
【請求項3】 前記X線透過膜からの前記温度補正部材
の距離を、前記X透過膜の温度分布を低減するように制
御する請求項1に記載のX線マスクの製造方法。
3. The method of manufacturing an X-ray mask according to claim 1, wherein the distance of the temperature correction member from the X-ray transmissive film is controlled so as to reduce the temperature distribution of the X-transmissive film.
【請求項4】 マスク支持体により支持され、その裏面
の所定の領域にウインドウ領域が設けられたX線透過膜
の表面にX線吸収体膜を形成する成膜装置であり、 前記X線透過膜の温度を制御するための温度補正部材
が、前記X線透過膜の裏面に形成されたウインドウ領域
に離間・近接して配置されていることを特徴とするX線
吸収体成膜装置。
4. A film forming apparatus for forming an X-ray absorber film on the surface of an X-ray transparent film, which is supported by a mask support and has a window region provided in a predetermined region on the back surface thereof. An X-ray absorber film-forming apparatus, wherein a temperature correction member for controlling the temperature of the film is arranged in the window region formed on the back surface of the X-ray transmission film so as to be spaced apart and close to the window region.
【請求項5】 前記温度補正部材と前記X線透過膜との
距離が、前記ウインドウ領域の中央部と端部とで異な
り、ウインドウ領域の端部における距離が中央部におけ
る距離より小さい請求項4に記載のX線吸収体成膜装
置。
5. The distance between the temperature correction member and the X-ray transparent film is different between the center and the end of the window region, and the distance at the end of the window region is smaller than the distance at the center. The X-ray absorber film forming apparatus according to item 1.
【請求項6】 前記温度補正部材は、前記X線マスクの
裏面に形成されたウインドウ領域の中央部に相当する領
域に貫通穴が設けられている請求項4に記載のX線吸収
体成膜装置。
6. The X-ray absorber film formation according to claim 4, wherein the temperature correction member is provided with a through hole in a region corresponding to a central portion of a window region formed on the back surface of the X-ray mask. apparatus.
JP10698596A 1996-04-26 1996-04-26 Manufacture of x-ray mask and manufacturing device thereof Pending JPH09293665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10698596A JPH09293665A (en) 1996-04-26 1996-04-26 Manufacture of x-ray mask and manufacturing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10698596A JPH09293665A (en) 1996-04-26 1996-04-26 Manufacture of x-ray mask and manufacturing device thereof

Publications (1)

Publication Number Publication Date
JPH09293665A true JPH09293665A (en) 1997-11-11

Family

ID=14447561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10698596A Pending JPH09293665A (en) 1996-04-26 1996-04-26 Manufacture of x-ray mask and manufacturing device thereof

Country Status (1)

Country Link
JP (1) JPH09293665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312088B1 (en) * 1998-05-22 2001-11-03 가네코 히사시 X-ray mask and method of fabricating the same
US6529263B2 (en) 1998-09-04 2003-03-04 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312088B1 (en) * 1998-05-22 2001-11-03 가네코 히사시 X-ray mask and method of fabricating the same
US6529263B2 (en) 1998-09-04 2003-03-04 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus
US7072023B2 (en) 1998-09-04 2006-07-04 Canon Kabushiki Kaisha Position detection apparatus having a plurality of detection sections, and exposure apparatus

Similar Documents

Publication Publication Date Title
JP2823276B2 (en) Method for manufacturing X-ray mask and apparatus for controlling internal stress of thin film
US7771895B2 (en) Method of etching extreme ultraviolet light (EUV) photomasks
US6737201B2 (en) Substrate with multilayer film, reflection type mask blank for exposure, reflection type mask for exposure and production method thereof as well as production method of semiconductor device
JP4462423B2 (en) Photomask blank manufacturing method
US4941942A (en) Method of manufacturing a mask support of sic for x-ray lithography masks
JP5844025B2 (en) Photomask having self-mask layer and etching method thereof
US9063427B2 (en) Photomask blank and manufacturing method thereof
US7749400B2 (en) Method for etching photolithographic substrates
US4994141A (en) Method of manufacturing a mask support of SiC for radiation lithography masks
US7056623B2 (en) Photomask and method for manufacturing the same
JP4371230B2 (en) Photomask blank manufacturing method
JP2001100395A (en) Mask for exposure and method for manufacturing the same
US20040224526A1 (en) Method of producing a reflection type mask blank, method of producing a reflection type mask, and method of producing a semiconductor device
RU2704673C1 (en) Method of making x-ray lithographic pattern
US7867403B2 (en) Temperature control method for photolithographic substrate
US20230185185A1 (en) Method and apparatus for forming a blank mask and a layer for a blank mask
JPH09293665A (en) Manufacture of x-ray mask and manufacturing device thereof
Lercel et al. Next-generation lithography mask development at the NGL Mask Center of Competency
JPH11219899A (en) X-ray mask blank, its manufacture, and manufacture of x-ray mask
JPH07152146A (en) Production of phase shift mask
JPH10135130A (en) X-ray mask blank, its manufacture, and x-ray mask
JPH0684764A (en) Manufacture of x-ray mask and instrument for measuring stress of x-ray mask
Bouchard Overview and status of the next generation lithography mask center of competency
JPH1140487A (en) X-ray mask, manufacture of x-ray mask, and device and method for x-ray lithography
TWI362563B (en) Temperature control method for photolithographic substrate